SR555: Heat Transfer in Space Applications Aerodynamic Heating-II

Dr. Swarup Y. Jejurkar
Department of Space Engineering and Rocketry
Birla Institute of Technology Mesra, Ranchi

Aerodynamic Heating

- We have obtained these equations:
- Full differential eq.:

- Differential eq. without radiation:
(2) $\frac{d T_{w}}{d t}-\frac{h}{t_{\text {skin }} C_{\text {skin }} \rho_{\text {skin }}}\left(T_{r}-T_{w}\right)=0$

Numerical
solutions are
required

- Quartic equation:

3

$$
\varepsilon \sigma T_{w}^{4}-h\left(T_{r}-T_{w}\right)=0
$$

- Equation without radiation:
(4)

$$
T_{r}=T_{w, e}
$$

Aerodynamic Heating

- We will use Eq. (2) to obtain some results:

$$
\text { (2) } \frac{d T_{w}}{d t}-\frac{h}{t_{\text {skin }} C_{\text {skin }} \rho_{\text {skin }}}\left(T_{r}-T_{w}\right)=0
$$

Problem:

Consider the flight of a surface-to-air missile (SAM) at constant altitude (15000 m) without significant radiation heating.
The SAM is uniformly accelerated to $1500 \mathrm{~m} / \mathrm{s}$ from rest. It maintains speed and the aerodynamic heating reaches equilibrium. The missile then decelerates to zero velocity. The missile nose cone angle is 30°, length is 30 cm , and recovery factor $\mathrm{c}=$ 0.6 .

Analysis:

- three phases: uniform acceleration, constant velocity, and uniform deceleration

Aerodynamic Heating

- We will use Eq. (2) to obtain some results:

$$
\text { (2) } \frac{d T_{w}}{d t}-\frac{h}{t_{\text {skin }} C_{\text {skin }} \rho_{\text {skin }}}\left(T_{r}-T_{w}\right)=0
$$

Phase I: For uniform acceleration period, $\mathrm{V}_{1}=$ at; initial condition: $\mathrm{T}_{\mathrm{w}}=\mathrm{T}_{1}$
Eq. (2) can be solved numerically using appropriate formula for h. We get $T_{w}=f(t)$
Some results:

Larger acceleration leads to smaller T_{w}
V_{1}

Aerodynamic Heating

- We will use Eq. (2) to obtain some results:

$$
\text { (2) } \frac{d T_{w}}{d t}-\frac{h}{t_{\text {skin }} C_{\text {skin }} \rho_{\text {skin }}}\left(T_{r}-T_{w}\right)=0
$$

Phase I: For uniform acceleration period, $\mathrm{V}_{1}=$ at; initial condition: $\mathrm{T}_{\mathrm{w}}=\mathrm{T}_{1}$
Eq. (2) can be solved numerically using appropriate formula for h. We get $T_{w}=f(t)$ Some results:

Since radiation is neglected, $\mathrm{T}_{\mathrm{w}, \mathrm{e}}=\mathrm{T}_{\mathrm{g}}$
Greater temperature lag at larger acceleration

Aerodynamic Heating

- We will use Eq. (2) to obtain some results:

$$
\text { (2) } \frac{d T_{w}}{d t}-\frac{h}{t_{\text {skin }} C_{\text {skin }} \rho_{\text {skin }}}\left(T_{r}-T_{w}\right)=0
$$

Phase II: For constant velocity period, h and Tg are no longer functions of time Some results:

Aerodynamic Heating

- We will use Eq. (2) to obtain some results:

$$
\text { (2) } \frac{d T_{w}}{d t}-\frac{h}{t_{\text {skin }} C_{\text {slin }} \rho_{\text {skin }}}\left(T_{r}-T_{w}\right)=0
$$

Phase III: For uniform deceleration
Some results:

