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Abstract

We consider the following system of equations

X(t) = xi(O)[ri(t) — filt, x(£), ()], i = 1,2,--+ ,n,
y/(t) = yi(D[=(0) + g(t x(8), y(t)], j = 1,2, ,m,
where x(t) = (x(t), (), -+, xa(£)), y(£) = (y1(1), y2(t), - -+, ym(t))s

f.g € C([0,T) x RTT™ Ry ) fori=1,2,---,n, j=1,2,--- mare
T-periodic functions in x and y, T > 0 is a real number and R = [0, 00).
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Abstract

Based on a version of fixed point theory in a cone due to Gustafson and
Schmitt, we obtain sufficient conditions for the existence of positive
periodic solutions of the above system. As an application, we prove that
only the positive periodic coefficients are required in order to obtain a
positive periodic solution of a certain Lotka-Volterra type ecological model
with discrete and distributed delays.
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Introduction

> System of functional differential equations with periodic delays
appear in many models of biological and ecological systems.

» One such model is system of competition type model. The reader may
refer the following monographs for such models.

1 . K. Gopalsamy; Stability and Oscillation in Delay Differential Equations
of Population Dynamics, Kluwer Academic Press, Boston, 1992.

2 . M. Kot; Elements of Mathematical Ecology, Cambridge University
Press, 2001.

3 . Y. Kuang; Delay Differential Equations with Applications in Population
Dynamics, Academic Press, New York, 1993.

4 . J. D. Murray; Mathematical Biology I: An Introduction, Springer
International Edition, 2002
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Introduction

» One of the important model in ecological dynamics is the n-species
Gilpin-Ayala type competitive ecological population model with
discrete and distributed delays

xi(t) = xi(t) [fi(f) = au(t)xg(t — Tu(t) -
"210 (1.1)
cir(t) / Kik(s)xfk(t +5)ds

k= oo

i

-

where i = 1,2, n,r;, ay, cix € C(R, (0,00)), and

Tik € C(R,R) (i, k= 1,2,--- , n) are T-periodic functions, ; > 0 for
k=1,2,--- , nare constants, and Ky € C((—0,0], (0,00)) with
ffoc Ki(s)ds = Tand T > 0 is a real number.
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Introduction (Cont...)

System (1.1) is a particular case of the following system of equations with
discrete and distributed delays

{x;(n = 5Ol = (LX) (O] 1= 1.2, )
YO = O30 + B x(O. /()] = 1.2, m

where x(t) = (xi(t), x2(t), -+ . xa(1)), y(t) = (y1(2), y2(t), -+, ym(1))-
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Introduction (Cont...)

6 (0 (1) =k2"1a,-k(r)x£k<t a0 + Z bu(t)yf' (¢ — o)
4 Z clt) [ OOO Kie(s)x% (¢ + 5) ds
+ Zdn / Lu(s)y{"(t + s) ds,

(6, (0, (1) = Z Xt — () + Z By (¢ — 4(1)

+ch, / Ry(s)xA (¢ + ) ds

Jer[, / Ly(s)yl'(t + s) ds,

\\71>
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Introduction (Cont...)

Here,
> I, ?17 Ajks akj; bila blj7 Cik ekja dila dlj € C(R7 (07 OO))
> Ti,0it, Tk, 0y € C(R,R), ik =1,2,--- ,n; j,[=1,2,--- ,mare
T-periodic functions.

» 0;>0,i=1,2,---,nand p; >0,j=1,2,--- , mare constants.
> Ki, L, kkja le € C((—00,0], (0,00)) with

/_Ooo Ki(s) ds = /_Ooo Kig(s) ds = /_Ooo Li(s) ds = /_OOO L(s) ds = 1.
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Introduction (Cont...)

5= e—(),foT r,(s)ds7 Sj _ epjfoT;J(s)ds7

T n m
= - (5 |:Z a,k + C,/< + Z il S) + d,1 )):| ds,

fj:f?ﬂsj /T
0j—1Jo

0,02 [T U
N = =4 ), |:Z(5k ai(s) + ci( ))+Z$(bil(5)+dil(5)):| ds,

=1 91

m

(ak(s) + e(s)) + Z(b[, + dU ] ds,

W

k=1

and
A m 1 . R -
M = 6(5 _1 / |:Z§k ay(s) + (s ))+§Sl(bu(s)+d,j(s)):| ds:

then Zhao and Ren [18] proved that if [ < 1, then (1.2) has a positive T-periodic solution,
where

1 1 T 1 1 1
= min For o o F o E s E T Em (0 1.3
{n R Fm} (13)
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Introduction (Cont...: The Fixed Point Theorem:)

Theorem 1.1 ([4, 6])
Let X be a Banach space, P C X a cone, 0 < r < R,
D={xeP:r<|x|| <R}

and ® : D — P be a compact continuous operator such that
(@) x €D, > 1, x=pudx = ||x|| #R
(b) x € D, € (0,1), x = udbx = ||x|| #r.
(©) infj =k [|Px]| # 0.

