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Since a geometric series with a ratio less than 1 converges, £ is properly defined. Moreover,

fa<u<u<p, then f(v) - f(u) = z L 0))

(n|u<gn<v} 7
Thus f is increasing, Let xy = gk belong to C. Then, by (1),

1
f(x0) = f(x) > 5% for all x < xg.
Therefore f fails to be continuous at X0 Now let xg belong to (a, b)~C. Letnbe a natural
number. There is an open intervaj 1 containing xy for which g, does not belong to I for

1 <k < n. We infer from (1) that |£(x) - f(x)| < 1/2" for all xeI. Therefore f is
continuous at xg. a

PROBLEMS
1. Let C be a countable subset of the nondegenerate closed, bounded interval [a, b]. Show that
there is an increasing function on [a, b] that is continuous only at points in [a, b] ~C.
2. Show that there is a strictly increasing function on [0, 1] that is continuous only at the
irrational numbers in [0, 1.

3. Let £ be a monotone function on a subset E of R. Show that f is continuous except possibly
at a countable number of points in E. '

4. Let Ebeasubsetof R and C a countable subset of E. Is there a monotone function on E that
is continuous only at points in E~ C?

6.2 DIFFERENTIABILITY OF MONOTONE FUNCTIONS: LEBESGUE’S THEOREM
A closed, bounded interval [c, d] is said to be nondegenerate provided ¢ < d.

Definition A collection F of closed, bounded, nondegenerate intervals is said to cover a set
E in the sense of Vitali provided for each point x in E and ¢ > 0, there is an interval I in F
that contains x and has £(1) < e.

The Vitali Covering Lemma Let E be g set of finite outer measure and F a collection of
closed, bounded intervals that covers E in the sense of Vitali. Then for each € > 0, there is a
finite disjoint subcollection (I Viz1 of F for which

n

m* [E~ U 1,} <e @)
k=1

Proof Since m*(E) < 00, there is an open set O containing £ for which m(©) < co. Because

Fis a Vitali covering of E, we may assume that each interval in F is contained in ©. By the

countable additivity and monotonicity of measure,

00
if ()32, C F is disjoint, then 3 £(1) < m(©) < co. 3)
k=1
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Moreover, since each J is closed and ¥ is a Vitali covering of E,

o n
B (I CF , then E~ | 1, ¢ U 7where 7, ={le}' nyn= ﬂ}. @)
k=1 leF, k=1
If there is a finite disjoint subcollection of that covers E, the proof is complete. Otherwise,

we inductively choose a disjoint countable subcollection ()2, of F which has the following
Property:

n [~}
E~Jnc U S foralln, 5)
k=1 k=n+1

where, for a closed, bounded interval I, 5 « I denotes the closed interval that has the same
midpoint as 7 and 5 times its length. To begin this selection, let I be any interval in F.
Suppose # is a natura] number and the finite disjoint subcollection {ZJ;_, of F has been
chosen. Since E~ Usk=1 &k #8, the collection n defined in (4) is nonempty. Moreover, the
Supremum, s,, of the lengths of the intervals in F,, is finite since m (O) is an upper bound for
these lengths. Choose I,41 tobe an interval in F n for which £(1,,;) > Sn/2. This inductively
defines {Ik},‘f°=1, a countable disjoint subcollection of F such that for each n,

n
Z(I,,+1)>l(1)/2iflefandlnuIk=ﬂ. (6)
k=1

We infer from (3) that {¢(1x)} > 0. Fix a natural number n. To verify the inclusion (5), let
x belong to E~ Usi=1 Ik. We infer from (4) that there is an I € F which contains x and is
disjoint from Us=1 Zk- Now I must have nonempty intersection with some I, for otherwise,
by (6), £(1x) > ¢(1 )/2 for all k, which contradicts the convergence of {¢ (I)) to 0. Let N be
the first natural number for which I N Iy #g. Then N > n. Since J nU,{”__fll Iy =0, we infer
from (6) that £(Iy) > ¢(1)/2. Since x belongs to I and 1N 1y #0, the distance from x to the
midpoint of Iy is at most (Iy+1/2. £(Iy) and hence, since €(I) <2-¢(1y), the distance

from x to the midpoint of Iy is less than 5/2 . £(In). This means that x belongs to 5 « 1.
Thus,

o]
X€S*IyC U Sx1Ii.

k=n+1
We have established the inclusion (5).

< €/5. This choice of n, together with the inclusion (5) and the monotonicity and countable
additivity of measure, establishes (2).

For a real-valued function f and an interior point x of jts domain, the upper derivative
of fatx, Df (x) and the lower derivative of f atx, Df(x) are defined as follows;

Bf(.\’.‘) = hﬁflo [supoqllsh L(XMJ

Rf(x) = hhl“u [inf‘kl'lsh M]

= i
PR adl B,

e
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Wehave Df(x) > Df(x).XfDf(x) equals Df(x) and is finite, we say that [ isdifferentiable
atx and define f'(x) to be the common value of the upper and lower derivatives,
The Mean Value Theorem of calculus tells us that if a function f is continuous on the

closed, bounded interval [c, d] and differentiable on its interior (¢, d)with f' > aon (c, d )
then '

a:(d=c) [f(d) - f(c)].

