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Aerodynamic Heating

• Definition:
– Kinetic energy of a space vehicle that is re-entering in 

the Earth’s atmosphere is converted into heat
– Significant only of velocity > 650 m/s
– Occurs at stagnation point / line and skin of 

lifting/non-lifting surfaces
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– Occurs at stagnation point / line and skin of 
lifting/non-lifting surfaces

– Mechanisms:
• friction slows down molecules by shear force
• chemical reactions occur in the boundary layer
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Aerodynamic Heating

• Effects:
– Heat penetrates skin, structure, and interior components
– Weakening due to changes in crystal structure, melting, 

vaporization
– Thermal stresses  additional mechanical stresses  more 
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– Thermal stresses  additional mechanical stresses  more 
weight is required to withstand given stress / exotic materials

– Dissimilar materials in close contact expand at different rate 
upon heating  unbalanced forces  mechanical stresses
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Aerodynamic Heating

• Definitions of parameters:
– Recovery temperature (Tr): in case of an insulated object, equilibrium 

temperature at which the heat transferred out from the inner viscous layer of 
boundary layer is balanced by the viscous work done on the layers

– Slip flow: flow regime that appears at approximately 60 km altitude after the 
end of continuum flow regime (45-60 km). Slip flow is followed in turn by 
intermediate and free molecular flow regimes at even higher altitudes

– Stagnation point: point at which flow comes to a halt (fluid velocity is zero) wrt
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– Stagnation point: point at which flow comes to a halt (fluid velocity is zero) wrt
a body in motion

– Static temperature: unchanging temperature unaffected by heat from viscous 
shear / dissipation

– Transition point: location on a moving object at which the surrounding fluid 
ceases to follow the surface, developing eddies and turbulence
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Aerodynamic Heating

• How to know if aerodynamic heating occurs:

– Ground testing facility: hardware to be tested, 
computer controlled heating, instrumentation, 
data acquisition, heat transfer calculations
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data acquisition, heat transfer calculations
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Aerodynamic Heating

• How to know if aerodynamic heating occurs:

– Determine test specimen mission profile
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Trajectory, velocity, altitude programs as f (time)

Free-stream parameters: T∞, P∞, ρ∞, M∞ from 
standard atmospheric tables

body shape, attitude, and above parameters 
potential flow parameters T0, P0, ρ0, M0

Local heat transfer coefficient (h) and recovery 
temperature (Tr) as f(time) from potential flow 
parameters, material properties, and 
characteristic length



Aerodynamic Heating

• How to know if aerodynamic heating occurs:
– Further steps

• Determine type of testing facility
• Determine instrumentation: high-temperature strain gages, thermocouples, 

radiation pyrometers
• Use h = f1(time) and Tr = f2(time) and program into computer  net heat 

inflow into test specimen must be same as in trajectory
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1 r 2
inflow into test specimen must be same as in trajectory

• Begin tests:
– Monitor Twall, surface strain, etc.
– Record variations from design capabilities by operating onboard equipment during 

testing
– Compare test specimen instrument data and test facility instrument data

• Inspections:
– Surface degradation, creep, fatigues, effects of thermal stresses
– Operate onboard equipment in cold conditions  note variations from the design 

capabilities
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Aerodynamic Heating

• Heating methods employed in ground tests for aerodynamic 
heating:
– Non-convective: heating with/without application for external loads 

for a given time duration, cyclic loads (inertial and thermal), 
programmed heating and loading according to mission profile
• Radiant heaters: quartz lamp (large, 150 btu/sec.ft^2, 450 F/s, Tmax = 3200 F); 

arc-image furnace (small, 2600 btu/sec ft^2, 8000 F/s, Tmax = 7000 F)
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arc-image furnace (small, 2600 btu/sec ft^2, 8000 F/s, Tmax = 7000 F)
• Furnaces: large (Tmax = 2000 F), small (Tmax = 5000 F)
• Electrical resistance heating: small, 350 btu/sec ft^2, 1500 F, Tmax > melting 

point
• Induction heating: large (3000 btu/sec ft^2, 9000 F/s, Tmax > melting point); 

small (25000 btu/sec ft^2, 75000 F/s, Tmax > melting point
• Electron beam heaters: small, >100k btu/sec ft^2, > 300k F/s, Tmax > melting 

point
• Radiant heating is surface heating and closely simulates aerodynamic heating
• Induction heating is NOT surface heating; develops high heating rates and 

temperatures. Depending on the frequency of heating current and material 
resistivity, heating is concentrated at a certain depth below the surface
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Aerodynamic Heating