Then ® has a fixed point in D.
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Introduction (Cont... Appl. Fixed Poin Thm....)

> Applications of Theorem 1.1 and its other versions to obtain sufficient
conditons for the existence of positive solutions of second order
boundary value problems can be found in:

1 V. Anuradha, D. D. Hai and R. Shivaji; Existence results for superlinear
semipositone BVP’s, Proc. Amer. Math. Soc. 124(3)(1996), 757-763.

2 J. Gatica and Y. Kim; Positive solutions of superlinear and sublinear
boundary value problems, Korean J. Math. 25(1)(2017), 37-43.

3 X.Yang; Green’s function and positive solutions for higher order
ODE, Appl. Math. Comput. 136(2003), 379-393.
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Introduction (Cont...Appl. Fixed Poin Thm....)

» Application of Theorem 1.1 on the first order differential equation is
relatively scarce in the literature.

» In a recent work, D. D. Hai and Chuanxi Qian (On positive periodic
solutions for nonlinear dalayed differential equations, Mediterr. J.
Math. 13(2016), 1641-1651.) used Theorem 1.1 to obtain several
sufficient conditions on the existence of positive T-periodic solutions
of the following delayed differential equation

X' (1) = a(t)g(x(£))x(t) = Ab(t)f (x(t — 7(1))),

where A is a positive parameter, a, b, 7 € C(R,R) are T-periodic
functions with a,b > 0,z,b # 0, f, g € C([0, 00), [0, c0)).
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Introduction (Cont...)

We shall apply Theorem 1.1 to the following system of equations

{X{(t) = x;(O)[ri(t) = fi(t, u(t), v(D))], i=1,2,--- ,n, "
yi(t) = yi()[=7() + g(t, u(t), v(1)], j = 1,2, m,

where u(t) = (x(t), x2(t), - -+, xn(1)), v(£) = (ya(8), y2(2), - ym(1)),
fi.g € C([0,T) x RTT™ Ry ) fori=1,2,---,n, j=1,2,--- ,mare
T-periodic functions in uand v, T > 0 is a real number and Ry = [0, 00).
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Main Result

Theorem 1.2

Assume that there exist constants 0 < r < R such that
(H1) [ fils, u(s), v(s)) ds < (1 — o) |[x|| for0 < x <r,
i= 172,"' , 1,
(H2) fOng(s, u(s), v(s)) ds < &’;] |[x]| foro < x <'r,
J
j: 172a"' , m,

(H3) [\] fils, u(s), v(s)) ds > L=2)|x]| for |Ix|| = R,
i=1,2,--- ,nand

(H4) [ g(s, u(s), v(s)) ds > (6; — 1)||x]| for ||x]| = R,
j=1,2,---,m.

Then the system (1.4) has a positive T-periodic solution.
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Main Result

A direct application application of Theorem 1.1 or an application of our
Theorem 1.2 yields the following theorem.

The system (1.2) has a positive T-periodic solution.

Theorem 1.3 J

Theorem 1.3 shows that the condition ' < 1, considered by K. Zhao and
Y. Ren (Existence of positive periodic solutions for a class of Gilpin-Ayala
ecological models with discrete and distributed tide delays, Adv.
Difference Equations, 331; 2017(2017), DOI 10.1186/s13662-017-1386-9) is
not necessary. As a consequence of Theorem 1.3, we have the following
corollary.

Corollary 1.4

The model (1.1) has a positive T-periodic solution.

Seshadev Padhi | Positive Periodic Solutions for Systems of Nonlinear Differential Equations with Delays September 25, 2019 | Slide 14 of 35



Proof of Theorem 1.2

Clearly,
X(t) = (u(t)7 V(t))r = (X1(t),X2(t), e 7Xn(t)a y1(t)v yZ(t)v e 7ym(t))T isa

T-periodic solution of the system (1.4) if and only if it satisfies the the
integral system

t

l"
where Hi(t,s),i=1,2,--- ,nand I:Ij(t, s),j=1,2,---  mare the Green’s
functions, given by

ftt+T (s,u(s),v(s))ds, i=1,2,---,n
ftH_Ti:I gj( (S)7V(S)) dS,j: 1,2,---,m,

(2.1)

e fts ri(r)dr

Hi(t,s) = ——, s |t,t+T|,i=1,2,--- ,n, 2.2
(:5) 1= eli ri(m)dr seltt+ Tl " @2
. eff?j(T)dT

H;(t,s) = , SELE+T],j=1,2,---,m (2.3)

efoT FJ("') dr _ 1
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Proof of Theorem 1.2

By the periodicity of r; and 7;, we have
Hi(t+ T,s+ T) = Hi(t,s), Hi(t + T,s + T) = Hj(t, s).