The proof of the following generalization of this inequality, inequality (7), is a nice illustration

of the fruitful interplay between the Vitali Covering Lemma and monotonicity properties of
functions. .

Lemma 3 Let f be an increasing function on the closed, bounded interval [a, b). Then, for
eacha >0,
- 1
m*{x€(a, b)|Df(x) > a} < = [f(6) - f(a)] ()
and
m*(x€(a, b) | Df(x) = 00} =0. (8)

Proof Let a > 0. Define E, = (x&(a, b) IDf(x) > a}. Choose o’ € (0, a). Let F be the
collection of closed, bounded intervals [c, d] contained in (a, b) for which f(d) - f (c) >
o(d —c).Since Df > a on E,, F is a Vitali covering of E,. The Vitali Covering Lemma
tells us that there is a finite disjoint subcollection {[c, di]}i_, of F for which

<e.

n
m* [Ea ~ U lex di]
k=1

Since Eq CU;_; [ck, di]U{Eq~ Uioyler, di}, by the finite subadditivity of outer measure,
the preceding inequality and the choice of the intervals [ex, di],

m(E) < S (dh-a) bes & Dis(d0 - e+ 0
k=1 k=1

However, the function f is increasing on [a, b] and {[c;, diir_
subintervals of [a, b]. Therefore

 is a disjoint collection of
SUF(de) - £(@0)] < £(6) - f(a).
k=1 :

Thus for each ¢ > 0, and each «’ € (0, «),
m(Ea) < - 1£(0) - (@) 4.

This proves (7). For each natural number n, (x (a, b) | Df(x) = o} C E, and therefore

m*(x€(a, b)|Df(x) = 00) <m*(E,) < 'l—l (f(b) - f(a)).

This proves (8). 0
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Lebesgue’s Theorem If the function f is monotone

differentiable almost everywhere on (a, b). e oo il (&b B s s

:’m;:f Assume f.is increasing. Fux?hermore, assume (;1, b) is bounded, Otherwise, express
o:;ﬁgwgtsy thfe Ixn of an ascep 8 sequence of open, bounded intervals and use the

0 s e 3 . . . b .
the o sersgu measure, The set of PoInts x in (g, b) at which Df(x)> Df(x)is

where « ang B are r_ational numbers, Hence, since thjs is a countable collection, by the
Imeasure zero. Fix rationals @, Bwith &> B and set E=E,p Lete>0, Choose an open set

ECOC(q,b) adm(0) <m*(E) 4 ¢, (10)

Let F be the collection ‘of closed, bounded intervals [¢, 4] contained in O for which
f(d) -f(e)<pB (d=c). S.mcle <BonE, FisaVitalj covering of E. The Vitalj Covering
mma tells us that there js a finite disjoint subcollection {lcx, d;,]};"=1 of F for which

m* [E~ Q[ck, dk]] <e (1)

.By the choice of the intervals [¢,, d;], the inclusion of the union of the disjoint collection
intervals {[c;, d]};_, in O and (10), ’

é[f(dk) = fla)] <ﬂ[§(dk ‘Ck)] SB-m(0) <B-[m*(E)+4. (12)

For1 <k <n, we infer from the preceding lemma, applied to the restriction of fto[c, dt],
that

. 1
m (EN (e, d)) < 2Lf(de) - f(cr)).
Therefore, by (11),
n 1 n
m(E) < 3 m*(EN(a, dy)) +e < 2| 21(d) = f(a))| +e. (13)
k=1 k=1 .
We infer from (12) and (13) that
m*(E) < S -m*(E) +£-e+eforalle> 0.
Thcrefore,sinccOS_m‘(E) <ooand f/a <1, m*(E) =0, 0
Lebesgue’s Theorem is the best possible in the sense that if £ is a set of measure zero

contained in the open interval (a, b), there is an increasing function on (a, b) that fails to
be differentiable at each point in E (see Problem 10).
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Remark Frigyes Riesz and Béla Sz.-Nagy® remark that Lebesgue’s Theorem is “one of the
most striking and most important in real variable theory.” Indeed, in 1872 I{arl Wamlrm
presented mathematics with a continuous function on an open interval which failed fo be
differentiable at any point.3 Further pathology was revealed and there followed a period of
uncertainty regarding the spread of pathology in mathematical analysis. Lebesgue’s Theorem,
which was published in 1904, and its consequences, which we pursue in Section 5, helped
restore confidence in the harmony of mathematics analysis.

Let f be integrable over the closed, bounded interval [a, b). Extend f to take the value

f(b) on (b, b+1). For0<h <1, define the divided difference function Diff, f and average
value function Av;, f of [a, b] by

x+h
Diff; f(x) = w and Avy f(x) = % / fforall x € [q, b).

