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The fundamental theorems of integral and differential calculus, with respect to the Riemann
integral, are the workhorses of calculus. In this chapter we formulate these two theorems for
the Lebesgue integral. For a function f on the closed, bounded interval [a, b], when is

b
J'=f(b) = f(a)? (i)

Assume f is continuous. Extend f to take the value f(b) on (b, b+ 1], and for 0 <h <1,
define the divided difference function Diffy, f and average value function Avy f on [a, b] by

f(x+h) - f(x)
h

1 x+h .
Diffy f(x) = andAv;.f(x):;/ f(t)dtforall xin [a, b].
X
A change of variables and cancellation provides the discrete formulation of (i) for the
Riemann integral:

b
/ Diffhf = AVhf(b) = AVhf(a).

The limit of the right-hand side as h — 0% equals f(b) — f(a). We prove a striking theorem
of Henni Lebesgue which tells us that a monotone function on (a, b) has a finite derivative
almost everywhere. We then define what it means for a function to be absolutely continuous
and prove that if f is absolutely continuous, then f is the difference of monotone functions
and the collection of divided differences, (Diffy f)g<p <1, is uniformly integrable. Therefore,
by the Vitali Convergence Theorem, (i) follows for f absolutely continuous by taking the
limit as h — 0" in its discrete formulation. If f is monotone and (i) holds, we prove that f
must be absolutely continuous. From the integral form of the fundamental theorem, (i), we
obtain the differential form, namely, if f is Lebesgue integrable over [a, b], then

d A
p '/ f} = f(x) for almost all x in [a, b]. (1)
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Theorem 1 Let [ be a monotone function on the open interval (a, b). T hen [

except possibly at a countable number of points in (a, b).

Proof Assume f is increasing. Furthermore, assume (a, b) i .boundcd and f is m(.;rccasm‘g
on the closed interval [a, b]. Otherwise, express (a, b) as th_e union of an ascending sequence
of open, bounded intervals, the closures of which are contau.)ed in (a, b), and take the union
of the discontinuities in each of this countable collection of intervals. For each xg € (4, b), f

has a limit from the left and from the right at xo. Define

f(xg)= lim_ f(x)=sup {f(x)] a<x<x},

X—)XO

f(xg) = lim+f(x) =inf {f(x) | xo <x <b}.
X—)XO
Since f is increasing, f(x; ) < f(xg ). The function f fails to be continuous at xq if and only
if f(xg) < f(x7 ), in which case we define the open “jump” interval J(xo) by

J(20) =1 f(xg) <y < f(x5)).

Each jump interval is contained in the bounded interval [ f (a), f(b)] and the collection
of jump intervals is disjoint. Therefore, for each natural number n, there are only a finite
number of jump intervals of length greater than 1/n. Thus the set of points of discontinuity
of f 1s the union of a countable collection of finite sets and therefore is countable. O

Proposition 2 Let C be a countable subset of the open interval (a, b). Then there is an
increasing function on (a, b) that is continuous only at points in (a, b) ~ C.

Proof If C is finite the proof is clear. Assume C is countably infinite. Let {gn);2, be an
enumeration of C. Define the function f on (a, b) by setting !

1
— foralla < x < b,

/(x)

I
=M

"We use the convention that a sum over the empty-set is zero.



109

Section 6.2 Differentiability of Monotone Fundtions Lebesgue's Theorem

Smee a peometnic series with a ratio less than 1 converpes, (s properly defined. Moreover,
Wa < w<v<h then f(v) -~ f(u) > :
' Ld n'

(1= qy=v)

(1)

Thus /s increasing. Let xg = ¢ belong to . Then, by (1),

1
S(xg) = f(x) > 50 for all x < x.

Iherefore f fails to be continuous at X9. Now let xg belong to (a, b)~ C. Let n be a natural
number. There is an open antervas / containing xy for which g, does not belong to 1 for

I <k < n. We infer from (1) that [/(x) = f(x0)| < 1/2" for all x€ I. Therefore f is
[l

continuous at x.
PROBLEMS

l. Let (‘.bc a }r()uxxl;xl)lc subsct of the nondegenerate closed, bounded interval [a, b]. Show that
there is an increasing function on [a, b] that is continuous only at points in [a, b]~ C.

2. Show that there is a strictly increasing function on [0, 1] that is continuous only at the
irrational numbers in [0, 1].

3. Let f be a monotone function on a subset £ of R. Show that f is continuous except possibly
at a countable number of points in E.

4. Let E be asubset of R and C a countable subsct of E. Is there a monotone function on E that
is continuous only at points in E~ C?

6.2 DIFFERENTIABILITY OF MONOTONE FUNCTIONS: LEBESGUE’S THEOREM
A closed, bounded interval [c, d] is said to be nondegenerate provided ¢ < d.
Definition A collection F of closed, bounded, nondegenerate intervals is said to cover a set

E in the sensce of Vitali provided for each point x in E and € > 0, there is an interval I in F

that contains x and has ¢(1) < e.

The Vitali Coveriag Lemma  Let E be a set of finite outer measure and F a collection of
closed, bounded intervals that covers E in the sense of Vitali. Then for each € > 0, there is a
finite disjoint subcollection (I)}_, of F for which

m* |E~J | <e (2)
k=1

Proof Since m*(E) < oo, there is an open set O containing E for which m(Q) < co. Because
F is a Vitali covering of E, we may assume that each interval in F is contained in O. By the
countable additivity and monotonicity of measure,

©)

[2¥]
if (1)}, C Fis disjoint, then Y €(Iy) < m(0) < o0.
k=1
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