Seto; = e~ Jo" i) dr Gj= el 1) 47, then the Green’s functions Hi(t, s)

and Hj(t, s) satisfies the inequalities

o 1
' S H,'(t,S)S ) i:1725"' , 1, (2~4)
1—0',' 1—0','
and R
U i) <0, j=1,2 (2.5)
. ,S < — =1, ...7m. )
&1—1* / O'j—]7j ’
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Proof of Theorem 1.2

Let
X={x€ CR™™ R): x(t+T)=x(t)},

endowed with the norm

[x[l = max[xio,
1<i<n+m

where
[xilo = sup {|x(8)|},i=1,2,---,n+m.
tefo,T]

Then X is a Banach space. In view of (2.4) and (2.5), we define a cone N on
X as

1
N: {X — (XhXZ?"' 7Xnay1ay27' o aym) S X Xi(t) Z Ui|Xi|07yj(t) 2 6_7|yj|07
J

telo, T}
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Proof of Theorem 1.2

Define an operator © on X by

(©x)(t) = ((©:1x)(1), (©2x)(1), - -, (©nx)(2), (A1x)(t), (A2x)(t), - - »((A)mX)(t))
2.6
where

(@ix)(t):/t Hi(t, $)f(s, u(s), v(s)) ds, i= 1,2, .0 (27)

and

t+T
B0 = [ Byt s)glsuls) ) ds = 1.2 m @8)
t
Now, for 0 < r < R, we consider the set
D={xeN:r<]|x| <R}

Using (2.4) and (2.5), we can show that © : D — N, compact and
continuous. We shall use Theorem 1.1 to prove our theorem.
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Proof of Theorem 1.2

First, suppose that x € D with x = u©x, and u € (0, 1). We claim that
||x|| # r. If this is not true, then ||x|| = r. For any t € [0, T], we have

T
(@M = [ Hit. (s u(5). (5D . < 1 / £, u(s), v(s)) .

< I (2.9)
and
HT
[(Apx)(8)| = /t H;(t, s)g(s, u(s), v(s)) (s, u(s), v(s)) ds,
<[IxIl- (2.10)

From the inequalities (2.9) and (2.10), we obtain
r=||x|| = p||©x]| < ||x]| = r, a contradiction. Hence ||x|| # r. Thus, the
condition (b) of Theorem 1.1 is satisfied.
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Proof of Theorem 1.2

Next, suppose that x € D and x = p©Ox with p > 1. We claim that
||x|| # R. If possible, suppose that ||x|| = R. Then, for any t € [0, T], we
have

t+T o T
(@M = [ H(e.9f(s. a5 ) ds.> 77 [ fsals). ()
> ||| (2.11)
and
T
@001 [ e gt v b2 1 [ glsutsh (o) o,

>||x||. (2.12)
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Proof of Theorem 1.2: Completed.

Hence, from the inequalities (2.11) and (2.12), we have
R = ||x|| = u||®x]|| > ||x|| = R, a contradiction. Hence ||x|| # R.

Thus, the condition (a) of Theorem 1.1 is satisfied.

Furthermore, the conditions (2.11) and (2.12) implies that
inf||q=r | ®x]| > R # 0 holds.

This proves the condition (c) of Theorem 1.1.

By Theorem 1.1, the system (1.4) has a positive T-periodic solution. O
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Proof of Theorem 1.3

Set x/'(t) = uj(t) and y/’(t) = v;(t); then

x(t) = (u(t), v(1))" = (un(), ua(t), - ua(8), vi(1), va(t), -+ vin(1))"

(3.1)
is a positive T-periodic solution of the system
() = Bu(Ol(0) — F(t,u(B) v(O)], 1= 1,2, 1 o)
vi(t) = ppvi(O[=7(8) + F(t u(t), ()], j = 1,2,--- . m,

if and only if

(u(0). W(0)) = (" (1), a3 (0wl (0.7 (0,7 (0. v (1))

is a positive T-periodic solution of the system (1.2).
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Proof of Theorem 1.3

