The Riemann-Stieltjes Integral

Having discussed the Riemann theory of integration to the extent possible within the scope of the present
discussion, we now pass on to a generalisation of the subject. As mentioned earlier many refinements
and extensions of the theory exist but we shall study briefly—in fact very briefly—the extension due to
Stieltjes, known as the theory of Riemann-Stieltjes integration. The most noteworthy of the extensions,
the Lebesgue theory of integration will be however discussed later in chapter 19.

It may be stated once for all that, unless otherwise stated, all functions will be real-valued and
bounded on the domain of definition. The function a will always be monotonic increasing.

1. DEFINITIONS AND EXISTENCE OF THE INTEGRAL

Let fand o be bounded function on [a, b] and & be monotonic increasing on [a, b], b 2 a.
Corresponding to any partition
P ={a=xy x,, ..., x, = b}, of [a, b]
we write
Aa;=a(x) - a(x_,), i=12,..,n.
Is is clear that Ae;20. Asin § 1.1 Ch. 9, we define two sums,

UP, f.0)= i‘M,. Ag,

L(P, f,a) = X m; Aq,

i=1

where m,, M, are the bounds (infimum and supremum respectively) of fin Ax;, respectively called the
Upper and the Lower sums of f corresponding to the partition P.

If m, M are respectively the lower and the upper bounds of fon [a, b], we have

msSmsSM<sM
= mAaq; S mAg;S M; Aoy S MAq;, Aq;20
Putting i = 1, 2, ..., n and adding all inequalities, we get
m{a(b) - a(a)) S P, f, @) SUP, f, @) SM{a() - ala)} (1)
Asin Riemann integration, § 1.1, we define two integrals, which always exist by a similar reasoning,
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Ibf da =inf . U(P, f, @)

Lbf da =sup. L(P, f, @) , [0))

the infimum and supremum being taken over all partitions of [a, b]. These are respectively called the
upper and the lower integrals of f with respect to & :
These two integrals may or may not be equal. In cases these two integrals are equal, i.e.,

we say that f is integrable with respect to o in the Riemann sense and write f € %, [a, b] or simply
(). Their common value is denoted by

b
J' f da
or sometimes by ‘
b
[ £ da

and is called the Riemann-Stieltjes integral (or simply the Stieltjes integral) of f with respectto @, over
a, b].
From (1) and (2), it follows that

m{a(b) — (@)} < L(P, f, @) <j fda< j f da

SU(P, f, ) <m{o(b)—a(a)} 3)

Remark. The upper and the lower integrals always exist for bounded functions but these may not be equal fet dl 1
bounded functions. Such fimctions are not integrable. Thus the question of their equality and hence thatof the integrability
of the function is our main concern. ¥
The Rmnnn-Sneltjcs mtegml reduces to Rncmann integral when a(x) = x. : f

¢ . EREERE TR
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.1 Some Deductions

() If fe #(a), then 3 a number 2 lying between the bounds of f such that
b

j f do = Ma(b) - a(a)} (using 3)

a

(i9) If fis continuous on [a, b], then 3 a number £ € [a, b] such that

b
If do = f(€) {ou(b) - a(a))

a
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i) If f e Z(a), and k is a number such that

| f@)| <k, forall xe [a, b]
then

b

j.f da

a

< k{a(b) - a(b))

() If f e Z(@) over [a, b] and f(x)=0, forall xe[a, b], then
b
>
J‘f da 20, b2a
: <0, b<a
Since f(x) 20, the lower bound m > 0 and therefore the result follows from (3).
v) If fe R(a), ge Z(a) over [a, b] such that f(x) > g(x), then

b b

[fda>[fdab2a,
and ’ ’

b b

jfdasjgda,bsa

a a

The result follows by reasoning similar to that of Deduction 5 § 1.4, Chapter 9.

1.2 Refinement of Partitions
Theorem 1. If P’ is a refinement of P, then

@) LP, f,a)=L(P, f,),and
(i) LP', f,a)SU(P, f, Q).

Let us prove (if). "
Let P = {a=xy X, ... X, =b} be a partition of the given interval. Suppose first that P* contains just
one point more than P. Let this extra point & belongs to Ax;, ie., X; <§<x.

b}, it is bounded on every sub-interval Ax, (i=1,2, .., n}.