By a change of variables in the integral and cancellation, foralla <u < v < b,
v
[ it £ = v £6) - Awi 1) (14)
A B

Corollary 4 Let f be an increasing function on the closed, bounded interval [a, b}. Then f' is
integrable over [a, b] and

j: 7 < () - f(a). (1s)

Proof Since f is increasing on [a, b + 1], it is measurable (see Problem 22) and therefore
the divided difference functions are also measurable, Lebesgue’s Theorem tells us that

f is differentiable almost everywhere on (a, b). Therefore (Diff, /n f} is a sequence of
nonnegative measurable functions that converges pointwise almost everywhere on {a, b)
to f'. According to Fatow’s Lemma,

[fsl}l@'igf[[Diﬂll.f] (16)

By the change of variable formula (14), for each natural number n, since f is increasing,

b ) 1 +1/n 1 +1/n 1 1/n
/;lefx/nf=i/—n°[ f-l/—"'/: f=f(b)-1—/n"/uw < f(b) - f(a).
Thus

liﬂsgop [ f Diff,, f] < f(b) - f(a). (7
The inequality (15) follows from the inequalities (16) and (17).

a
2See page S of their book Funcrional Analysis [RSN9Q),

A simpler example of such a function, due to Barte] van der Wacrden, is examined Chapter Patrick
Fitzpatrick's Advanced Calculus [Fit09). * " bot



114 Chapter 6 Differentiation and Integration

Remark The integral in (15) is independent of the values taken by f at the endpoints. On
the other hand, the right-hand side of this equality holds for the extension of any increasing
extension of f on the open, bounded interval (a, b) to its closure [a, b). Therefore a iighter
form of equality (15) is

f £'s swp f(x)- inf f(x) (18)

a x€(a,b) x€(a,b)

The right-hand side of this inequality equals f(b) = f(a) if and only if f is continuous at
the endpoints. However, even if f is increasing and continuous on [a, b), inequality (15)
may be strict. It is strict for the Cantor-Lebesgue function ¢ on [0, 1] since p(1) - p(0) = 1
while ¢’ vanishes almost everywhere on (0, 1). We show that for an increasing function f on
[a, b], (15) is an equality if and only if the function is absolutely continuous on [a, b) (see the
forthcoming Corollary 12).

Remark Fora continuous Junction f on a closed, bounded interval [a, b] that s differentiable
on the open interval (a, b), in the absence of a monotonicity assumption on f we cannot infer
that its derivative f' is integrable over [a, b]. We leave it as an exercise to show that for f
defined on [0, 1] by

1) ={ gzsin(l/xz) farOfxsl
forx=0,

f' is not integrable over [0, 1].

PROBLEMS

5. Show that the Vitali Covering Lemma does not extend to the case in which the covering
collection has degenerate closed intervals,

6. Show that the Vitali Covering Lemma does extend to the case in which the covering collection
consists of nondegenerate general intervals,

7. Let f be continuous on R. Is there an open interval on which f is monotone?

8. Let I and J be closed, bounded intervals and 7 > 0 be such that ¢(1) > y. £(J). Assume
10 J#4. Show thatif y > 1/2, then J C5+1, where 5 % I denotes the interval with the same
center as / and five times its length. Is the same true if 0<y<1/2?

9. Show that a set E of real numbers has measure zero if and only if there is a countable
collection of open intervals {J; Ji21 for which each point in E belongs to infinitely many of the
I’sand 22 €( 1) < 0.

10. (Riesz-Nagy) Let E be a set of measure zero contained in the open interval (g, b). According
to the preceding problemn, there is a countable collection of open intervals contained in (a, b),
{(cx, di )2, for which each point in E belongs to infinitely many intervals in the collection
and 32| (dk — k) < 00. Define

f(x)= Ew: ¢((exs di) N (=00, x)) forall x in (a, ).
k=1

Show that f is increasing and fails to be differentiable at each point in E.
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~ 23. Show that a continuous function f on [a, b] is Lipschitz if its upper and lower derivatives are
bounded on (a, b).
24. Show that for f defined in the last remark of this section, f” is not integrable over [0, 1].

6.3 FUNCTIONS OF BOUNDED VARIATION: JORDAN'S THEOREM

Lebesgue’s Theorem tells us that a monotone function on an open interval is diffm.:ntmble
almost everywhere. Therefcre the difference of two increasing functions on an open interval
also is differentiable almost everywhere. We now provide a characterization Pf the class
of functions on a closed, bounded interval that may be expressed as the difference of
increasing functions, which shows :hat this class is surprisingly large: it includes, for instance,

all Lipschitz functions. '
Let f be a real-valued function defined on the closed, bounded interval [a, 5] and
P = (xg, ..., x) be a partition of [a, b]. Define the variation of f with respect to P by

k
V(f, P)= 21 1f(xi) = f(xiz)l,
and the total variation of f on [a, b] by
TV(f)=sup {V(f, P)| Papartition of [a, b]} .

