SR555: Heat Transfer in Space Applications Aerobreaking, Launch, Ascent, Reentry Analysis

Dr. Swarup Y. Jejurkar

Department of Space Engineering and Rocketry Birla Institute of Technology Mesra, Ranchi

24 May 2020

Aerobreaking

• Aerobreaking:

- Achieve large changes in orbit altitude / inclination
- Change is such that spacecraft on an interplanetary trajectory slows down to the point where part of orbit is in the planet's atmosphere
- Aerodynamic drag \rightarrow rapid heating

Aerobreaking

- Thermal environment during aerobreaking:
 - Alters due to change in orbit per pass
 - Computation of heating rates required orbital dynamics and atmospheric data
 - Fraction of heating increases per pass → severity increases per pass

Aerobreaking

- Computation of heating rate:
 - Tricky but simple
 - Local heat flux:
 - available heat flux is given on an area normal to the velocity vector
 - Multiply the heat flux by cosine of angle between surface normal and velocity vector to estimate local heat flux
 - Then carry out analysis of local heating using the local heat flux

Launch and Ascent

- Launch and ascent phases need thermal analysis to prevent high temperature rise;
 - excessively low/high temperatures should not occur

• First few minutes:

- Environment surrounding the spacecraft is driven by payload-fairing temperature and aerodynamic heating (ΔT = 90-200 °C)
- Depressurization of gas in the payload compartment causes negligible cooling
- Affected parts: solar arrays, MLI, antennae (all these are light-weight)

Launch and Ascent

- Free molecular heating:
 - Significant up to 30 minutes after suspension of fairing; solar, earth IR, albedo, and some plume heating
- Ascent lasts from 30-45 minutes
- Cooling can occur during orbital transfer

Radiation Analysis

- Objective: estimate the temperature of spacecraft due to thermal environments while in orbit
- Scope: include solar radiation, albedo, Earth IR; neglect internal heat generation
- Given data:
 - Cubical satellite: $10 * 10 * 30 \text{ cm}^3$
 - Altitude = 640 km
 - e = 0.001
 - Inclination = 97.943°
 - Perigee = 0°
 - Orbital period = 5851 s
 - Local time at ascending node = 10:45:00

Radiation Analysis

- Model:
 - Assumptions:
 - Spacecraft as a spherical object
 - Sun completely illuminates the spacecraft with a projected area of the same radius as craft
 - Spacecraft will be fully illuminated by Earth IR because of huge size difference

Radiation Analysis

• Solution:

- Find radius of sphere: $r_{sph} = 0.1056$ m
- Compute the heat fluxes
- Spacecraft will be exposed to radiation only during part of the flight \rightarrow it is shielded from radiation during eclipse phase of the orbit $\rightarrow T_{max}$ and T_{min}
- Estimate $\rm T_{max}$ and $\rm T_{min}$

Radiation Analysis

• Solution:

- Find radius of sphere: $r_{sph} = 0.1056$ m
- Compute the heat fluxes
- Spacecraft will be exposed to radiation only during part of the flight \rightarrow it is shielded from radiation during eclipse phase of the orbit $\rightarrow T_{max}$ and T_{min}
- Estimate $\rm T_{max}$ and $\rm T_{min}$

Reentry

• Problem:

 How would the spacecraft perform thermally under prescribed reentry flight profile (time histories of velocity, altitude, and angle of attack)

• Solution:

- Distribution of tempearture on the outer structure
- Knowledge of thermal stresses

Reentry

- Method of analysis:
 - Full knowledge of structural details
 - Modes of heat transfer: radiation, convection, conduction
 - Selection of areas for analysis
 - Aerodynamic heating