As fis bounded over the entire interval [a,
rvals [x;,_,. §1. (6, x ), [x-ys %1

Let W,, W,, M, be the upper bounds (supremum) of f in the inte

respectively.
Clearly

U, f.o)-UP, [, @)= W) — a(x )} + Walax) - a))

- M {a(x) —a(x_ )}
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(a(x) —a$)150
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i {a(é) -~ a()’;_l)} + Wy~ M;)

, a) . . .
sV j;;eat he above reasomin m times and armive at the e,

(i) .
is similar-

The proof of @
rtitions P Py
Py [ @)

Theorem 2. For any ™° P

ie.,

Corollary. Fora bounded function A

[ raax <[4

The proofs are similar to that of Theorem 2 Chaptet 9.
Ex. If P"2 P, thenshow that

U, f.o)- y<U(P, [ o) - L(P, [ o)

L, f.o

2. A CONDITION OF INTEGRABILITY

fis integrable with respect to 0. Ol [a, b] if and only if for every € >0 there

Theorem 3. A function
exists a partition P of [a, b] such that

U(P,f,a)_L(P,f,a)<8

Necessary. Let f € F(a) over [a, b]
jb fda = Lbfda - r fdo

Let £ > 0 be any number.
grals are the infimum and the supremum, respectively, of tx

Since the upper and the lower inte
upper and the lower sums, therefore 3 partitions P, and P, such that

- b
U(f},f,a)<L fda+%s=jfda+ €

b b
L(Pz.f,a)>ja fda—%£=_“fda— lg

a

Let P= R U P, be the common refinement of P, and P

UP, f,a)SU(R. ,a)

b
<|fdo+1
ff a+2€<L(P2.f,a)+85L(P,f a)+ €

a
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=UP f.a)- LP, f,a)<e
Sufficient. For € >0, let P be a partition for which

U(p\ f'a)—L(Pv f-a)<€
For any partition P, we know that

LP, f,a) < j: fdas< ]: fdasSU(P, f,a)

jfda-jfda SUCP, f,a) - L(P, f.@) <€
But a non-negative number can be less than every positive number, if it is zero,
L’ fda - j‘ fda
sothat f € Z(@), over [a, b].
3. SOME THEOREMS

(@) If fie #(a) and f, € Z(a) over [a, b), then

b 1] b
fi+ fre Z(a)and j(ﬁ+ £,) dot = jf,da + jf,da

®) If f € R(e), and c is a constant, then

b b
of € R(@) and jcf do=c¢ jf do

(© If fie Z(), f, € #(a) and f,(x) < f>(x) on [a, b] then

b b
Ifldasjfzda

(d) If fe #(a) over|a,blandifa < c < b, then
f e #@) on|a, c), and on [c, b]

and jfda+‘jfda=j.fda

(e) If fe . #(a) over|a, b], then

b

<[lf|de

| f|e #(a) and

b
jfda

(N If fe #R(a) onla, b) then
fle Aa)



n
” e (0 g j‘f doy + jf da,

Multiplying by A
"o LP, fr )+ L(P, fa»
<U(P, fis a)+U(P, fa a)

a)S(P,f,a)SU(P,f,a)

Let £ >0 beany number.
Since fi€ Z(@). f,€ A

), therefore 3 partitions Py, P, such that

U, f,, @ - LR fis @) < 3€
U(P, fy, @) = L(Pys [, @) < 1€

Let P= AU P, arefinement of P, and P,.
U(P, f,, &) - L(P, fhra)<ie

Thus for partition P, we get from (1) and (2),
UP, f,a) - L(P, f,a) SU(P, f,, &) + U(P, f,, &) — L(P, f,, @) — L(P, f,, @)