For a subinterval [c, d] of [, b], TV( fi,}) denotes the total variation of the restriction of
ftofe, d].

Definition A real-valued function f on the closed, bounded interval [a, b) is said to be of
bounded variation on [a, b)] provided

TV(f) < 0.
Example Let f be an increasing function on [a, b]. Then f is of bounded variation on [a, 4]

and
TV(f) = f(b) - f(a).
Indeed, for any partition P = (x, ..., x;) of [a, b),

k k
V(f, P) =/-§—:| 1f(xi) = f(xi-1) | = _E;U(X.') = f(xi<1)] = £(b) - f(a).
Example Let £ be a Lipschitz function on [a, b]. Then fis of bounded variation of [a. B),
and TV(f) <c-(b-a), where )
[f(u) = f(v)] < clu = v] for all u, vin [a, b).

Indeed, for a partition P = (xq, ..., x) of [a, b],

k

A
v/, P) =‘):llf(1.) =Sl e Yl =) =c-[b-a].
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Thus, ¢ - [b — a] is an upper bound of the set of all variations of f with respect to a partition
of [a, b] and hence TV(f) <c-[b-a].

Example Define the function f on [0, 1] by

x cos(w/2x) f0<x<1
f(")={ 0 if x = 0.

Then f is continuous on [0, 1]. But f is not of bounded variation on [0, 1]. Indeed, for
a natural number n, consider the partition P, = (0, 1/2n,1/[2n-1], ..., 1/3, 1/2, 1} of
[0, 1]. Then

V(fi P)=1+41/2+...+1/n.

Hence f is not of bounded variation on [0, 1}, since the harmonic series diverges.

Observe that if ¢ belongs to (a, b), P is a partition of [a, b], and P’ is the refinement of
P obtained by adjoining c to P, then, by the triangle inequality, V( f, P) < V(f, P'). Thus,
in the definition of the total variation of a function on [a, b], the supremum can be taken
over partitions of [a, b] that contain the point c. Now a partition P of [a, b] that contains the
point ¢ induces, and is induced by, partitions P; and P, of [a, c] and [c, ), respectively, and
for such partitions

V(f[a. b]s P) = V(f[a,c]v Pl) + V(f[t‘.b]r PZ) (19)
Take the supremum among such partitions to conclude that
TV( f[a,b]) = Tv(f[a.c]) + TV(f[c. b])- ’ (20)

We infer from this that if f is of bounded variation on [a, b], then
TV(f[a' .,]) - TV(f[a,,‘]) = TV(f[u’,,]) >0foralla<u<v<b. (21)

Therefore the function x —» TV( fla.x] ), which we call the total variation function for f, is a
real-valued increasing function on [a, b]. Moreover, for a < u<v < b, if we take the crudest
partition P = (u, v) of [u, v], we have

flu) = f(u) 2 1f(v) = f(u)] = V(A o P) STV(fluw) = TV(fia ) - TV(fia.)
Thus

flv)+ TV(fia,) = f(u)+ TV(f[u_,,]) foralla<u<v<b. (22)
We have established the following lemma,

Lemma 5 Let the function f be of bounded variation on the closed, bounded interval [a, &).

Then  has the following explicit expression as the difference of two increasing functions on
[a, b]:

f(x)= [£(x) + TV(f[u.x] )] - Tv(flu.x])for allx € [a, b]. (23)

Jurdnfn’s Theorem A function [ is of bounded variation on the closed, bounded interval
[a,b] if and only if it is the difference of two increasing functions on [a, 8]
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Proof Let f be of bounded variation on [a, b]. The preceding lemma provides an explicit
representation of f as the difference of increasing functions. To prove the converse, let
S =g—-hon[a, b], where g and & are increasing functions on [a, b). For any partition
P={x,...,x) of [a,b],

v(s, P) =§:} F(ai) = £(xo))
= 3 ls(5) = g(s0)]+ C5t) = ha)
< ?:31 lg(x1) = g(xi-1)| +,_§:l h(3i-1) = ()|

= 3s(x) - g(x10)] + S{b(5) ~h(xi1)]

= [6(2) - (a)] + [1(b) - h(a)].

Thus, the set of variations of f with respect to partitions of [a, 4] is bounded above by
[s(b) - g(a)] + [n(b) - h(a)] and therefore f is of bounded variation of [a, &]. O

We call the expression of a function of bounded:variation f as the difference of
increasing functions a Jordan decomposition of f. :

Corollary 6 If the function [ is of bounded variation on the closed, bounded interval [a, 8],
then it is differentiable almost everywhere on the open interval (a, b) and f' is integrable over
[a, B].

Proof According to Jordan’s Theorem, f is the difference of two increasing functions on
[a, b]. Thus Lebesgue’s Theorem tells us that [ is the difference of two functions which are
differentiable almost everywhere on (a, b). Therefore f is differentiable almost everywhere
on (a, b). The integrability of £ follows from Corollary 4. O

PROBLEMS

25. Suppose f is continuous on [0, 1]. Must there be a nondegenerate closed subinterval [a, b]
of [0, 1] for which the restriction of £ to [a, b] is of bounded variation?

