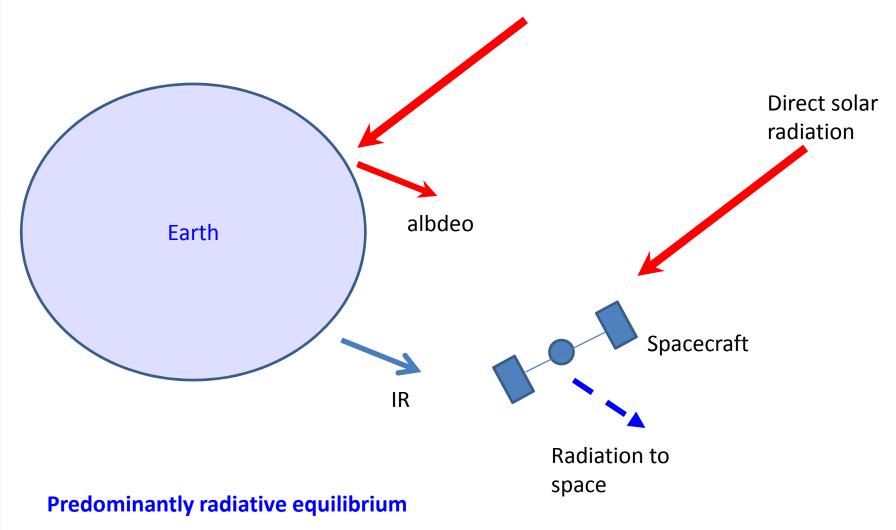
SR555: Heat Transfer in Space Applications Radiation Analysis

Dr. Swarup Y. Jejurkar


Department of Space Engineering and Rocketry Birla Institute of Technology Mesra, Ranchi

Thermal Environment

- Principal forms of environmental heating:
 - Direct sunlight
 - Albedo of Earth
 - IR radiation of Earth
 - Aerodynamic heating

23 May 2020

Thermal Environment

23 May 2020

3

Thermal Environment

- To achieve thermal equilibrium:
 - Spacecraft will balance the absorbed energy from environmental heating and dissipated by its internal components with its own IR radiation
 - thermal control system will help achieve this
 - Proportion of different sources varies with orbit and spacecraft location (LEO? Mars?)
 - Thermal time constant: characteristic time required for each type of source term for absorption of a given amount of energy
 - Smaller thermal constant would mean faster absorption
 - Spacecraft response time would decide how many types of sources need to be considered

23 May 2020 4

Thermal Environment

Free molecular heating:

- Individual molecules bombard the spacecraft once it reaches the outer regions of environment.
- Valid during launch ascent phase just after booster is ejected.
- Booster deadweight protects spacecraft

 deadweight carriage and need for protection are balanced

23 May 2020 5

Thermal Environment

Specifications are required for the following:

Source	Planet	Perihelion	Aphelion	Mean	Reference
Direct solar					
albedo					
Planetary IR					

23 May 2020