<ie+le=¢
= fe A(a) over [a, b)
L.et us now proceed to prove the second part,
Since the upper integral is the infimum of the upper sums, therefore 3 partitions Py, P, such W

b
U(Fi'fl'a)<J.flda+lze

a

b
U(I*z.fz,m(h2 d 1s
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If P= PR U P,, wehave
b 3
UP, fho)<[fida+ie
@ 9
b 3)
U(P, fz,a)<jf2da +ile
For such a partition P,
b
[£dasue f.<u® fa)+ U fro0) [rom )
b
Sjﬁda+jﬁ e [using (3)]
Since ¢ is arbitrary, we get
] b b
~ [fda<|fdax [f,da 4
Proceeding with (-f) and (,) instead of fi and f,, we get
b b b .
[rda>[fda+|f,da )

(4) and (5) give

b b b
[rda=[faa+ [t da

() Since fe #(o;) and f e H(a,), therefore for £ > 0, 3 partitions P,, P, of [a, b] such
that

U(R, f, o)) - L(R, f, a,)<%e
UBy, f.00) - L(B,, f.ap) <1te
Let P=RU P,
UP, f.oq) - L(P, f,oq) < 3€ §))
U(P, f, o) = L(P, f, ) < 1€
Let the partition P be {a = xy, X,, Xy, ..., X, = b}, and m;, M, be bounds of fin Ax;.
Let a = + .

a(x) = oy (x) + ay(x)
Ax” = al (x") - (Zl (.‘:" - l)




Q

Similarly,
y P, [ @)= L(P, fo0)t L(P, f,0) 9

)=U(P’f’al)-L(P9f9al)

U(Pvf’a)-L(P’f’a
+U(P,f,a2)"L(P9f’a2)

<le+3€=¢ [using (€9]]

i

= fe #(@), where &t = o+ 0y

Now to prove the second part, W& notice that

b
[fda=ufuP f.@

=inf (U(P, f, o) +U(P, f,0)}
>inf UP, f, &) +inf U(P, f, &)

b b
=ffda, +.[fda2 n
Similarly, ‘
b
J.fda =sup L(P, f,a)
b
b
<
From (4) and (5), -! fday + J‘f da, @

A b
‘!fd(1=jfdal+jfda2

where @ = ¢ + o
2-
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The proofs of the remaining parts are 5o similar to the above proofs and virtually identical to those

of the corresponding theorems for Riemann integral that it is a mere repetition and are therefore left to
the reader.

Corollary. If fie #(@) and f,e #(a) over (a, b], then
fi: /€ (@)

We know that if f,, f, are integrable then f,+ f,, f,— f,, £7, fZ, are all integrable.

Also, then (f;+ f,)%, (f,— £,)? are integrable.
Now

4f|‘fz=(f|+ fz)z-(fz‘fz)z
= fi- f,€ Z(a)

4. ADEFINITION (Integral as a limit of sum)

As an analog to the Riemann sum, we introduce a sum which will lead to a sufficient condition for the
existence of a Riemann-stieltjes integral.

Definition.  Corresponding to a partition P of [a, b] and t;€ Ax;, consider the sum

S, f,a)= 'glf(ti) Ao;;
We say that S(P, f, @) convergestoAas u(P) -0, ie.,

li » fra)=
F(Pr)r_l_)OS(P fra)=A

if, for every € > 0 there exists 6 > 0 suchthat IS(P, f, &) - Al< ¢, for every partition P = {a =x, x,,
Xy, s X, = b}, of [a, b], with mesh u(P) <& and every choice of #;in Ax;.

Theorem 4. Iflim S(P, f, @) exists as u(P) — 0, then

b
fe#@,and lim SP,f,0)= !fda

Let us suppose that lim S(P, f, @) exists as u(P) — 0 and is equal to A.

Therefore for £ > 0,3 d >0 such that for every partition P of [a, b] with mesh u(P) - and
every choice of #; and Ax;, we have

ISP, f,@) - Al< 1€

or
A-3e<S(P, f,@)<A+ie (1)

Let P be one such partition. If we let the points #; range over the intervals Ax, and take the infimum
and the supremum of the sums S(P, f,a), (1) yields
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A-Le<L(P, f,@)SU(P, f0)<A+7E @)
u :U(P,f,a)—L(Paf’a)<E
H = f e #(a) over [a, b]

b
f Again, since S(P, f, &) and jfda lie between U(P, f, @) and L(P: f» 2

50(15, f,a) - P, fro) <€

b
S(P, f,0) - | £ do

b
I = lim S(P, f,a)=jfda
i 1(p)—0

emasse mmeemmnceofmemmtof SCP, £, @) mphesmﬁﬁ%ﬂ mmm
sufﬁcxent condition for f € “(a) but as shown in Example 3 it is nota necessary condition, i,_,f
St théha!gipteg'ablebutforwhich]jmit of S(P, f, @) does not exist. Thus whenever lim S(P, f ;Q)#!

wequal to J fda. Butwhen f € () nothing can be said about the existence of lim S(P, f, ).

