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Since a geometric series with a ratio less than 1 converges, f is properly defined. Moreover, 

1 ifa<u<v<b, then/(u)-/(u)= I -. 
{n iu<q•:!:•I zn 

Thus f is increasing. Let xo = q1 belong to C. Then, by (1), 

1 
f(xo) - f(:x) zi' for all x < xo. 

(1) 

Therefore f fails to be continuous at xo. Now let xo belong to ( a, b) ~ C. Let n be a natural 
number. There is an open intervai I containing xo for which qn does not belong to / for 
1 !: k !: n. We infer from (1) that 1/(x)- /(xo)I < l/2n for all xe/. Therefore f is 
continuous at xo. D 

PROBLEMS 
1. Let C be a countable subset of the nondegenerate closed, bounded interval [a, b]. Show that 

there is an increasing function on [a, b] that is continuous only at points in [a, b] ~ C. 
2. Show that there is a strictly increasing function on (0, l] that is continuous only at the 

irrational numbers in (0, I]. 

3. Let f be a monotone function on a subset E of R. Show tlfat f is continuous except pos.tjbly 
at a countable number of points in £. · 

4. Let E be a subset of R and C a countable subset of E. Is there a monotone function on E that 
is continuous only at points in E ~ C? ; 

6.2 DIFFERENTIABILITY OF MONOTONE FUNCTIONS: 1:EBESGUE'S THEOREM 
A closed, bounded interval [c, d] is said to be nondegenerate provided c < d. 

Definition A collection :F of closed, bounded, nondegenerate intervals is said to cover a set 
E in the sense of Vitali provided for each point :x in E and f > 0, there is an interval I in :F 
that contains :x and has l (I) < f. 

The Vitali Con:ring Leuun11 Let E be a set off 111ite outer measure and :F a collection of 
closed, bounded intervals that covers E in the sense of Vitali Then for each f > 0, there is a 
f111ite disjoint subcollection (11 }k=I of :F for which 

(2) 

Proof Since m*( E) < oo, there is an open set Ocontaining.Efor which m(O) < oo. Because 
:Fis a Vitali covering of E, we may assume that each interval in :Fis contained in 0. By the 
countable additivity and monotonicity of measure, 

00 

if (lt)~1 ~:Fis disjoint, then I l(/t) !: m(O) < oo. 
l = I 

(3) 
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110 Chapter 6 Differentiation and Integration 

Moreover, since each It is closed and :Fis a Vitali covering of E, 

if (h)k=I C:F, then E~ LJ I«~ LJ lwhere:Fn ~{le:F I lnlJ lk = 0}. (4) 
k~ le~ k~ 

If there is a finite disjoint subcollection of:,: that covers E, the proof is complete. Otherwise, 
we inductively choose a disjoint countable subcollection (/k)~

1 
of :F which has the following property: 

n 00 

E~ LJ lk LJ 5* ltfor all n, (5) 
k=I k=n+I 

where, for a closed, bounded interval I, 5 * I denotes the closed interval that has the same 
midpoint as I and 5 times its length. To begin this selection, let Ii be any interval in :F. 
Suppose n is a natural number and the finite disjoint subcollection (/*JZ=

1 
of :F has been 

chosen. Since E ~ uk=I lk 0, the collection :Fn defined in (4) is nonempty. Moreover, the 
supremum, Sn, of the lengths of the intervals in :Fn is finite since m(O) is an upper bound for 
these lengths. Choose ln+I to be an interval in Fn for which l( ln+I) > sn/2. This inductively 
defines (/k}~1, a countable disjoint subcollection of :F such that for each n, 

n 
lUn+1)>l(/)/2ifle:FandlnLJ1t=0. (6) 

k=I 
We infer from (3) that (£( h)} 0. Fix a natural numbeirn. To verify the inclusion (5), let 
x belong to E~ uz=I It. We infer from (4) that there is.an I e :F which contains x and is 
disjoint from Lft=1 lk . Now I must have nonempty intersection with some lk, for otherwise, 
by (6), l( lk) > l( /)/2 for all k, which contradicts the convergence of (l( lk)} to 0. Let N be 
the first natural number for which In IN~ 0. Then N > '!· Since In Uf,:/ lk = 0, we infer 
from (6) that l(IN) > l(/)/2. Since x belongs to I and I nJN ~0, the distance fromx to the 
midpoint of IN is at most l (I) + 1/2 • l (IN) and hence, since l ( I) < 2 • l (IN), the distance 
from x to the midpoint of IN is less than 5/2 • l(IN ). This means that x belongs to 5 * IN. Thus, . 

00 

xe5*IN~ LJ 5*lk , 

We have established the inclusion (5). 
k=n+I 

Let E > 0. We infer from (3) that here is a natural number n for which I r..,+1 t ( /1: ) 
< E/5. This choice of n, together with the inclusion (5) and the monotonicity and countable 
additivity of measure, establishes (2). 0 

For a real-valued function f and an interior point x o.f its domain, the upper derivative 
off at x, I5 f( x ) and the lower dcriv11ti,c off at x, QJ(x) are defined as follows: 

- . [ f (x+t) - f(x)] Df(x ) = h~O SUP 0< f1f ~h t ; 

. [· J (x+ t) - J(x )] Jl. f( x ) = hli!~ illfO<i•l~h t . 
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We have Df(x) !lf(x). IfDJ(x) equals!lf(x) and is finite, wesaythat/isdifrereotiable 
at x and define f ( x) to be the common value of the upper and lower derivatives. 

