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The fundamental theorems of integral and differential calculus, with respect to the Riemann 

integral, are the workhorses of calculus. In this chapter we formulate these two theorems for 
the Lebesgue integral. For a function f on the closed, bounded interval [a, b], when is 

1(b)-f(a)' ) 

Assume f is continuous. Extend f to take the value f(b) on (b, b + 1], and for 0 <h <1, 
define the divided difference function Dillh s and average value function Av»s on [a, b] by 

fX+h Dil,f(x) = +h)-S(x) and Av,f(x) =; S() dt for all x in la, b]. 
h 

A change of variables and cancellation provides the discrete formulation of (G) for the 

Riemann integral: 

Dill,f = Av»f{b) - AvhSla). 

The limit of the right-hand side as h 0* equals f(b) -f(a). We prove a striking theorem 
of Henri Lebesgue which tells us that a monotone function on (a, b) has a finite derivative 
almost everywhere. We then define what it means for a function to be absolutely continuous 
and prove that if f is absolutely continuous, then f is the difference of monotone functions 
and the collection of divided dilferenees, (Dill, Slochsl. is uniformly integrable. Therefore, 

by the Vitali Convergence Theorem, () follows for f absolutely continuous by taking the 
linit as h 0 in its discrete formulation. If f is monotone and (i) holds, we prove that f 
must be absolutely continuous. From the integral form of the fundamental theorem, (), we 

obtain the diflerential form, namely, if f is Lebesguc integrable over la, b], then 

= S(x) for almost all x in fa, b]. i) 
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6.1 CONTINUITY OF MONOTONE FUNCTIONS 

Recall that a function is defined to be monotone if it is either increasing or decreas1ng. 

Monotone functions play a decisive role in resolving the question posed in the preamble. 

There are two reasons for this. First, a theorem of Lebesguc (page 112) asserts that a 

monotone flunction on an opcn interval is differentiable alnost everywhere. Second, a 

the orem of Jordan (page 117) tells us that a very general family of functions on a closed, 

bounded interval, those of bounded variation, which includes Lipschitz functions, nay be 

Cxpressed as the difference of monotone functions and therefore they also are differentiable 

almost everywhere on the interior of their domain. In this brief preliminary section we 

consider continuity properties of monotone functions. 

Theorem 1 Let f be a monotone function on the open interval (a, b). Then f is continuous 

except possibly at a countable nunmber of points in (a, b) 

Proof Assume f is increasing. Furthermore, assume (a, b) iz bounded and f is increasing 

on the closed interval la, b]. Otherwise, express (a, b) as the union of an ascending sequence 
of open, bounded intervals, the closures of which are contained in (a, b), and take the union 
of the discontinuities in each of this countable collection of intervals. For each xy E (a, b). f 
has a limit írom the left and from the right at x0. Deline 

f45)= lim_ f(x) = sup {S()| a <I<x 
0 

f)= lim f(z) = inf {s(«)| x0 <x <b}. 

Since fis increasing, f(45)sf(). The function f fails to be continuous at xo if and only 
if fx) < f(5), in which case we define the open "jump" interval J(xo) by 

J(a0) = ylf(5)<y < f(5 )). 
Each jump interval is contained in the bounded interval [s(a), f(b)] and the collection 
of jump intervals is disjoint. Therefore, for each natural number n, there are only a finite 
number of jump intervals of length greater than 1/n. Thus the set of points of discontinuity of f is the union of a countable collection of finite sets and tkerefore is countable. 

Proposition 2 Let C be a countable subset of the open interval (a, b). Then there is an 
increasing function on (a, b) that is continuous only at points in (a, b) ~C. 

Proof If C is finite the proof is clear. Assume C is countably infinite. Let lqn )be an 
enumeration of C. Define the function f on (a, b) by setting 

S()=2 for all a <x <b. 
tn l4nSx) 

We use uhe convention that a sum over the empty-set is zero. 
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Since a gcomctnc series witlh a ratio less than I converges, f is properly delined. Morcover, 

if a uv<b, then f(v) - f(u) = 2 
(1) 2" 

Thus f is increasing. Let xo 
= 

qu belong to C. Then, by (1), 

S(0) - /(x) > lor all x <x 

Therefore f fails to be continuous at x0. Now let xo belong to (a, b) ~C. Letn be a natural 
number. There is an open intervai I containing xo for which 4n does not belong to I for 
1 <k n. We infer from (1) that 1S(x) - S(x0)1 < 1/2" for all x ¬ I. Therefore f is 
continuous at xo. 

PROBLEMS 
1. Let C be a countable subset of the nondegenerate closed, bounded interval [a, b]. Show that 

there is an increasing function on |a, b} that is continuous only at points in [a, b]~C. 
Show that there is a strictly increasing function on [0, 1] that is continuous only at the 
irrational numbers in 10, 1. 

3. Let f be a monotone function on a subset E of R. Show that f is continuous except possibly
at a countable number of points in E. 

4 Let E be a subset of R and C a countable subsct of E. Is there a monotone function on E that 
IS cOulinuous only at points in E~C? 

6.2 DIFFERENTIABILITY OF MONOTONE FUNCTIONS: LEBESGUE'S THEOREM 

A closed, bounded interval fe, d] is said to be nondegenerate provided c <d. 

Definition A collection F of closed, boumded, nondegenerate intervals is said to cover a set 
E in the sense of Vitali provided for each point x in E and e > 0, there is an interval I in F 

that contains x and has t(1) <. 

The Vitali Coveriag Lemma Let E be a set of finite outer measure and F a collection of 
closed, bounded intervals that covers E in the sense of Vitali. Then for each e>0, there is a 
finite disjoint subcollection (la)- of Ffor which 

(2) UA 
Proof Since m' (E) <oo, there is an open set O containing E for which m(0) <oo. Because 
F is a Vitali covering of E, we may assume that each interval in F is contained in O. By the 
countable additivity and monotonicity of measure, 

(3) if (h1CF is disjoint, then 2 () sm(O) <o0. 
k=1 
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