. CURECIe L SEREL R S
o ORI Al o L e SR e « g

i SRR

{ ! Theorem 5. Iffis continuous on [a, b] then f : (@) over [a, b]. Moreover, 10 every £ >0 there

i \ corresponds a 8 > 0 such that
* b
| S(P. f.0) - [ fda|<e
!
\ | a
’ fr% i, for every partition P = {a = Xy, X, X, ..., X, = b} of [a, b] with w(P) <38, and for every choice of t; in
i
i [\ Ax;, ie.,
it |
ol 1 b
if 1 lim (P, f. ) = jfda
L jfki ‘ H(p)- p
|

I [We still assume that all functions are bounded and ¢ is monotonic increasing.]

Let € > 0 be given, and let us choose 1 > 0 such that

nab) - aa)} <€ (M

| Since continuity of f on the closed interval [a, b] implies its uniform continuity on [a, b] therefore
TE: for n > 0 there corresponds & > 0 such that

| f@) - f@y)|<n, if |1, < 8,1, 1,€ [a, b] @
Let Pbe a partition of [a, b], with norm p(P) < §.
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Then in view of (2),
M,~—m,-$n, i=1,2,..n
Uk fo0)- L, £, )= Z(M;~ m) Ax,
<1 XAy
=Ma®) - aa)} <¢ 3)

= f e R(@) over [a, b].
Againif fe &
g f @), then for ¢ > 0,36 >0 such that for all partitions P with p(P)< &,

U, £, ) - LP, f,a)| <

b
Since S(P, f, @) and i
! T ot both lie between U(P, £, a) and L(p. £, @) for all partitions P

with 4(P) <8 and for all positions of tin Ax..

<U(P, f,a) - L(P, fra)<e

b
S(P, f,q) - jfda

b
= lim = 1 =
A S, f,a) #(lil)rl . i)=:1 f() A, = J. fda

 Note 1. Continuity is a sufﬂclmt condition for ir;tegrability of a function. It is n ition, Functions
Mo : ) X 0t nece: dition, F
| exist which are integrable but not continuous. T

 Note2. For continuous function £, lim S(P, f, &) exists and equals If da. Sl
Boac B,

EnAR Al B 2y ooy oy SRR
3 sesiu 20T N SV SRR ¢ —— —— Sm—— T

Ay

Theorem 6. If f is monotonic on [a, b], and if o is continuous on la, b], then f e #(a).
[Monotonicity of ¢ is a still assumed.}
Let £ > 0 be a given positive number.
For any positive integer n, choose, a partition P = {x;, x,, ..., x,} of [a, b] such that
_ a(b) - ala)

Aa;—’—’i=l' 2....."
n

This is possible because o is continuous and monotonic increasing on the closed interval [a, b] and
thus assumes every value between its bounds, (a) and a(b).

Let f be monotonic increasing on [a, b], so that its lower and the upper bound, m, M;in Ay, are
given by

m= f(x_) M= f(x),i=12,..,n
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UP, f.a)- L(P, f, @) = é:l(M,. —m)Ax

_ 0B -0@ $ 1) - flx))
n i=1

_ a(b) —a(a)
- n
< g, forlargen

= f e F(a) over [a, b]

{f®) - f(a)}

Note. f e gf(a), ie., ffda ensts whenenhcr

(f) f:é':;t;nnnuousanda xsnwnotomc,or L e
i) flswm:omcmﬂq wcommons ofcaursea nssuumon _

: ,_,w ‘:

4.1 Some Examples

Example 1. A function o increases on [g, b] and is continuous at x" where a < x” <b. Another
function fis such that
f(x)=1, and f(x)=0, for x#x’
Prove that

b
f € Z(@) over[a, b], and j fda=0

Let P = {a = xy, x,, x,, ..., X, = b} be a partition of [a, b] and let x"€ Ax,.