The Mean Value Theorem of calculus tells us that if a function / is continuous on the 
closed, bounded interval (c, d) and differentiable on its interior ( c, d) with f a on (c, d}, then ' 

a• (d-c) :5 (/(d)-/(c)). 

The proof of the following generalii.ation of this inequality, inequality (7), is a nice illustration 
of the fruitful interplay between the Vitali Covering Lemma and monotonicity properties of 
functions. 

Lemma 3 Let f be an increasing function on the closed, bounded interval [a, b). Then, for 
each a> 0, 

m*{xe (a, b) IDJ(x) a) :5 ! , (/(b)- /(a)] 
a (7) 

and 
m*{xe(a, b)IDJ(x) =oo} =0. (8) 

Proof Let a> 0. Define Ea= (x e (a, b) I Df(x) a). Choose a e (0, a). Let F be the 
collection of closed, bounded intervals [c, d] contained in ( a, b) for which / ( d) - f ( c) 
a(d - c). Since DJ~ a on Ea, Fis a Vitali covering of Ea, The Vitali Covering Lemma 
tells us that there is a finite disjoint subcollection {[q, dkm=I of F for which 

m* [Ea~ l)[ct, dk]] < 1:. 
k=I 

Since Ea ~l.'1=1[ct, dt] U {Ea~ UZ=1[ct, dtl}, by the finite subadditivity ofouter measure, 
the preceding inequality and the choice of the intervals [ck,· dt], 

• 1 • 
m*(Ea) < L(dk -q)+1: :5, · L(/(dt)-f(ck)]+1:. (9) 

k=I a k=I 

However, the function / is increasing on [a, b] and ([q, dtlJi=1 is a disjoint collection of 
subintervals of [a, b]. Therefore 

• 
L[f(dt)- /(ck)] :5 J(b)- J(a). 
k=I 

Thus for each 1: > 0, and each a e ( 0, a), 

1 
m•( Ea) :5;;; · [/(b)- /(a)]+ f . 

This proves (7). For each natural number n, (xe (a, b) IDJ(x) = oo} CE. and therefore 

m*{x e (a, b) IDJ(x) = oo} :5 m•(E.) :5 ! · (/(b )- /(a)). 
n 

This proves (8). D 
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112 Chapter 6 Differentiation anc:t Integration 

Lebesgue's Theorem If the function f is monotone on (he open interval ( a, b ), then ii is differentiable almost everywhere on ( a, b ). 

Proof Assume / is increasing. Furthermore, assume (k, b) is bounded. Otherwise, express 
( a, b) as the union of an ascending sequence of open, bounded intervals and use the 
continuity of Lebesgue measure. The set of points x in (a, b) at which Df(x) > Qf(x) is the union of the sets 

Ea,fJ = {xe(a, b)IDJ(x) >a>fJ> Qf(x)J 

where a and /J are rational numbers. Hence, since this is a countable collection, by the 
countable subadditivity of outer measure, it suffices to prove that each Ea,fJ has outer 
measure zero. Fix rationals a, /J with a > /J and set E = Ea.fl, Let f > 0. Oioose an open set Oforwhich 

Let :F be the collection of closed, bounded intervals [c, dJ contained in O for which 
f(d)- f(c) <p (d-c). Since Qf </Jon E, :Fis a Vitali covering of E. The Vitali Covering 
Lemma tells us that there is a finite disjoint subcollection {[ct, dtlJZ=t of :F for which 

E~O~ (a, b) andm(O) < m*(E) +£. 
(10) 

m*[E"' l}[ct, dtJl <f; 
k=I J ' 

By the choice of the intervals fct, dt}, the inclusion of the union of the disjoint collection intervals ([ck, dtlJZ=t in O and (10), ' 

(11) 

~[/(dt)- f(ct)J <p[~(dt -ct)] S /3 ·m(O) S /J · [m*(E) +£J. 
(12) 

For 1 s k s n, we infer from the preceding lemma, applied to the restriction of/ to [ct, dtJ, that 

Therefore, by (11), 

1 m*(En (ct, dk )) S -[/(d1)- f(ck)J, 
a 

n 1 [ • ] m*(E) S ei m*(En (ct, dt)) +£ S ;;- *;[!(dt)- f(c1)J +£. 

We infer from (12) and (13) that 
(13) 

m*(E) s •m*(E) + ~ -Hdorallf > 0. 

Therefore, since OS m*(E) < oo and /J/a < 1, m*(E) = 9, 
D 

Lebesgue's Theorem is the best possible in the sense that if~ is a set of measure_zero 
contained in the open interval ( a, b ), there is an increasing funcbon on ( a, b) that fails to 
be differentiable at each point in£ (see Problem 10). 

L 
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Remark Frigyes Riesz and Bela Sz.-Nagj remark that ubesK'"'s Theorem is "one of the 
most striking and mosl importanl in real variable theory." Indeed, in 1872 Karl Weier.slra.r.s 
pmenled mathematics with a continuolLf functfon on an open interval which f aikd to be 
differenliable al any poinL 3 Further pathology was revealed and there followed a period of 
uncertainly regarding the spread of parho/ogy in mathemalical analysis. ubesgue's Theorem, 
which was published in 1904, and ils consequences, which we puriue in Swion 5, helped 
mtore confidence in the hannony of mathematics analysis. 