26. Let f be the Dirichlet function, the characteristic function of the rationals in [0, 1]. Is f of
bounded variation on [0, 1]?

21. Define f(x) = sinx on [0, 2«). Find two increasing functions h and g for which f=h-gon

, 2m).
28. Let f be a step function on [a, b]. Find a formula for its total variation.
29. (a) Define

oy 2 . =
f(»:{(’;““(l/x) itembrel-1. 1

Is f of bounded variation on [-1, 1)?



Section 6.4  Absolutely Continuous Functions 119

(b) Define

0 ifx=0.
Is g of bounded variation on [-1, 1]?

g(,)={ som(ifs) Hxwgzel-1,1]

30. Show that the linear combination of two functions of bounded variation is also of bounded
variation. Is the product of two such functions also of bounded variation?

31. Let P be a partition of [a, b] that is a refinement of the partition P'. For a real-valued function
f on [a, b], show that V(f, P') < V(f, P).

32. Assume f is of bounded variation on [a, b]. Show that there is a sequence of partitions {7,
of [a, b] for which the sequence (TV( £, P, )} is increasing and converges to TV( f).

33. Let {fa} be a sequence of real-valued functions on [a, b] that converges pointwise on [a, b] to
the real-valued function f. Show that

TV(f) < liminf TV(f,).
34. Let f and g be of bounded variation on [a, b]. Show that
TV(f +8) STV(f) +TV(g) and TV(af) = |alTV(f).
35. For a and B positive numbers, define the function £ on [0, 1] by

_ **sin(1/x8) for0<x<1
f(‘)'{o for x = 0.

Show that if a > B, then f is of bounded variation on [0, 1], by showing that f' is integrable
over [0, 1]. Then show that if a < B, then f is not of bounded variation on [0, 1].

36. Let f fail to be of bounded variation on [0, 1]. Show that there is a point xg in [0, 1] such that
f fails to be of bounded variation on each nondegenerate closed subinterval of [0, 1] that
contains xp.

6.4 ABSOLUTELY CONTINUOUS FUNCTIONS

Definition A real-valued function f on a closed, bounded interval [a,b] is said to be
absolutely continuous on [a, b] provided for each € > 0, there is a 8 > 0 such that for every
finite disjoint collection ((ax, by )};_, of open intervals in (a, b),

if b - ai] <, then S 1(be) - fa)| <e.
k=1 k=1

The criterion for absolute continuity in the case the finite collection of intervals consists
of a single interval is the criterion for the uniform continuity of f on [a, b]. Thus absolutely
continuous functions are continuous. The converse is false, even for increasing functions.
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Example The Cantor-Lebesgue function ¢ is increasing and continuous on [0, 1], but it
is not absolutely continuous (see also Problems 40 and'48). Indeed, to see that ¢ is not
absolutely continuous, let » be a natural number. At the n-th stage of the construction of
the Cantor set, a disjoint collection (et di]l1<k<pn of 2% subintervals of [0, 1] have been
constructed that cover the Cantor set, each of which has length (1/3)". The Cantor-Lebesgue
function is constant on each of the intervals that comprise the complement in [0, 1] of this
collection of intervals. Therefore, since ¢ is increasing and ¢(1) — ¢( 0)=1,

2 ldi—c]=(2/3)" while 2 le(de) - p(c)] =1.
1<sk<2n 1<ks2

There is no response to the ¢ = 1 challenge regarding the criterion for ¢ to be absolutely
continuous. -

Clearly linear combinations of absolutely continuous functions are absolutely continu-
ous. However, the composition of absolutely continuous functions may fail to be absolutely
continuous (see Problems 43,44, and 45).

Proposition 7 If the Junction f is Lipschitz on a closed, bounded interval [a, 8], then it is
absolutely continuous on [a, 8].

Proof Letc>0bea Lipschitz constant for f on[a, b], that s,
1f(#) = f(v)l < clu - v| for all u, ve[a, b].

Then, regarding the criterion for the absolute continuity of f, it is clear that § = €/c responds
to any € > 0 challenge. O

There are absolutely continuous functions that fail to be Lipschitz: the function f on
[0, 1], defined by f (x)=vaforo<x< 1, is absolutely continuous but not Lipschitz (see

Problem 37).

Theorem 8 Let the Junction f be absolutely continuous on the closed, bounded interyal
[a, b]. Then £ is the difference of increasing absoluiely continuous functions and, in Particular,
is of bounded variation,

Proof We first prove that / is of bounded variation, Indeed, let & respond to the ¢ = 1
challenge regarding the criterion for the absolute continuity of f. Let 2 be a partition of
[a, b]into N closed intervals {[ex, di)) ;":l. each of length less than §, Then, by the definition
of § in relation to the absolute continuity of £, it is clear that TV( S 4]) <1, for1 <k<n.
The additivity formula (19) extends to finite sums, Hence

N
VU= 3TV fig ap) S .

