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Introduction

Fundamentals of Mathematical Ecology/Biology
I Provides an introduction to Classical and Modern

Mathematical Models, Methods and issues in population
dynamics.

I Devoted to simple models for the sake of tractability.
I Topics covered include single species models, interacting

populations that include predation.
I Suitable for beginning researchers in Mathematical

Modelling.
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Some Results

Some useful results from ODE
I A general first order initial value problem is given by

y ′ = f (t , y), y(0) = y0.

I —a non-autonomous differential equation due to explicit
involvement of the independent variable, t , in the right
hand side.

I In the entire course we are going to deal with autonomous
first order differential equations/systems.
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Some Results

Some useful results from ODE
Unless and otherwise stated, we assume that all the differential
equations satisfy the Picard’s theorem. Hence every initial
value problem admits a unique solution.

Theorem (Picard’s Theorem)
If g(t ,u) is a continuous function of t and u in a closed and
bounded region R containing a point (t0,u0) and satisfies the
Lipschitz condition in R then there exists a unique solution u(t)
to the initial value problem u′ = g(t ,u),u(t0) = u0 defined on an
interval J containing t0.

Seshadev Padhi Mathematical Ecology 4 / 62



Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Some Results

Some useful results from ODE
Unless and otherwise stated, we assume that all the differential
equations satisfy the Picard’s theorem. Hence every initial
value problem admits a unique solution.

Theorem (Picard’s Theorem)
If g(t ,u) is a continuous function of t and u in a closed and
bounded region R containing a point (t0,u0) and satisfies the
Lipschitz condition in R then there exists a unique solution u(t)
to the initial value problem u′ = g(t ,u),u(t0) = u0 defined on an
interval J containing t0.

Seshadev Padhi Mathematical Ecology 4 / 62



Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Concept of Equilibrium

Definition (Equilibrium Points)
Let us consider the following first order autonomous differential equation
(system) dN

dt = F (N). All the solutions of the equation F (N) = 0 are called
equilibrium solutions of the above equation.
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Concept of Equilibrium

Definition (Equilibrium Points)
Let us consider the following first order autonomous differential equation
(system) dN

dt = F (N). All the solutions of the equation F (N) = 0 are called
equilibrium solutions of the above equation.

Remark
These solutions are also some times called as equilibrium points, critical
points, stationery points, rest points or fixed points.
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Concept of Equilibrium

I If N∗ is an equilibrium solution of the differential equation
N ′ = f (N) then N(t) = N∗ is the unique (constant) solution
of the initial value problem (IVP) N ′ = f (N),N(t0) = N∗.

I Thus, note that the equilibrium solutions are special
constant solutions of the associated differential equation.

Seshadev Padhi Mathematical Ecology 6 / 62



Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Concept of Equilibrium

I If N∗ is an equilibrium solution of the differential equation
N ′ = f (N) then N(t) = N∗ is the unique (constant) solution
of the initial value problem (IVP) N ′ = f (N),N(t0) = N∗.

I Thus, note that the equilibrium solutions are special
constant solutions of the associated differential equation.

Seshadev Padhi Mathematical Ecology 6 / 62



Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Concept of Equilibrium

Example: x ′ = x2 − 3x + 2
I x∗ = 2 and x∗ = 1 are two critical points.
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Concept of Equilibrium

Example: x ′ = x2 − 3x + 2
I x∗ = 2 and x∗ = 1 are two critical points.

I It is easy to verify that x∗ = 2 and x∗ = 1 satisfy the
differential equation x ′ = x2 − 3x + 2.
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Stability, Instability

Definition (Stability)
An equilibrium solution N∗ is said to be Lyapunov stable, if for
any given ε > 0 there exists a δ > 0 (depending on ε) such that,
for all initial conditions N(t0) = N0 satisfying |N0 − N∗| < δ, we
have |N(t)− N∗| < ε for all t > t0.

Alternatively, we say that an equilibrium solution is said to be
stable if solutions starting close to equilibrium solution (in a δ
neighborhood) remain in its ε neighborhood for all future times.
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Stability, Instability

Stability - Pictorial Representation
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Stability, Instability

Definition (Asymptotical Stability)
An equilibrium solution N∗ is said to be asymptotically stable if
I it is stable
I if there exists a ρ > 0 such that for all N0 such that
|N0 − N∗| < ρ⇒ lim

t→∞
|N(t)− N∗| = 0.