Let f be integrable over the closed, bounded interval [a, b). Extend / to take the value 
/(b) on (b, b+l).ForO<h ::s 1, define thedirideddifferencefundioa Diff.l, / and aYenp 
Ylllue fuactioo Avh f of [a, b) by 

/(x+h)- /(x) 1 J.t+h 
Diffh J( x) = ,;_;__:..........;c.....:......:. and Avh /( x) = - • / for allx e (a, b). 

h h .t 

By a change of variables in the integral and cancellation, for all a :s u < v :s b, 

(14) 

Corollary 4 Let f be an increasing function on the closed, bounded interval [a, bl Then f' is 
integrable over [a, b) and 

[ f' :S /(b)- /(a). · (15) 

Proof Since/ is increasing on [a, b + 1), it is measurable (sec Problem 22) and therefore 
the divided difference functions are also measurable. Lebesgue's Theorem tells us that 
f is diff~rentiable almost eve~here on (a, b}. Therefore (Diff11,. n is a sequence of 
nonnegative measurable functions that converges pointwisc almost everywhere on [a b] 
to J'. According to Fatou's Lemma, ' 

(16) 

By the change of variable fonnula (14), for each natural number n, since/ is ina:easing, 

lb . 1 f"+l/n 1 [+1/n • 1 rl/• 
a Diff11nf= 1/n ' Jb /-1/n." /=/(b)-1/n. a :S/(b}-f(a). 

Thus 

limsup [{ Diff11n 1] :S f(b)- f(a}. 
a 

The inequality (15) follows from the inequalities (16) and (17). 

(17) 

~Sec ,lll&C 5 of lhclr boot Functicma/ Anulysi.s IRSN90J. 
.. A 11m~lcr cuunplc of 1uch • function, due: 10 Bancl van dcr Wacrdcn, la oalllllioc,d la Cba"'•• 8 ot Patrick 
htzpatrlct I Atlviuiced Cu/cu/us (Fi109). .,.... 

D 
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114 Chapter 6 Differentiation and Integration I 
Remark The integral in (15) is independent of the values taken by f at the endpoints. On 
die other hand, the right-hand side of this equality holds for the extension of any increasing 
extension of I on the open, bounded interval ( a, b) to its closure (a, b]. Therefore a 1ighter fonn of equality (15) is 

{ f =:; sup /(x)- inf /(x). (18) 
a xe(a,b) xe(a,b) 

The right-hand side of d1is inequality equals f ( b) - / (a) if and only if f is continuous at 
the endpoints. However, even if f is increasing and continuous on [a, b1 inequality (15) 
may be strict It is strict for the Cantor-Lebesgue function 'Pon (0, 1] since 'P(l) - 'P(0) = 1 
while (()

1 

vanishes almost everywhere on (0, 1). We show that/or an increasing function f on 
[a, bL (15) is an equality if and only if the function is absolutely continuous on [a, b] (see the 
forthcoming Corollary 12). 

Remark For a continuous function f on a closed, bounded interval [a, b] that is differentiable 
on the open interval ( a, b ), in the absence of a monotonicity assumption on f we cannot infer 
that its derivative f' is integrable over (a, b]. We leave it as an exercise to show that for f 
defined on [0, 1] by 

f(x) = {o x2
sin(l/x2) for0 < x::: l 

forx =0, 
f' is not integrable over [0, 1 ]. 

PROBLEMS 
5. Show that the Vitali Covering Lemma does not extend to the case in which the covering 

collection has degenerate closed intervals. 

6. Show that the Vitali Covering Lemma does extend to the case in which the covering collection 
consists of nondegenerate general intervals. 

7. Let/ be continuous on R. Is there an open interval on which/ is monotone? 
8. Let I and J be closed, bounded intervals and 'Y > 0 be such that l( I) > 'Y • l( J). Assume 

In J "- 0. Show that if 'Y 1/2, then / 5 * I, where 5 * I denotes the interval with the same 
center as / and five times its length. Is the same true if 0 < y < 1/2? 

9. Show that a set E of real numbers has measure zero if and only if there is a countable 
collection of open intervals (ftlt=t for which each point in E belongs to infmitelymany of the 
It's and Ik=t l( lk) < oo. 

10. (Riesz-Nagy) Let Ebe a set of measure zero contained in the open inljlrval ( a, b ). According 
to the preceding problem, there is a countable collection of open intervals contained in ( a, b ), 
((ct, dk)Jr=,1, for which each point in E belongs to infmitely many intervals in the collection 
and Lt=i ( dt - ck) < oo. Defzne 

00 

f(x) = L l((ct, dt)n(-oo, x)) forallxin (a,b) . 
k= I . 

Show that/ is increasing and fails to be differentiable at each point in E. 
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. 23. Show that a continuous function/ on [a, b] is Lipschitz if) ts upper and lower derivatives are 
boundedoo (a, b). 

24. Show that for/ defined in the last remark of this section, f is not integrable over [O, 1 ]. 

6.3 FUNCTIONS OF BOUNDED VARIATION: JORDAN'S THEOREM 
Lebesgue's Theorem tells us that a monotone function on an open interval is differentiable 
almost everywhere. Therefcre the difference of two increasing functions on an open interval 
also is differentiable almost everywhere. We now provide a characterization of the class 
of functions on a closed, bounded interval that may be expressed as the difference of 
increasing functions, which shows :hat this class is surprisingly large: it includes, for instance, 
all Lipschitz functions. 

Let / be a real-valued function defined on the closed, bounded interval [a, bJ and 
P = (xo, .. . , xi} be a partition of [a, bJ. Define the variation of/ with respect to P by 

l 
V(/, P) = L 1/(x;)- J(x;_i)J , 

i=I 

and the total vwi11tion of/ on [a, b] by 

TV(f)=sup {v(f, P) I Papartitionof[a, b]} . 
For a subinterval [c, d] of [a , b], TV( f(c, d)) denotes the total variation of the restriction of 
f to [c, d]. . 