Therefore f is of bounded variation, In view of (23) and the absolute continuity of sums
of absolutely continuous functions, to show that [ is the difference of increasing absolutely
continuous functions j suffices to show that the total variation functicn for / is absolutely
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continuous. Let € > 0. Choose & as a response to the ¢/2 challenge regarding the criterion
for the absolute continuity of f on [a, b]. Let {(ck, di )}}_, be a disjoint collection of open
subintervals of (a, b) for which 3}_;[di — c] <8. For 1 < k < n, let P; be a partition of
[ck» di]. By the choice of & in relation to the absolute continuity of £ on [, 5],

2 Tv(flq.d‘]v Pk) < €/2
k=1

Take the supremum as, for 1 < k < n, Py vary among partitions of [c¢, d], to obtain
n
> TV(fio,a)) S€/2<€.
k=1
We infer from (21) that, for 1 <k <n, TV(fi, 4)) = TV(fie,4)) = TV(fja.c,) )- Hence

it 3lde -] <8, then 3 [TV o) = TV(fis.a))| < 24)
k=1 k=1

Therefore the total variation function for f is absolutely continuous on [a, b]. m}
Theorem 9 Let the function f be continuous on the closed, bounded interval [a, b]. Then
f is absolutely continuous on [a, b] if and only if the family of divided difference functions
(Diffy flo<n<i is uniformly integrable over [a, b].

Proof. First assume {Diffy fo<x<1 is uniformly integrable over [a, b]. Let € > 0. Choose

&> 0 for which
/|Diff;,f|<e/2ifm(E)<8and0<h51.
E

We claim that & responds to the € challenge regarding th:e criterion for f to be absolutely
continuous. Indeed, let {(cx, d)};_; be a disjoint collection of open subintervals of (a, b)
for which 37 _; [di — cx] <8.For0<h <1and 1<k <n, by (14),

Avy, f(dk) — Avy f(ck) =/d‘Diﬂ'h S

Therefore
n

314w 1(d) - Aw f(e)l < 3, [ it 1= [ it 1
k=1

k=1"¢ck

where E = U}_, (¢, di) has measure less than 8. Thus, by the choice of 5,

i |Avh f(di) — Avh f(cr)| < ¢/2forall 0<h < 1.
k=1

Since f is continuous, take the limit as A — 0* to obtain

1f(di) - flee)l <€/2<e.

M:

k

il
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Hence fis absolutely continuous,
To prove the converse, s

us that f is the fiiﬁerence of increasing absolutely continuous functions. We may therefore

assume that f js increasing, so that the divided difference functions are nonnegative. To

verify the uniformly integrability of (Diffy flo<her, let € > 0. We must show that there is a
8> 0such that for each measurable subset £ of (a, b),

/Diff,,f<eifm(E)<5and0<h51. (25)
E

According to Theorem 11 of Chapter 2, a measurable set E is contained in a Gj set G
for which m(G ~ E) = 0. But every Gs set is the intersection of a descending sequence of
open sets. Moreover, every open set is the disjoint union of a countable collection of open
intervals, and therefore every open set is the union of an ascending sequence of open sets,
each of which is the union of a finite disjoint collection of open intervals. Therefore, by the
continuity of integration, to verify (25) it suffices to find a § > 0 such that for {(cz, d)lia
disjoint collection of Open subintervals of (a, b),

n
f Diffy f < ¢/2if m(E) < 8, where E=J(ck, d), and0<h <1. (26)
E k=1

Choose § > 0 as the response to the €/2 challenge regarding the criterion for the absolute
continuity of f on [a,b+1]. By a change of variables for the Riemann integral and
cancellation, !

v h ’
/ Diffy f = %/ 8(t)ds, whereg(t)=f(v+t)—f(u_+r)for0_<_t51anda§u<v5b.
u 0

Therefore, if {(c, dj )i~y is a disjoint collection of open subintervals of (a, b),

/Dmhf=1-fg(r)dt,
E h Jo

(ckr di) and g(1) = i[f(dk+I)—-f(q +1)]forall0<r <1,
k=1

where

E=

n
k=

—

lfé‘,l[dk -] <6, then,for0 <t <1, él[(dk +1) = (ci+1)] < 8, and therefore 8(1) <ef2.
Thus

/Diﬂ;.f: 1 'fK(l)dl((/Z.

E hJy
Hence (26) is verified for this choice of §. 0
Remurk For a nondegenerate closed, bounded interval [a, b), let F p» Fac, and F gy denote

the families of functions on [a, ] that are Lipschitz, absolutely continuous, and of bounded
variation, respectively. We have the following strict inclusions:

FripCFacC Fay. @n

- — —
L e L I = B < & e o o e R L A
T PR s 5
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44. Let f be Lipschitz on R and & be absolutely continuous on [a, &]. Show that the composition
o gis absolutely continuous on [a, b).

45. Let f be absolutely continuous on R and & be absolutely continuous and strictly monotone
on [a, b]. Show that the composition f o g is absolutely continuous on [a, ).
46. Verify the assertions made in the final remark of this section.