Alternatively, an equilibrium solution is said to be asymptotically
stable if it is stable and in addition all solutions initiating in a ρ
neighborhood of the equilibrium solution approach the
equilibrium solution eventually.
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Stability, Instability

Asymptotical Stability - Pictorial Representation
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Stability, Instability

Definition (Unstable Solution)
A solution of the system

dN
dt

= f (N).

is said to be unstable if it is not stable.
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Stability, Instability

Theorem (A Useful Theorem in One-dimensional Space)
Suppose that N∗ is an equilibrium point of the differential equation
N ′ = f (N), where f (N) is assumed to be a continuously differentiable
function with f ′(N∗) 6= 0. Then the equilibrium point N∗ is asymptotically
stable if f ′(N∗) < 0, and unstable if f ′(N∗) > 0.
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Stability, Instability

Theorem (A Useful Theorem in One-dimensional Space)
Suppose that N∗ is an equilibrium point of the differential equation
N ′ = f (N), where f (N) is assumed to be a continuously differentiable
function with f ′(N∗) 6= 0. Then the equilibrium point N∗ is asymptotically
stable if f ′(N∗) < 0, and unstable if f ′(N∗) > 0.

Example
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Stability, Instability

Single Species Dynamics
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Populations

Populations...
I Population will be a primitive concept for us.

I It concerns groups of living organisms (plants, animals,
micro-organisms..) which are composed of individuals with
a similar dynamical behavior.

I We postulate that every living organism has arisen from
another one and populations reproduce.

I Note: we will study populations and not the individuals.
I Populations change in size, they grow or decrease due to

birth, death, migration.
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The Basic Framework

The Basic Framework
I We want to study laws that govern population changes in space and

time.
I We begin by restricting our study to how populations change in time.

We call these changes dynamical. Our basic framework is
I First: a population is described by its number of individuals ( in some

cases, however, by the biomass).
I We will here study unstructured populations, but in reality structured

populations arises and are important. Here “structure” means classes of
age, size, sex,...

I Second: we need to describe the time variation of the population. We
will use (ordinary) derivatives for this purpose. Alternatively, we could
also work with stochastic processes or discrete-time formulations...

I Three: we need to know what causes these time variations. Which
biological processes. Then we have to translate this into (convenient)
mathematical language how these biological processes affect the
time-changes of the population.
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Malthusian Model

Dynamics of a single species
I N(t) represents total number or density of a population in an

environment.
I dN

dt stands for rate of change in the entire population.
I 1

N
dN
dt represents per capita rate of change in the entire

population. (Change in the total population due to an
individual.)

I To start with, we assume that the population changes due to
births and deaths only.

I If b,d represent per capita birth and death rates then their
difference represents per capita rate of change, i.e.,

1
N

dN
dt

= b − d .
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Malthusian Model

Dynamics of a single species: 1
N

dN
dt = b − d .

I Thus the governing dynamic equation for the population is

dN
dt

= rN

where r = b − d called as intrinsic growth rate. This model
is called exponential model or Malthusian model.

I If the initial population at time t0,N(t0) = N0, the solution of
this differential equation is given by

N(t) = N0ert .
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Malthusian Model

Thomas Robert Malthus
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Malthusian Model

Malthusian’s Model, dN
dt = rN,N(t0) = N0

I Per capita growth rate, 1
N

dN
dt , is always constant (b − d).

I The growth rate of the population is always increasing
(decreasing) if r > 0(r < 0).

I The population grows (decays) exponentially from the
initial value N0 since N(t) = N0ert . The population will
remain constant only when births and deaths balance each
other, i.e., b = d or r = 0.
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dt = rN,N(t0) = N0
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Malthusian Model

Malthusian’s model, dN
dt = rN,N(t0) = N0

I From the model we observe that the population either
blows up to infinity or decays to zero exponentially which is
not realistic.

I This calls for a modification in the model. The present
model assumes that the per capita growth rate is
independent of the population.

I It is more realistic to assume that the per capita growth
rate to be a function of total population in view of the fact
that the population always has to share the limited food
resources which naturally limits their growth.