Definition A real-valued function f on the closed, bou11aed interval [a, b] is said to be of 
boundL'CI vwi11tion on [a, b] provided 

TV(/)< oo. 

!7°ple Let/ be an increasing fwiction on [a , b]. Then/ is of bounded variation on (a, b] 

TV(/) = f(b) - /(a). 
Indeed, for any partition P = {xo , . .. , xt ) of [a, b], 

l l 
V(/, P) = L 1/(x; ) - f( x;_i) I = LU(x;) - f(x;_i)J = f (b ) - /(a) . 

/a l iml 

Ex11mple Let/ be a Lipschitz function 0 11 [a, bj. Then/is of bounded variation of [a b] 
and TV(/) ~ c • (b - a) , where · ' • 

l/( 11) - /(11)1 clu - vi for all u, 11 in [a, b]. 

lndcud, for II partitiou P = (xu, . .. , .rt} of (a. b], 

k t 
V(/ , P) = L lf (x1) - f(x;- 1 )I ~ c , ~ [x1 - x,_iJ • c, [b - a]. 

,. . i• .l 
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Thus, c. [b - a] is an upper bound of the set of all variations of/ with respect to a partition 
of [a, b] and hence TV(/) ::: c • [b - a]. 

Example Define the function/ on [0, 1] by 

-{ x cos(1r/2x) /(x) - 0 
if0<x:::1 
ifx = 0. 

Then/ is continuous on [0, 1]. But / is not of bounded variation on [0, 1). Indeed, for 
a natural number n, consider the partition Pn = (0, 1/2n, 1/[2n -1), ... , 1/3, 1/2, 1} of 
[0, 1]. Then 

V(f, Pn)=l+l/2+ ... +1/n. 
Hence / is not of bounded variation on [0, 1 ], since the harmonic series diverges. 

Observe that if c belongs to ( a, b ), Pis a partition of [a, b], and P' is the refinement of 
P obtained by adjoining c to P, then, by the triangle inequality, V(/, P)::: V(/, P'). Thus. 
in the definition of the total variation of a function on [a, b], the supremum can be taken 
over partitions of [a, b) that contain the point c. Now a partition P of [a, b] that contains the 
point c induces, and is induced by, partitions P1 and "2 of [a, c] and [c, b), respectively, and 
for such partitions 

V(fiu,bJ, P) = V(fiu,cJ, Pt)+ V(~c.b], P2). 
Take the supremum among such partitions to conclude that 

TV(fiu,bJ) = TV(fiu,cj) + TV(/(c,bJ), 

We infer from this that if/ is of bounded variation on [a, b], then 
' 

(19) 

(20) 

TV(fiu, u)) - TV(fia,u]) = TV(fi.,, u)) 0 for all a!: u < v !: b. (21) 

Therefore the function x >-+ TV ( fr.u, x]), which we call the total variation function for /, is a 
real-valued increasing function on [a, b]. Moreover, for a ::: u < v ::: b, if we take the crudest 
partition P = (u, v} of [u, v], we have 

f(u) - /( ~) ::: 1/( v) - f(u )I= V(fi., , uJ, P) ::: TV(fr.u, uJ) = TV(.fi.,, 
11
1) - TV(/(a,wJ), 

Thus 
f(v) + TV(fia,uj) ::'.: f(u) + TV(fr.u,aj) for all a Su< v Sb. (22) 

We have established the following lemma. 

Le11Wl11 S Let the function f be of bounded vari.ati!)n on the closed, bounded interval [a, b]. 
Then I lws the following explicit expression as the difference of two increasing functions on [a, b): 

f(x) = [/(x) + TV(/la,x])] - TV(fiQ,x]) for all x E [a, b). (23) 

Jordllo'a Tbeorem A f u11ction f is of bounded varia1ion on lhe closed bounded interval 
[a, b J if and only if ii is the difference of two increasing Junctions on [a, b ]. ' · 
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Proof Let f be of bounded variation on (a, b]. The preceding lemma provides an explicit 
representation of / as the difference of increasing functions. To prove the converse, let 
f = g - h on [a, b], where g and h are increasing functions on (a, b]. For any partition 
P = (xv, . . . , Xk) of [a, b], 

k 
V(f, P) = }: 1/(xi) - /(.t;_J)j 

i=I 

k 
= }: l(g(x;) - g(x;_J)J + [h(x,_J) -h(x; )]I 

;~1 

k k 
::: }: lg(x;) - g(x;_J)j + }: /h(x;-1) - h(x; )I 

l=I i=1 

k k 
= }:(g(x;)-g(x;_J)J+ }:(h(x;)-h(x;-1)] 

i=l i=l 

= (g(b)- g(a)J + (h(b) -h(a)J. 

Thus, the set of variations of f with respect to partitions of (a, b] is bounded above by 
(g(b) - g(a )] + [h(b) - h(a )] and therefore/ is of bounded variation of (a, bJ. D 

We call the expression of a function of bounded :variation f as the difference of 
increasing functions a Jordan decomposition of/. 

Corollary 6 If the function f is of bounded variation on the closed, bounded inJervaJ [a, bL 
then it is differentiable almost everywhere on the open interval ( a, b) and f' is integrable over 
[a, b]. 