But since @ is continuous at x” and increases on [a, b}, therefore for € > 0 we can choose & >0
such that

Ag=a(x) -a(x_,) <€, for Ax, <8
Let, P be a partition with u(P) < 8. Now
UP, f,a) = Aa,
L(P, f,a)=0

Th
Lfda =inf U(P, f, &), over all partitions P with u(P) < é

co- '

b
= fe #(a), and Ifda =0.
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Let P = {@=Xp X» s X, = b} be a partition of [a, b] and let x'€ A%, X, SX>%

Aliter.
By continuity of a at x’, for £>0,38 >0 such that
|a(x) - a(x')| < L€, for | x = x| <&
Again, since & is an increasing function, we have
a(x) - o(x) < 3e, for0<x -x'<d

and
a(x) - a(x) < Le, for0<x' —x<d

LetPbea partition with u(P)<é.
A, =a(x) - alx_y)
=a(x) - o(x) +a(x) —alx_1)

les+le=
<le+le=e¢

S(P, f,@)= . £(&) A= 16 Aoy

_Jo, t#xX
A, t;=X

|S(P, f,@)|=0, when L#x
<€, when f=x
In either case

lim S(P, f.-a)=0
§(P)=0

b
= f e #(@) over [a, b], and j fda=0.

Example 2. fisa function bounded on [-1, 1], are three functions By» Ba» B are defined as follows:

B 0, x<0
ﬂ,(x)-— ], x>0

_ 0, x<0
px)= 1, x20

0,x<0

By(x) =12 xwl
1, x>0

x =0, and then

e H(Py) ifffis continuous at
1

j fdpy=f©

-1

Prove that f
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Let P = (-1 = xp X, oo X;_pn 0 =5, l’x‘_,_",xn=1}beapartiti0n0f[—1, 1] suchtlw.tx,.q:()_]_‘et

l,€ Ax,.
Now

S £, B = £ £uplBy(a) = Bolxy-0}

=fl6_) -1+ f@)-A- b
=L @)+ f@)) o)
= f(0) in particular when #,_; =0=1, @
Clearly #,_, tends to 0 from below and #, from above, when the norm U(P) tends to zero.
ﬁ_lfl_o f@_,) and r,.{,i:go f() or equivalently

i-1

Hence lim S(P, f, @) exists when both the limits,
H(P)-0

lim f(x) and Lim f(x), exist, ie., both f(0-) and f(0+) exist.
x—0-0 x-0+0
Moreover, from (2) it is evident that these limits are each equal to £ (0). In that case

lim S(P, f,0) = f(0)
n(P)—0

Hence f e #(B,) if f(0+) = f(0-) = £(0), i.e., if the function fis continuous at zero and in that

case
1 L)
[£ap,= 1@
-1

Also it is clear that fis continuous if lim S(P, f, ) exists. Hence f e (f,) iff fis continuous at

x=0.
Example 3. For the functions §; and B, defined in Example 2, prove that 8,€ R(f,), although lim

S(P, B,, B,) does not exist, as u(P) = 0.
Let P = {~1 =Xy, x;, ..., x, = 1} be a partition of [-1, 1] such that 0 e Ax,

Let r,€ Ax;, wheni=1,2,3, .., n. Now
S(P. By )= £ B0 - Bt )

= ﬂ‘z(tr)

5 u(]gllo S(P, B>, B)) =0 or 1, according as t.<0or 20

Thus lim S(P, B,, B;) does not exist.

Let P'=P U {0},and O€ Ax,.

-
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Now

U(F", By, B) =1-{Bi(x,) - B,(0)} =1

L(P', By, B) =1-{By(x,) - B,(0)} =1
Thus

U(P", By, B) = L(P', B, B) =1

B Z(B,) and IpzdﬂFl

Ex. 1. For the functions f, §,, B, defined in Example 2, prove that
@ fe R(B)iff f0+) = £(0)

and in that case

1
[rap=s0
-1

®) fe Z(B,)iff f(0-)= f(0),

and in that case

1
[£dB,= 10
-1

Ex. 2. Show that

4

[ra@a-x=
0
where [x] is the greatest integer not exceeding x.