• Heating methods employed in ground tests for 
aerodynamic heating:

– Radiant heating tests:

• Heat elements with high thermal inertia to constant temperature
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Heat elements with high thermal inertia to constant temperature

• Change heat flux by programming the distance between test item 
and heating elements

• Keep distance between test specimen and radiator as constant

• Rapidly change heat flux by using heating element of low thermal 
inertia and programming the power input to elements
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Aerodynamic Heating

• Heating methods employed in ground tests for aerodynamic heating:
– Convective heating methods:

• Useful up to low supersonic flights  true velocity, enthalpy, and heating rate 
could be simulated

• Better than radiant heating
• Resistance based tunnels: small (55 btu/sec ft^2, 550 btu/lb, Tmax (total) = 2200 F)
• Ceramic heated tunnels: small (300 btu/sec ft^2, 1100 btu/lb, Tmax (total) = 4000 

F); 
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• Ceramic heated tunnels: small (300 btu/sec ft^2, 1100 btu/lb, Tmax (total) = 4000 
F); 

• Combustion heated tunnels: large (180 btu/sec ft^2, 1400 btu/lb, Tmax (total) = 
4000 F)

• Electron arc heating: small (1000 btu/sec ft^2, 18000 btu/lb, Tmax (total) = 16000 F) 
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Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:
– Boundary layer assumption: potential flow outside 

(neglect shear compared to inertia); viscous flow inside 
(shear and inertia are considered)

– Assume required angle of attack, locally constant 

Copyright © 2020 by Swarup Y Jejurkar

– Assume required angle of attack, locally constant 
temperature and zero normal pressure gradient:

– Use standard atmospheric tables: T∞, P∞, ρ∞

– Use trajectory / flight path coordinates and obtain h∞ and 
V∞
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Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:
– Obtain potential flow solutions:

• Shapes: cones, ogives, arbitrary shapes
• Methods: CFD, Taylor-McCall equations, method of characteristics, 

conical shock expansion method
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• Methods: CFD, Taylor-McCall equations, method of characteristics, 
conical shock expansion method

• Solution for M0, V0, T0, P0, ρ0 for each location on the body as a 
function of time t (0: outside boundary layer)

• Compute Re0 (                               ), where μ0 is obtained using 
Sutherland equations

• Determine if the boundary layer is laminar or turbulent (Re0 > 106)
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Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:

– Calculations for skin temperature:

• Local heat transfer rate into/out of a surface element:
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• Local heat transfer rate into/out of a surface element:
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Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:

– Calculations for skin temperature:

• Local heat transfer rate into/out of a surface element:
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• Local heat transfer rate into/out of a surface element:

• h is determined using relations specific to laminar or 
turbulent boundary layers
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Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:

– Calculations for skin temperature:

• Solution of equation
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--radiation loss is small
--short-duration, high-speed flight
--skin temperature reaches equilibrium 
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Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:

– Calculations for skin temperature:

• Solution of equation
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Difficulties: 
--we do not know how Tr behaves
-Or
-when radiation loss is significant

Need to measure h

Need to model behavior of Tr



Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:

– Calculations for skin temperature:

• Solution of equation
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-Use cones of different vertex angles; measure Tr and h in supersonic wind tunnel

Use empirical equations
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Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:

– Calculations for skin temperature:

• Solution of equation
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Modeling for Tr: 
--use measurements of Tr

--isentropically stagnant air at the tip of nose cone has Tst (stagnation temperature)

0

01

0

 
st
T

T

p

V

dTCJVdV  (Bernoulli equation)

p
st

CJ

V
TT



2
1

0
2

1


Tst-T0

V1

Cp = f(T)

Const. Cp



Aerodynamic Heating

• Example of method for determining thermal 
environment from a mission profile:

– Calculations for skin temperature:

• Solution of equation
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Modeling for Tr: 
--use measurements of Tr

--isentropically stagnant air at the tip of nose cone has Tst (stagnation temperature)
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