47. Show that a function f is absolutely continuous on [a, 5] if and only if for each ¢ > 0, there is
a8 > 0 such that for every finite disjoint collection {(ax, bx))z_; of open intervals in (a, b),

n

2[(be) - flar))

k=]

n
<eif E[bk—ak]<6.
k=1

6.5 INTEGRATING DERIVATIVES: DIFFERENTIATING INDEFINITE INTEGRALS

Let f be a continuous function on the closed, bounded interval [a, b].In (14), take o = 4 and
b= v to arrive at the following discrete formulation of the fundamental theorem of integral
calculus:

/bDiff;.f = Avif(b) - Avif(a).

Since fis continuous, the limit of the right-hand side as & — 0+ equals £(b) - f(a). We now
show that if f is absolutely continuous, then the limit of the left-hand side as k — 0+ equals
L " f' and thereby establish the fundamental theorem of integral calculus for the Lebesgue
integral 4 :

Theorem 10 Let the Junction f be absolutely continuous on the closed, bounded irterval
[a,b]. Then £ is differentiable almost everywhere on (a, b), its derivative f' is integrable over
[a.

]: f'= £(b) - f(a). (28)

Proof We infer from the discrete formulation of the fundamental theorem of integral
calculus that

b
lim [ [ s, f]=f(b) - 1(a). 29)

Theorem 8 tells us that [ is the difference of increasing functions on [a, 5] and therefore, by
Lebesgue’s Theorem, is differentiable almost everywhere on (a, b). Therefore {Diffy;, f}
converges pointwise almost everywhere on.(a, b) to f'. On the other hand, according to
Theorem 9, (Diff, /n f} i uniformly integrable over [a, b]. The Vitali Convergence Theorem
(page 95) permits passage of the limit under the integral sign in order to conclude that

b b
o Lmnrfr o
Formula (28) follows from (29) and (30). a
“This approach to the proof of the fundamental theorem of integral calculus for the Lebesgue inte-

gral is taken in a note by Patrick Fitzpatrick and Brian Hunt in which Theorem 9 is proven (see www-
users.math.umd. edw~pmf/hunipmy).
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_ In the study of calculus, indefinte integrals are defined with respect to the Riemann
Integral. We here call a function f ona closed, bounded interval [a, b] the indefinite integral
of g over [a, b] provided 2 is Lebesgue integrable over [a, b] and

f(x)=f(a)+/ngoraﬂxe[a, b). (31)

'l'heor.em 11 A function f on a closed, bounded interval [a, b] is absolutely continuous on
o, ] if and only if it is an indefinite integral over [a,. b].

Pro(?l' First suppose f is absolutely continuous on a, b]. For each x € (a, b], £ is absolutely
[continuous over [a, x] and hence, by the preceding theorem, in the case [a, 5] is replaced by
a, x|,

s =10+ [ 1.

Thus £ is the indefinite integral of f over [a, b).

Conversely, suppose that f is the indefinite integral over [a, b] of g. For a disjoint
collection {(ay, b ))i_; of open intervals in (a, b), if we define E = Ui=1(ax, &), then, by
the monotonicity and additivity over domains properties of the integral,

<3 'H—/H (32)
_k=1 ! 8l = Eg.

glf(bk)—f(ax)l=k2=ll /: p

Let € > 0. Since |g] is integrable over [a, b], according to Proposition 23 of Chapter 4, there
is a § > 0 such that [, |g| < €if £ C [a, b] is measurable and m(E) < 8. It follows from (32)
that this same & responds to the ¢ challenge regarding the criterion for f to be absolutely

continuous on [a, 5). O

Corollary 12 Let the function f be monotone on the closed, bounded interval [a, b). Then f
is absolutely continuous on [a, b] if and only if ’

fh/“=f(b)-f(a)- ' (33)

Proof Theorem 10 is the assertion that (33) holds if f is absolutely continuous, irrespective
of any monotonicity assumption. Conversely, assume f is increasing and (33) holds. Let x
belong to [a, 4]. By the additivity over domains of integration,

0= /bf’-[f(b)—f(u)]={ /*f'—(f(x>—f(a>1}+{/f f“—[f(b)-f(x)]}~
According to Corollary 4,
/xf'-[f(x)—f(U)lsoand ff—[f(b)—f(x)ISO.
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If the sum of two honnegative numbers s zero, then they both are zero, Therefore

Thus f is the indefinite integral of f',

The preceding theorem tells us that f s absolutely
continuous, ! o
Lemma 13 ¢ [ be integrable over the closed, bounded interval [a, b). Then
f(x) =0 for almost all x €[a, b] (34)
if and only if
X2
f f=0forall(x,, x2)Cla, b). (35)
X1
Proof Clearly (34) implies (35). Conversely, suppose (35) holds. We claim that
/ f = 0for all measurable sets EC[a, b]. (36)
E

Indeed, (36) holds for all open sets contained in (a, b) since integration is countably additive
and every open set is the union of countable disjoint collection of open intervals, The
continuity of integration then tells us that (36) also holds for all G sets contained in (a, b)

Since every such set is the intersection of a countable descending collection of open sets. But
eévery measurable subset of [a, b]is of the form G ~

Ey, where G is a G5 subset of (a, b) and
m(Ep) =0 (see Page 40). We conclude from the additivity over domains of integration that
(36) is verified. Define R

E*={x¢[a, Bl| f(x) >0} andE-={xé[a, b]| f(x) <0}.