I Before going into this, some examples:
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Malthusian Model

Exponential Growth

Figure: The population of India. Until 1951-1961, the growth is well
approximated by an exponential curve.
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Malthusian Model

Exponential Growth

Examples

Figura : The population of USA . Until 1920, the growth is well approximated by an
exponential.
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Figure: The population of USA. Until 1920, the growth is well
approximated by an exponential curve.
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Logistic Model

Modified Model
I Hence we assume that the per capita growth rate of the

population is linearly decreasing function of the total
population,given by

1
N

dN
dt

= r
(

1− N
K

)
where K is called carrying capacity which represents the
total population the environment can support.

I Observe that the per capita growth rate continuously
reduces from r as the population N increases from zero
and it becomes zero when the population reaches K . This
seems reasonable as resources are always limited and the
population are controlled by these resources.
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Logistic Model

Logistic Model

The modified model representing growth in a species is
given by

dN
dt

= rN
(

1− N
K

)
,N(t0) = N0

which is called as Logistic Model or Verhulst Model.
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Logistic Model

Logistic ModelLogistic equation

Figura : Pierre-François Verhust, first introduced the logistic em 1838: “’Notice sur la loi que
la population pursuit dans son accroissement”. On the right side, , Raymond Pearl, who
"rediscovered"Verhust’s work.

Roberto A. Kraenkel (IFT-UNESP) III SSSMB São Paulo, Feb 2014 10 / 32

Figure: P-F. Verhulst, first introduced the logistic equation in 1838. On
the right side, Raymond Pearl, who “rediscovered” Verhulst’s work.
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Logistic Model

Parabolic Population Growth: f (N) = rN
(
1− N

K

)
I Let us analyze the Logistic model in the light of the

theorem done previously.
I We have

f (N) = rN
(

1− N
K

)
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Logistic Model

Analysis of Logistic Equation dN
dt = rN

(
1− N

K

)
,N(t0) = N0

f (N) = 0⇒ N = 0 or K .

Logistic equation admits two equilibrium points given by
N1 = 0,N2 = K

f ′(N) = r
(

1− 2N
K

)
, f ′(N1) = r > 0, f ′(N2) = −r < 0

The trivial equilibrium, N1 = 0 is unstable and N2 = K is
asymptotically stable.
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Logistic Model

Analysis of Logistic Equation dN
dt = rN

(
1− N

K

)
,N(t0) = N0

I If N0 is close to 0 then N2

K will be much smaller, hence can
be ignored.

I Thus the solution behaves as per dN
dt ≈ rN leaving the

neighborhood of 0. This illustrates the instability of zero
equilibrium solution.
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Logistic Model

Analysis of Logistic Equation dN
dt = rN

(
1− N

K

)
,N(t0) = N0

I Let us study the nature of the equilibrium N = K . Let us
define x = N − K and substitute in Logistic equation.

I We obtain dx
dt = −rx − rx2

K . If N0 is closer to K then x2 will
be smaller and can be neglected. Hence dx

dt ≈ −rx
I Thus x(t) = N(t)− K decays to zero exponentially. This

illustrates asymptotic stability of K .
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Logistic Model

Solution of Logistic equation: dN
dt = rN

(
1− N

K

)
,N(0) = N0

I dN
dt = rN

(
1− N

K

)
.

I
(

1
N + 1

K−N

)
dN = rdt .

I integrating either side and using the initial condition
N(0) = N0 we obtain

ln
(

N
K − N

K − N0

N0

)
= rt ⇒ N

K − N
=

N0

K − N0
ert .

N(t) =
KN0ert

K − N0 + N0ert =
KN0

(K − N0)e−rt + N0
.
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Logistic Model

Logistic Growth
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Simulation

Logistic Growth
Simulation
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Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Glory and Misery of Logistic Model

Glory
I Simple and its solvable.
I Allows us to introduce the concept of carrying capacity.
I A good approximation in several cases.

Misery
I Too simple.
I Does not model more complex biological facts.

Why one should like the logistic equation?
I Minimal model using which we can build more

complex/sophisticated ones.
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Glory and Misery of Logistic Model

Further modification to the Logistic equation
I Logistic equation assumes that Per capita growth large

when the population is small.
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Glory and Misery of Logistic Model

Further modification to the Logistic equation ...
I If the population is small there may not be any interaction

at all among the population.
I Hence it is reasonable to assume that an environment

requires a minimum number of population to enable growth
in them.