Proof According to Jordan's Theorem,/ is the difference of two increasing functions on 
[a, b). Thus Lebesgue's Theorem tells us that f is the difference of two functions which arc 
differentiable almost everywhere vn ( a, b ). Therefore/ is differentiable almost everywhere 
on ( a, b ). The integrability of/' follows from Corollary 4. D 

PROBLEMS 
25. Suppose/ is continuous on [0, l]. Must there be a nondegenerate closed subinterval (a, b] 

of [O, 1] for which the restriction of/ to [a, b] is of bounded variation? 
26. Let f be the Dirichlet function, the characteristic function of the rationals in (0, l]. Is/ of 

bounded variation on [O, 1 ]? 
27. Define f(x) = sinx on [O, 21r]. Fmd two increasing functionsh andg for which f = h - g on 

(0, 21r]. 

28. Let f be a step function on (a, b]. Find a fo11Dula for its total variation. 
29. (a) Define 

f(x) ={ 
0
x2 cos(l/x2) ifx~0,xe(- 1, 1) 

if X = 0. 
Is f of bounded variation on [- 1, I)? 
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(b) Defme 

g(x)={ x2 cos(l/x) ~x;taO,xe(-1, 1] 
0 if x = 0. 

ls g of bounded variation on (-1, lj? 

30. Show that the linear combination of two functions of bounded variation is also of bounded 
variation. ls the product of two such functions also of bounded variation? 

31. Let P be a partition of [a, b] that is a refinement of the partition P'. Fora real-valued function 
f on (a, b], show that V(f, P') !: V(f, P). 

32. Assume f is of bounded variation on (a, b). Show that there is a sequence of partitions /Pnl 
of(a, b) for which the sequence {TV(!, Pn )I is increasing and converges to TV(!). 

33. Let If. I be a sequence of real-valued functions on (a, b] that converges pointwise on (a, b] to 
the real-valued function f. Show that 

TV(!)!: liminf TV(!.) . 

34. Let f and g be of bounded variation on (a, b). Show that 

TV(/+ g) ::: TV(/) + TV(g) and TV( al) = lalTV(/). 

35. For a and /3 positive numbers, define the function f on [O, 1) by 

f(x) ={ x"sin(l/.Jl) forO < x 51 
0 forx=O. 

Show that if a > /3 , then f is of bounded variation on [O, -1 ], by showing that f' is integrable 
over [O, 1 ). Then show that if a ::, /3, then f is not of bounded variation on [O, 1 ). 

36. Let f fail to be of bounded variation on [O, 1 ). Show that there is a point xo in [O, 1) such that 
f fails to be of bounded variation on each nondegenerate closed subinterval of [O, 1) that 
contains xo. 

6A ABSOLUTELY CONTINUOUS FUNCTIO°NS 

l)diaition A real-valued function f 011 a closed, bounded interval [a, b) is said to be 
absolutely continuous on [a, b] provided for each f > 0, there is a 6 > 0 such that for every 
finite disjoint collection ((at, bt Ht=1 of open intervals in (a, b ), 

• n 
if Lfbt -at)< 6, then L lf(bt) - f(at)I < f. 

k= t k=I 

The criterion for absolute continuity in the case the finite collection of intervals consists 
of a single interval is the criterion for the uniform continuity off on (a, b]. Thus absolutely 
continuous functions are continuous. The converse is false, even for increasing functions. 
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Example The Cantor-Lebesgue function rp is increasini and continuous on (0, lJ, but it 
is not absolutely continuous (see also Problems 40 an(48). Indeed, to see that rp is not 
absolutely continuous, let n be a natural number. At the n-th stage of the construction of 
the Cantor set, a disjoint collection ffct, dtJh::t::2• of 2n subintervals of (0, lJ have been 
constructed that cover the Cantor set, each of which has length ( 1/3 )n. The Cantor-Lebesgue 
function is constant on each of the intervals that comprise the complement in (0, lJ of this 
collection of intervals. Therefore, since rp is increasing and rp( 1) - rp( 0) = 1, 

L (dt-ck}=(2/3twhile L (rp(t4)-<p(ct)J=l. 
l ::k ::2• l ::k ::2• 

There is no response to the f = 1 challenge regarding the criterion for <p to be absolutely continuous. 

Oearly linear combinations of absolutely continuous functions are absolutely continu-
ous. However, the composition of absolutely continuous functions may fail to be absolutely 
continuous (see Problems 43, 44, and 45). 

Proposition 7 If the function / is Lipschitz on a closed, bounded interval [a, bJ, then it is 
absolurely continuous on [a, bJ. 

Proof Let c > 0 be a Lipschitz constant for/ on [a, bJ, that is, 

1/(u) - /( v)I $ c /u - v/ for all u
1 
ve[a, bJ. 

Then, regarding the criterion for the absolute continuity of/, it is clear that 8 = 1:/ c responds 
to any f > 0 challenge. D 

There are absolutely continuous functions that fail to be Lipschitz; the function / on 
(0, lJ, defined by f(x) = ./i for O $ x $ 1, is absolutely continuous but not Lipschitz (see Problem 37). 

Theorem 8 Let the function / be absolutely continuous on the closed, bounded interval 
[a, bJ. Then/ is the difference of increasing absoluiely continuous functions and, in particular, is of bounded variation. 