Ex. 3. Show that

N W

x 4

@) [di=1x] VxeR (i) [xdlx1=10
0 0
4 2

(iif) de(l)fl—x) =2 (iv) J’ Pd(x?)=8

0 0
2 3

® [ixlaed) =3 o) [¥dx-x =5
0 0

&

1
(vii) j(xz +e") d(sgn x) =1 (viii) Isin xd(cos x) = =
4 2

4

333
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KL

0ifosx«l
Exd Lot @)= M=) g yg2

and
0ifosxs!

"""{l f1<xs?

() Is f & *@)? It s0, compute }j'd(a)-

0
(i) 1s g € #(a)? If so, compute Isd(a)-
0

Ex. S, Evaluate

xn0sxsl

0] !xda(x). where a(x) = {2 +xlexs?

3 [x, 0SS x <3
(i) "]:f(x)d(lxhx). where f() =1 1p g3

5. SOME IMPORTANT THEOREMS

We add a few theorems before closing the discussion.
Theorem 7. If f € #la, b] and a is monotone increasing on |a,

f & X@), and

b] such that &’ & #(a, b), then

b b
jfda-jfa'dx

Let & > 0 be any given number.
Since fis bounded, there exists M > 0, such that
[f()|sM, Vxela b

Aguin since f, a’e #4'[a, b], therefore fa'e #a, b] and consequently 38, >0, 8,> 0 such
that

I}.’./'(f‘ )a'(t,) Ay, - Ifa'dz | <el2 )]
for u(P) < 8, and all 1,¢ Ay, and
|Sau)ay - fa'de| < eram @)
for u(P) <&, and all ;e Ay,
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Now for u(P) < 8, and all L€ Ax;, s5;€ Ax; (2) gives

Z|e'(s;) - a(s)|ax<2. L= &
_ M M
Let § = min (&, 3,), and P any partition with p(P) < §
Then, for all £, Ax;, by Lagrange’s Mean Value Theorem, there are points s;€ Ax; such that
Aa; = a'(s,-)Ax,-
Thus

|27 8o~ [ 5o ae| = | £ fepar(s) -

=|Zf(t,)a;(t,)Ax'—Jfa'dx+ zf(tl)[a)(s,)_al(t')]Ax,l

< | 2 @)’ (t;) Ax, - Jfa’dxl + 2| F@)| | (s) - ') Ax

<£+M~i=£
2 2M

Hence for any € > 0,38 > 0 such that for all partitions with f(P) <&, (5) holds

b

= (P)_)OZf(t ) Ag; exists and equals J'fa dx

= fe .é?(a),mdj‘fda=ifa'dx

3

@

(&)

Theorem 8 (A particular case). If f is continuous on [a, b] and o has a continuous derivative on

[a, b], then
j fdo = j fa’dx

Under the given conditions all the mtegrals exist.

Let P = {a=xy, ..., X, = b} be any partition of [, b]. Thus, by Lagrange’s Mean Value Theorem it

is possible to find #;€ ]x;_;» %; [, such that
a(x) - ox_) =€) (= %1, i=h2m

or
Aa; =a'(t;) Ax;

S(P. f.@)= 3 (&) Ao,

_ $ f@) @'t Ax=S(P. fa)
i=1

(6)
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Proceeding to limits as p(P) = 0, since both the limits exist, we get

Examples.
2 2 2
(0] szdx:z: Ix22xdx=jlx3dx=8
0 0 0
2 2
(i) j [xldx= j[xlzx dx
0 0

1 2 ’
=j[x12xdx+j[x]2xdx=o+3=3
0 1

Ex. Evaluate the following integrals:

4 3
@) j(x-[x]) & (i) _[ Jxad®
1 0
3 ri2
(iii) j[x] d(e) () J'xd(sinx)
0 0

Theorem 9 (First Mean Value Theorem). If a function f is continuous on [a, b] and o is monotonic
increasing on [a, b), then there gxists a number & in [a, b] such that

b
[ £da = 1@ o) - (@)

fis continuous and ¢ is monotonic, therefore f e H ().