I Per-capita growth rate of the population requires
modification.
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Allee Effect

Per-capita Growth With Allee Effect
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Allee Effect

Equation with Allee Effect
I

dN
dt

= rN
(

N
K0
− 1
)(

1− N
K

)
I N1 = 0,N2 = K0,N3 = K are the three equilibrium points.
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Simulation

Simulation
Simulation
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Simulation

Interacting Populations
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Predator-Prey Models

Interacting populations
I Till now we have discussed about the dynamics of a single

species with and without harvesting.
I Applied bifurcation analysis to derive conclusions on

maximum sustainable yield.
I Present discussion is devoted to study the dynamics of two

interacting population.
I In particular Predator-Prey interactions.
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Predator-Prey Models

Predator-Prey Model development
I We assume coexistence of predators and prey in an

environment.
I N(t) - number or density of prey.
I P(t) - number or density of predator.
I The food is abundant for the prey and they grow as per the

equation dN
dt = rN in the absence of the predator.

Seshadev Padhi Interacting Populations 43 / 62



Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Predator-Prey Models

Predator-Prey Model development
I We assume coexistence of predators and prey in an

environment.
I N(t) - number or density of prey.
I P(t) - number or density of predator.
I The food is abundant for the prey and they grow as per the

equation dN
dt = rN in the absence of the predator.

Seshadev Padhi Interacting Populations 43 / 62



Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Predator-Prey Models

Predator-Prey Model development
I We assume coexistence of predators and prey in an

environment.
I N(t) - number or density of prey.
I P(t) - number or density of predator.
I The food is abundant for the prey and they grow as per the

equation dN
dt = rN in the absence of the predator.

Seshadev Padhi Interacting Populations 43 / 62



Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Predator-Prey Models

Predator-Prey Model development
I We assume coexistence of predators and prey in an

environment.
I N(t) - number or density of prey.
I P(t) - number or density of predator.
I The food is abundant for the prey and they grow as per the

equation dN
dt = rN in the absence of the predator.

Seshadev Padhi Interacting Populations 43 / 62



Introduction Equilibria, Stability Single Species Dynamics Interacting Populations

Predator-Prey Models

Prey Equation
I There are encounters between prey and predator.
I They result in consumption of prey by the predator.
I Number of encounters is proportional their densities.
I In presence of predators the prey dynamic equation gets

modified to

dN
dt

= rN − cNP, r , c > 0
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Predator-Prey Models

Predator Equation
I In the absence of prey the predators die at an exponential

rate.
I In the presence of prey they increase at a rate proportional

to the number of encounters.
I Thus the predator dynamic equation is given by

dP
dt

= bNP −mP, b,m > 0.

I c > b.
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Lokta-Volterra Equations

Predator Prey dynamics: dN
dt = rN − cNP, dP

dt = bNP−mP.

I r is intrinsic growth rate of the prey population.
I c consumption rate of the predator per prey.
I b conversion factor
I m is death rate of the predator.
I These equations are called Lotka - Volterra predator-prey

equations.
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I These equations are called Lotka - Volterra predator-prey
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Lokta-Volterra Equations

Lotka-Volterra

Vito Volterra (1860-1940), an Italian mathematician,

proposed the equation now known as the Lotka-

Volterra one to understand a problem proposed by his

future son-in-law, Umberto d’Ancona, who tried to ex-

plain oscillations in the quantity of predator fishes cap-

tured at the certain ports of the Adriatic sea.

Alfred Lotka (1880-1949), was an USA mathematician

and chemist, born in Ukraine, who tried to transpose

the principles of physical-chemistry to biology. He pub-

lished his results in a book called “Elements of Physical

Biology”. His results are independent from the work of

Volterra.
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Lokta-Volterra Equations

Lotka - Volterra
equations: N ′ = rN − cNP,P ′ = bNP −mp.
I We wish to study this nonlinear two dimensional coupled

differential system.
I Find if there are any equilibrium points for the system and

investigate their nature.
I Obtain information about the qualitative behaviour of its

solutions (N(t), P(t)).
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Equilibrium Solutions

A few definitions
I Consider an autonomous system

x ′ = F (x , y), y ′ = G(x , y)
I Equilibrium points of this system are the points satisfying

F (x , y) = 0 = G(x , y).
I F (x , y) = 0 is called x - isocline and

G(x , y) = 0 is called y - isocline.
I Equilibrium points are nothing but the intersection points of

x and y isoclines.
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Equilibrium Solutions

Isoclines
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Equilibrium Solutions