Proof We first prove that / is of bounded variation. Indeed, let 8 respond to the f = 1 
challenge regarding the criterion for the absolute continuity of f. Let P be a partition of 
[a, bJ into N closed intervals l[ct, dtJ)f=I' each of length less than 8. Theo, by the definition 
of 8 in relation to the absolute continuity of/, it is clear that TV( /ic;, d;J) $ 1, for 1 s Ir, s n. 
The additivity formula (19) extends to finite sums. Hence 

N 

TV(/)= L TV(Jici.diJ) s N. 
k=l 

Therefore / is of bounded variation. In view of (23) and the absolute continuity of sums 
of absolutely continuous functions, to show that/ is the difference of increasing absolutely 
continuous functions it suffices to show that the total variation functicn for/ is absolutely 

r 
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continuous. Let f > 0. Choose 8 as a response to the E/2 challenge regarding the criterion 
for the absolute continuity of/ on [a, b). Let ((ck, dt))Z:1 be a disjoint collection of open 
subintervals of (a, b) for which It=1[dt - ct)< 8. For 1 :S k :Sn, let Pt be a partitioo of 
[ck, dtJ. By the choice of 8 in relation to the absolute continuity of/ on [a, b], 

n 

L TV(Jic1,d1J, Pt) <E/2. 
km! 

Take the supremum as, for 1 :::: k :Sn, Pt vary among partitions of [ct, dt), to obtain 
n 
L TV(/(c1,dt]) :S £/2 < f. 
k=I 

We infer from (21) that, for 1 :5 k :Sn, TV(/(ci ,dt]) = TV(fia,d1]) - TV(/[a,c1]), Hence 
n n 

1 if L[d1-ct)<8, then L/rv(fia,dt])-TV(/1a,ci]) <€. 
k=I k=I 

(24) 

Therefore the total variation fundon for / is absolutely continuous on [a, b J. D 

Theorem 9 Let the function f be continuous on the closed, bounded inlerval [a, bJ. Then 
f is absolutely continuous on [a, bJ if and only if the family of divided difference functions 
(Diffh flo<h::I is uniformly integrable over (a, b]. 

Proof. First assume (Diffh flo<h::1 is unifonnly integrable over [a, b]. Let £ > 0. Clioose 
8 > 0 for which J. I Diffh fl < £/2 if m( E) < 6 and O < h :5 1. 

E ' 
We claim that 6 responds to the € challenge regarding the criterion for / to be absolutely 
continuous. Indeed, let ((q, d1)JZ=1 be a disjoint collection of open subintervals of (a, b) 
for which ~k=i(d1 - q] < 6. For O < h :5 1 and 1 :5 k :5 n, by (14), 

Avh /(d1)-Avh /(q) = f' DiffA / . fc. 
Therefore 

± I Avh /(d1)-AvA f(ct)I :5 ± r• I DiffA /I= { IDiffA /1, 
k= I k=Jci IE 

where E = UZ=t ( q, d1) has measure less than 6. Thus, by the choice of 6, 
n L I Av A /( d1) - AvA /( c1 )I < l/2 for all O < h :5 1. 

k= I 

Since / is continuous, lake the limit as Ii o+ lo obtain 

± 1/(dt ) - /(ct )I :5 l/2 < l, 
1ml 
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Hence / is absolutely continuous. 

To prove the converse, suppose/ is absolutely continuous. The preceding theorem tells 
us that / is the difference of increasing absolutely continuous functions. We may therefore 
assume that / is increasing, so that the divided difference functions are nonnegative. To 
verify the uniformly integrability of {Diffh /lo<h<t, let f > 0. We must show that there is a 
8 > 0 such that for each measurable subset E of(~. b ), 

l Diffh I < fit m( E) < 8 and O < h ::, 1. (25) 

According to Theorem 11 of Chapter 2, a measurable set E is contained in a G& set G 
for which m( G "'E) = 0. But every G6 set is the intersection of a descending sequence of 
open sets. Moreover, every open set is the disjoint union of a countable collection of open 
intervals, and therefore every open set is the union of an ascending sequence of open sets, 
each of which is the union of a finite disjoint collection of open intervals. Therefore, by the 
continuity of integration, to verify (25) it suffices to find a 8 > 0 such that for {( q, d, )lt=I a 
disjoint collection of open subintervals of ( a, b ), 

f Diffh f < E/2 if m( E) < 8, where E = l)(c;, d, ), and O < h :5 1. {26) h w 
Choose 8 > 0 as the response to the f/2 challenge regarding the criterion for the absolute 
continuity of / on (a, b + 1 ]. By a change of variables for the Riemann integral and 
cancellation, :·· 

[ Diffh f = i·l g(t)dt, whereg(t) = f( v+t)- /(11 ; 1) for O :5I:51anda:511 < v::, b. 

Therefore, if {(c;, d, )JZ=I is a disjoint collection of open subintervals of (a, b ), 

where 

r Diffh, = ! · 1h g(t)dt, JE h O • 

E = l)(c;, d; ) and g(!) = f [f(ddt)- /( ct +1)] for all O :51::, 1 . . .~ 
If f (d; - q ] < 8, then, forO :5 1:5 1, f ((dt +1) - (q +1)] < 8, and therefore g( t) < f/2. 

k• I k= I 
Thus 

f Dif!h f = ! · [ g( t) di < f/2. jE Ii O 
Hence (26) is verified for this choice of 8. D . 
Rem111k For a nondegenerule closed, bounded imerva/ [a, bL let :F Up, :F AC, and :F av denote 
the families of fun ctions 011 [a, bJ 1ha1 are Lipscl1i1z, absulu1ely cu111i11uous, and of bounded 
vuria1iu11, respecfively. We huve tilt fo /luwi11g stricl inclusions: 

:FL/p <;. :F AC f; :F 81' · (27) 
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44. Let/ be Lipschitz on Kand g be absolutely continuous on [a, bJ. Show that the composition 
fog is absolutely continuous on [a, b]. 

45. Let / be absolutely continuous on K and g be absolutely continuous and strictly monotone 
on [a, b). Show that the composition/ o g is absolutely continuous on (a, b]. 