These are two measurable subsets of [, b] and therefore, by (36),

/ff*=/ﬁf=0and/:(—f‘)=-[£_f=0-

O

Theorem 14 Ler f be integrable over the closed, bounded interval [a, b). Then

‘% [-/d f] = f(x) for almost all x ¢ (a, b). (37

Proof Define the function F on [a, b] by F(x) = [ florallxe [a, b]. Theorem 18 tells us
that since F is an indefinjte integral, it is absolutely continuous. Therefore, by Theorem 10, F
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is differentiable almost everywhere on (a, b) and its derivative F” is integrable. According to
the preceding lemma, to show that the integrable function F’— S vanishes almost everywhere
on [a, b] it suffices to show that its integral over every closed subinterval of [a, b] is zero.
Let [xy, x;] be contained in [a, b). According to Theorem 10, in the case [a, b] is replaced
by [x1, x;], and the linearity and additivity over domains properties of integration,

/:[f'—f1=/:r-/:f=F(xz)—F(m—[:f

I

almost everywhere. The Cantor-Lebesgue function is a non-constant singular function. We
infer from Theorem 10 that an absolutely continuous function is singular if and only if it is
constant. Let f be of bounded variation on [a, b]. According to Corollary 6, £ is integrable
over [a, b]. Define

&(x) =/xf’andh(x) =f(x)—/xf’fora]lxe[a, b,

O

so that
f=g+hon]a, b].

According to Theorem 11, the function g is absolutely continuous. We infer from Theorem 14
that the function 4 is singular. The above decomposition of a function of bounded variation
f as the sum g + h of two functions of bounded variation, where g is absolutely continuous
and h is singular, is called a Lebesgue decomposition of f.
.
PROBLEMS

48. The Cantor-Lebesgue function ¢ is continuous and increasing on [0, 1]. Conclude from
Theorem 10 that ¢ is not absolutely continuous on [0, 1]. Compare this reasoning with that
proposed in Problem 40.

49. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Show that
[ 7= 1)~ sta
a
if and only if
b
/,, Llimw Diffy, f] = lim [ /: Diffy/, f} -

30. Let f be continuous on [a, b] and differentiable almost everywhere on (a, b). Show that if
(Diffy/, /) is uniformly integrable over [a, b), then

b
[ 7=~ sta)
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6.6 CONVEX FUNCTIONS

De.ﬁnilion A real-valued Junction ¢ on (a,b) is said 10 pe convex provided for each pair of
Points xy, x; in (a, b) and each ) With0 < <1,

(A1 +(1-2)xy) SA¢(x1) + (1= A)g(xy). (38)

If we look at the graph of ¢, the convexity inequality can be formulated geometrically by
sa;ymg that each point op the chord between (x1, 0(x; )) and (x, ¢(x2)) is above the graph
of p. )

Observe that for twe points x; < x, in (a, b), each point x in (x1,

%) may be expres-
sed as

*=Ax1+(1-A)x where A = 227%
X2 =X

Thus the convexity inequality may be written a5

olx) < [”\"‘]wmn[’"

X ;
forxy<x<xi , b).
¥ J'P(Xz) %1 <x<xin(a, b)

X2 —=x
Regathering terms, this inequality may also be rewritten as

e(x) = p(x) < #(x2) -o(x)

<x<xyin(a, b). 9
P Y —x forx; <x X2in (a, b) (39)

Therefore convexity may also be formulated geometrically by saying that for x; < x < X2, the

slope of the chord from (21, (x1)) to (x, ¢(x)) is no greater than the slope of the chord
from (x, ¢(x)) to (xy, ¢(x,)). :

Proposition 15 If ¢ is differentiable 'on (a, b) and its derivative ¢ is increasing, then ¢ is
convex. In particular,  is convex ifit has a nonnegative second derivative ¢"on (a, b).

Proof Let x;, x2 bein (a, b) with x; < A2, and let x belong to (x;, x2). We must show that

(%) = ¢(x1) < #x2) —p(x
r-x T p—x
However, apply the Mean Value Theorem.to the restriction of ¢ to each of the intervals
[x1, x] and [x, x2] to choose points ¢ € (xy, x)andc; € (x, x2) for which

V’I(ol) = &3:_2("2 and ‘PI(C2) = ?(Xiz) :;0(4)

Thus, since ¢ is increasing,

(=) _, = _ #(x2) = ¢(x)
%:4}((])5\0((,2)— IZT. O
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