Equilibrium Points of Lotka-Volterra Equations

Isoclines: (r − cP)N = 0, (bN −m)P = 0
Prey isocline: N = 0, r − cP = 0.
Predator isocline: P = 0, bN −m = 0
⇒ (N1,P1) = (0,0), (N2,P2) = (m

b ,
r
c )
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Equilibrium Solutions

Equilibrium Points of Lotka-Volterra Equations

Isoclines: (r − cP)N = 0, (bN −m)P = 0
Prey isocline: N = 0, r − cP = 0.
Predator isocline: P = 0, bN −m = 0
⇒ (N1,P1) = (0,0), (N2,P2) = (m

b ,
r
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Isocline Figure
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Trivial Equilibrium Analysis

N ′ = rN − cNP, P ′ = bNP −mP: Analysis near (0,0)
I We study the stability/instability nature of these critical

points.
I In the vicinity of (0,0) we can neglect the terms involving

NP.
I Hence we have dN

dt ≈ rN, dP
dt ≈ −mP.

I If the initial population is (N0,P0), the solution is
(N0ert ,P0e−mt).

I Near (0,0) the prey grows exponentially and the predators
decrease exponentially.

I Thus the solutions go away from (0,0) indicating instability
of (0,0).
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Trivial Equilibrium Analysis

Nature of (0,0)
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Interior Equilibrium Analysis

N ′ = rN − cNP, P ′ = bNP −mP: Analysis near (m
b ,

r
c )

I Define u = N − N2, v = P − P2.
I This transforms the original system to

u′ = −mc
b v − cuv , v ′ = rb

c u + buv .
I Let (N0,P0) be in the vicinity of (N2,P2).
I Since u, v are small we can neglect their product terms

and hence we obtain dv
du ≈ −

rb2

mc2
u
v

I mc2vdv + rb2udu = 0
I rb2u2 +mc2v2 = c2 ⇒ rb2(N −N2)

2 +mc2(P −P2)
2 = C2,

represent ellipses around (N2,P2).
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Interior Equilibrium Analysis

Nature of (N2,P2)
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Global Dynamics

Global behaviour of N ′ = rN − cNP, P ′ = bNP −mP
I Eliminating t and rearranging the system we obtain

(r−cP)dP
P = (bN−m)dN

N .
I Upon integration, we obtain Pr e−cP = KN−mebN .
I represents ovals about (N2,P2) in anti clockwise direction.
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Global Dynamics

Global behaviour of N ′ = rN − cNP, P ′ = bNP −mP
I Eliminating t and rearranging the system we obtain

(r−cP)dP
P = (bN−m)dN

N .
I Upon integration, we obtain Pr e−cP = KN−mebN .
I represents ovals about (N2,P2) in anti clockwise direction.

Thus the
considered
system admits
periodic
solutions.
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Species Average

Periodic Solutions
I Let T be the period of a solutions.
I Consider the equation dN

dt = rN − cNP
I Separating the variables and integrating over a time period

T we obtain
t0+T∫
t0

dN
N =

t0+T∫
t0

(r − cP)dt

⇒ ln
[

N(t0+T )
N(t0)

]
= rT − c

t0+T∫
t0

Pdt

I Thus rT − c
t0+T∫
t0

Pdt = 0

I ⇒ 1
T

t0+T∫
t0

Pdt = r
c
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Species Average

1
T

t0+T∫
t0

Pdt = r
c

I Note that the LHS is nothing but the average of the
predator density over a cycle i.e., Paverage = r

c .

I Following similar lines we can show that Naverage = m
b .
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Simulation

Simulation
Simulation
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Glory and Misery of Lotka-Volterra Model

Glory
I Although it is an oversimplified model for predator-prey system, it

captures an important feature that this kind of systems exhibits
oscillations − which are inherent to dynamics.

Misery
I As Lotka-Volterra model exhibits orbital stability, once you are on a

certain orbit in the phase space, it has certain amplitude and
period.

I If we perturb this orbit, the system will stay on a new orbit, with
different amplitude and period.

I But the real systems are under perturbations all the time, they
would jump between trajectories but may not always be periodic.
Moreover, the periodicity if exits is not effectively periodic.

I In fact, real predator-prey oscillations better described by limit
cycle behaviour.
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I In fact, real predator-prey oscillations better described by limit
cycle behaviour.
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