46. Verify the assertions made in the final remark of this section. 

47. Show that a function/ is absolutely continuous oo (a, b] if and only if for each t > 0, there is 
a 8 > 0 such that for every finite disjoint collection I(~. bt) JZ=i of open intervals in ( a, b ), 

1±(/(bt)- /(at)]/< t if ±lbt -at]< 8. 
t~ t~ 

6.5 INTEGRATING DERIVATIVES: DIFFERENTIATING INDEFINITE INTEGRALS 

Let/ be a continuous function on the closed, bounded interval [a, bJ. In (14), take a = u and 
b = v to arrive at the following discrete formulation of the fundamental theorem of integral calculus: r. Diffh/=Avh/(b)-Avh/(a). 

Since/ is continuous, the limit of the right-hand side ash o+ equals/( b )- I( a). We now 
show that if/ is absolutely continuous, then the limit of the left-hand side ash o+ equals 
J: I' and thereby establish the fundamental theorem of integral calculus for the Lebesgue integral.4 · 

Theorem 10 ut the function f be absolutely continuous on the closed, bounded ir.tervai 
[a, bi Then f is differentiable almost everywhere on (a, b ), its derivative f' is integrable over [a, b1 and 

[ f' = f(b)- f(a). (28) 

Proof We infer from the discrete formulation of the fundamental theorem of integral calculus that 

a , (29) lim [lbDiff1;nf]=f(b)-/(a). 

Theorem 8 tells us that/ is the difference of increasing functions on [a, b) and therefore, by 
Lebesgue's Theorem, is differentiable almost everywhere on (a, b). Therefore (Diff

1
;. /} 

converges pointwise almost everywhere on.( a, b) to /'. _On the other hand, according to 
Theorem 9, (Diff1;. /) is uniformly integrable over [a, b]. The Vitali Convergence Theorem 
(page 95) permits passage of the limit under the integral sign in order to conclude that 

lim [lb Diff1/n t] = lb lim Diff1/n / = {t. n-tooo " a u (30) 
Formula (28) follows from (29) and (30). 

D 4
nu. approach to the proof of the fundamental theorem of i.qtegral calculus for lbc LebeJauc Inte-

gral is taken in a note by Patrick FilZpalrick and Urian Hunt in which Theorem 9 i, proven (sec .,.,,... .,,rs.ma//Lumt1.,du/~pmphw11pm!). 
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. In the study of calculus, indefinite integrals are defined with respect to the Riemann 
mtegral. We here call a function/ on a closed, bounded interval fa, bJ the iadefiaite iategnl 
of g over fa, bJ provided g is Lebesgue integrable over fa, bJ and 

f(x) =/(a)+ { g for allxe[a, bJ. (31) 

'Theorem 11 A function I on a closed, bounded interval [a, bJ is absoluJely continuous on 
[a, bJ if and only if it is an indefinite integral over [a, . bJ. 

Proof First suppose / is absolutely continuous on [a, bJ. For each x e ( a, bJ, f is absolutely 
continuous over [a, xJ and hence, by the preceding theorem, in the case [a, bJ is replaced by [a, x], 

/(x) =/(a)+ [ f. 
Thus/ is the indefinite integral of/' over [a, bJ. 

Conversely, suppose that / is the indefinite integral over [a, bJ of g. For a disjoint 
collection {( Dk, bt)JZ=I of open intervals in ( a, b ), if we define E = uz=I ( Dk, ht), then, by 
the monotonicity and additivity over domains properties of the integral, 

f 1/( bk) - /( Dt )I = f /[\/ :5 ! [' lgl = [ lgl. (32) 
k=I k=I bt k=I bt j E 

Let 1; > 0. Since jgj is integrable over [a, bJ, according to Proposition 23 of Oiapter 4, there 
is a 8 > 0 such that JE lgl < 1: if E !:;; [a, bJ is measurable and m( E) < 8. It follows from (32) 
that this same 8 responds to the 1: challenge regarding the criterion for / to be absolutely 
continuous on [a, bJ. 

Corollary 12 Let the function f be monotone on the c/ose4 bounded interval [a, b J. Then f 
is absolutely continuous 011 [a, bJ if and only 1/ ' 

[ f =J(b)-f(a). (33) . 

Proof Theorem 10 is the assertion that (33) holds if/ is absolutely continuous, irrespective 
of any monotonicity assumption. Conversely, ~ume / is increasing and (33) holds. Let x 
belong to [a, bJ. By the additivity over domains of integration, 

0 = t f - [/(b) - /(a)J = {[ f - [/(x) - f(a)J}+{{ f - [f(b)- /(x)J}-

According to Corollary 4, 

[ f - [f(x) - f(a)J :5 0and [ f- {f(b) -f(x)J :5 0. 
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If the sum of two nonnegative numbers is zero, then they both are zero. Therefore 

ix • 

Thus f is the indefinite integral off'. The preceding theorem tells us that f is absolutely continuous. D 

f(x) = f(a) + a f'. ' 

Lemma 13 Let f be integrable over the closed, bounded interval [a, b]. Then 

f(x) = 0 fora/most all xe [a, b) 
(34) 

if and only if 

lxz 

XJ 
I= Ofora/1 (x1, x2) [a, b). (35) 

Proof Oearly (34) implies (35). Conversely, suppose (35) holds. We claim that 

l I = 0 for all measurable sets E [a, b]. 
{36) 

Indeed, (36) holds for all open sets contained in ( a, b) sinde integration is countably additive 
and every open set is the union of countable disjoint collection of open intervals. The 
continuity of integration then tells us that (36) also holds/or all Gs sets contained in (a, b) 
since every such set is the intersection of a countable descending collection of open sets. But 
every measurable subset of [a, b) is of the form G~ Eo, where G is a Gs subset of (a, b) and 
m( Eo) = 0 (see page 40). We conclude from the additivity over domains of integration that {36) is verified. Define 

E+ = {x e [a, b) I f(x) 2:: O} and E- = {xe [a, b) I f(x) :SO}. 