Let m, M be the infimum and supremum of fin [a, b]. Then as in § 1.1,
b
mia(b) - a(a)) < j fde < M{a(b) - a(a))

Hence there exists a number p, m <y <M such that

b
[ 1 da = plaw) - a))
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Again, since fis continuous, there exists 5 number & € [a, b] such that f(&) = p

b
J£da= £¢) (a) - ata)

b
- [1de= 5@~ @) at) - atan

S SRR Bl R LSRR &1.“;{».7.";. Sl e

Theorem 10.  [ffis continuous and & monotone on [a, b), then

jf de =[f e, - jadf

Under the given conditions all the integrals exist by Theorem 5.
LetP={a=xy, x,, ..., x,= b} be a partition of [a, b].

Choose #), #,, ..., t, such that x;_ <, < x,, andletty=a,t,,,=b,sothat t,_,<x,

Clearly Q= {a, =1y, t,, t,, ..., 1,,1,, , = b} isalso a partition of [a, b].
Now

S(P. f.0) = % f@)Aa,

= f(tl)[a(xl) —a(xy)] + f(tz)[a(xz) —a(x)] + ..
+ f¢)Ma(x,) - alx, )]

= —a(xo)f(tl) - a(xl)[f(tz) - f(tl)] + a(xz)[f(t3) = f@R))+..
+olx, _DLf (@) = f@,_ D]+ alx,) f(1,)

Adding and subtracting o(x,) f(zp) + a(x,) f(¢,,,), we get
S(P, f,a)=0uUx,) ft, ) —(x) ftp) = 2 a6, ) = £}

= f(b)a(b) - f(a) a(a) - S(Q, . f) (1)
If §(P) -0, then (Q) — O and Theorem 5 shows that lim S(P, f, o) and lim S(Q, o, f)
both exist and that

b
lim S(P, f-a)=jfd“




b
lim S(@, & f) = jadf

Hence proceeding to limits when u(P) =0, weget from (1),

b
j‘ fda=[fxaWl - [adr )

where () (0], denotes the difference f(5)ax(b) ~ f(@)(@)-

(e ay

— : P S SRS s s s e
Corollary. The result of the theorem can be put in a slightly different form, by using Theorem 5, if,in

addition to monotonicity ¢ is continuous also

b b
[ £da = f®)a®) - f@ata@) - [ear

= f(b)a(d) - f(a)a(a) — a@) [f®) - f@)]
= f®)aE) - a@]+ f?) [a®) - o)l
where & € [a, b].

Stated in this form, it is called the Second Mean Value Theorem.

Theorem 11 (Change of variable). If
(i) fis a continuous function on [a, b, and
(i) ¢ is a continuous and strictly monotonic function on [a, B] where a = ¢(a), b=¢(B)

then

b B
[ £ dx= [ £00) do)

b
Change of variable in J.f (x) dx by putting x = @(y)

Let ¢ be strictly monotonic increasing.
Since ¢ is strictly monotonic, it is invertible, i.e.,
x=0(y)=y=0"(x), Vxela b
so that

a=¢"), B=0¢"(b)
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Let

P = {a =X y X =
be any partition of [a, ], and o X1 X35 oy X, = b}

‘ Q=(a=y0’ )"p }’2, eaey }’,,=ﬁ), y,'=¢-l(xi)
be the corresponding partition of [a, B], so that

Axi: x,--x,-_l=¢(y‘), ¢(yi—l) =A¢,
Again, for any &€ Ax;, let ;e Ay, where

gi = ¢(77.‘)
Putting g(y) = f(¢(y)), we have

S(P’ f) = Zf(él) A'xi
= §f(¢(n.-)) Ap, =X gm;) Ag;
=500, g,9)

339

0))

2

3

b
Continuity of f implies that S(P, f) - j Fdx as u(P) - 0. Also continuity of g implies (by

B
Theorem 5) that S(Q, g, ¢) = j 2(y)dg as p(P) - 0.

Since uniform continuity of ¢ on [a, f] implies that (@) -0 as u(P) - 0, therefore letting

U(P) = 0 in (3), we get
b

If(x)dx = ?g(y)dd’ = jf(¢(y))d¢(y).

a
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