These are two measurable subsets of [a, b) and therefore, by (36), 

r. 1+ = f I= O and r.( -r) = -!. I= 0. 
u JE+ u £-

According to Proposition 9 of Chapter 4, a nonnegative integrable function with zero integral 
must vanish almost everywhere on its domain. Thus J+ and J- vanish almost everywhere 
on [a, b] and hence so docs / . D 

Theorem 14 let f be i111egrab/e over the closed, bou11ded illlerva/ [a, b). Then 

1 [[ t] = /(x)/oralmosta/1 x e (a, b). 
(37) 

Proof Deline the function Fon [a, b] by F(x) = J: f for all x e [a, b). Theorem 18 tells us 
that since Fis an indefinite integral, it is absolutely continyous. Therefore, by Theorem 10, F 

7 
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is differentiable almost everywhere on ( a, b) and its derivative F' is integrable. According to 
the preceding lemma, to show that the integrable function F' - f vanishes almost everywhere 
on [a, b) it suffices to show that its integral over every closed subinterval of [a, b) is zero. 
Let [.11, .12) be contained in [a, bJ. According to Theorem 10, in the case [a, b) is replaced 
by [.11, .12), and the linearity and additivity over domains properties of integration, 

fxz f"z lxz fxz [F'-/]= F'- f=F(x2)-F(.1i)- f 
Xi XJ Xi XJ 

l xz 1x1 f"Z = I- I- f=0. 
a a XJ 

D 
A function of bounded variation is said to be singular provided its derivative vanishes 

almost everywhere. The Cantor-Lebesgue function is a non-constant singular function. We 
infer from Theorem 10 that an absolutely continuous function is singular if and only if it is 
constant. Let f be of bounded variation on [a, b). According to Corollary 6, /' is integrable over [a, b). Define 

g(x) = [ f' and h(x) = f(x)- [ f ~orallx e [a, b), 

so that 
f = g + h on [a, b). 

According to Theorem 11, the funr.tion g is absolutely continuous. We infer from Theorem 14 
that the function h is singular. The above decomposition of a function o'f bounded variation 
/ as the sum g + h of two functions of bounded variation, where g is absolutely continuous 
and h is singular, is called a Lebesgue decomposition of/. 

'---
PROBLEMS 

48. The Cantor-Lebesgue function ,p is continuous and increasing on (0, 1). Conclude from 
Theorem 10 that ,pis not absolutely continuous on (0, 1). Compare this reasoning with that 
proposed in Problem 40. 

49. Let f be continuous on (a, b) and differentiable almost eyerywherc on (a, b). Show that r. f = f(b) - /(a) 

if and only if 

ih[ Jim Diff1; . /] = Jim [f Difl11.f] . a 
0 

50. Let / be continuous on (a, b] and differentiable almost everywhere on ( a, b ). Show that if 
{Diff1;. /l is uniformly integrable over [a, b]. then 

t / = f(b) - /(a) . 
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6.6 CONVEX FUNCTIONS 

Throughout this section ( a, b) is an open interval that may be bounded or unbounded. 

Definitiuo A real-valued function ,p 011 ( a, b) is said to be coove." provided for each pair of points xi, x2 in ( a, b) and each A with O 5 A 5 1, 

If we look at the graph of 'P, the convexity inequality can be formulated geometrically by 
saying that each point on the chord between (xi, ,p(xi)) and (x2, ,p(x

2
)) is above the graph of,p. · 

Observe that for two points xi< x2 in (a, b), each pointx in (xi, x2) may be expres-sed as 

(38) 

x2 -x x =A.xi+ (l-A)x2 where A=--. 

Thus the convexity inequality may be written as 
x2 -xi 

'P(x) .5 [~] ,p(xi) + [~] ,p(x2) for xi < x < x2 in (a, b). x2 -xi x2 -xi 

Regathering terrns:UUs inequality may also be rewritten as 
l 

,p(x)-,p(xi) 5 ,p(xz)-,p(x) for xi <x<x2in(a, b). 
x-xi x2 -x (39) 

Therefore convexity may also be formulated geometrically by saying that for xi < x < x2, the 
slope of the chord from ( x1, ,p( xi ) ) to ( x, ,p( x)) is no greater than the slope of the chord from (x, cp(x)) to (x2, ,p(x2)). 

{'rnpusitiuo 15 If ,p is differell/iab/e lJn ( a, b) and its derivative ,p' is increasing, then ,p is 
convex. 111 particular, ,pis convex if it has a nonnegative secqnd derivative ,p" on (a, b ). 

Proof Let xi, x2 be in ( a, b) with x1 < ~2. and let x belong to (xi, x2 ). We must show that 

,p(x)- ,p(xi) 'l'(x2)-,p( x ) ---- .::: ----. x-xi x2-x 

However, apply the Mean Value Theorem. to the restriction of I/> to each of lhe intervals 
[x1, x J and [ x, x2] to choose poinls CJ E ( XJ, x) and c2 E ( x, x2) for which 

'( ) ,p(x)-,p(xi) d '( )-,p(x2)-,p(x) ,p CJ = --- - an q, c2 - ---- . 
x -xi x2 -x 

'Ilrns, since I/>' is increasing, 

D 

•• 
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