F(t,of Za,k Yot — i ))+[Z'"1b,,(t)v,(t_a,,(t))
+Zc,k / Ki(s)ue(t + s) ds
+Zd,,(t / Lu(s)v(t + 5) ds,

Bt u(t) Zak, wlt— 24 >)+§Bzf-(t)w(t—@j<t)>
4 Z &(0) [ R(u(e+5)ds

+Zd[1 / LIJ s)vi(t + s) ds.
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Proof of Theorem 1.3

Further, assuming that x(t), given in (3.1), is periodic with period T, we see
that a positive periodic solution x(t) of (3.2) is equivalent to a positive
solution x(t) of the integral system

ui(t) = 0; [ Gi(t, s)ui(s)Fils, u(s), v(s)) ds, i = 1,2, ,n (3.3
vi(t) = p; [T Gt s i) Fi(s, u(s), v(s)) ds, j= 1,2, m,
where Gi(t,s),i=1,2,--- ,nand Cj(t, s),j=1,2,--- ,mare the Green’s

functions, given by

6—9,- fls ri(z) dz

mvse[tat+7—]7’.:]aza"'ana (3.4)
_ el

G,‘(t, S) =

ePi fts ?J(Z) dz

ePi foT fi(z) dz _ 1

N

Gi(t,s) = , SELt+T],j=1,2,---,m. (3.5)
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Proof of Theorem 1.3

In this case, Gi(t + T,s + T) = Gi(t,s), G(t + T,s + T) = Gj(t,s), and
the Green’s functions Gi(t, s) and Gi(t, s) satisfies the inequalities

< Gi(t,s) < ,i=1,2,---.n 3.6
1—0; ( )_1—(5,- (3.6)
and .
U 2 8(ts) < % iz (3.7)
B > UGi\LS) S % y J= L&, my .
oj—17- " b —1
T
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Proof of Theorem 1.3

Let
X={xe C(R"™ R): x(t+ T)=x(t)}

endowed with the norm

[x|[l = max|xio,
1<i<n+m

where
[xilo = sup {|x(t)|}, i=1,2,--- ,n+m.
telo,T]

Then X is a Banach space (3.6,3.7).

Let us define a cone P on X as
P:{X:(uth?"' s Uny V1, Vo, 0 7Vm)€X:

1
ui(t) > diluifo, vi(t) > §|Vj|0» te[o,T]}
j

fori=1,2,--- ,nand j=1,2,--+ ,m.
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Proof of Theorem 1.3

Define an operator ® on X by

(@x)(£) = ((®1x)(1), (®2x)(1), -, (Sux)(1), (Wix)(£), (Wax)(8), -, (Wimx)(1))]

(3.8)
where

(@) (1) —9/ (6 )u(5)Fi(s, u(s), v(s)) ds, i = 1,2, .0 (39)
and

t+T,\ R
W) = py / &t () Fi(s. u(s), W(s)) ds, j = 1.2, -+ ,m. (3.10)
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Proof of Theorem 1.3

Set

n T 1 1T 1 1 1
=maX<{ —, — ., e e
I—]] ) [—|27 ) [—ln’ I_I] ) |_|27 ) |_|m Y
and two positive constants r and R, with 0 < r < " and R > T1. Since

[; > I; and fj > ﬁj, then we have 0 < r < I < 1 < R. Now, we consider
the set

D={xeP:r<]|x| <R}
Using (3.6) and (3.7), we can show that ® : D — P, compact and

continuous.

First, suppose that x € D with x = u®x, and p € (0, 1). We claim that
x| # r.
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Proof of Theorem 1.3

For any t € [0, T], we have

[(®ix)(1)

T
o, /t Gi(t, 5)u(s)Fi(s, u(s), v(s)) ds,

9, [T
<175, ), ui(s)Fi(s, u(s), v(s)) ds,

0; T ?
:1 5 / ui(s) |:E ai(s)ur(s — Ti(s)) + E bu(s)vi(s — au(s))
— 6 Jo

k=1

ds

+ Z cik(s) [ Ki(T)up(m + s) d7 + Z di(s) [ Ly(m)vi(T + s) dT

T n
lu;
S?&/O |:Za:k Uk|0+zbll [vilo

k=1
n 0 0
+Zcik(s)/ K,k(T)\uk|0dr+Zd,,(s)/ Ly(7)|vilo d7| ds
k=1 0 =1 e

r,' r
<Fillxl = FFlIxl® = iz lx < [ixl) 311
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Proof of Theorem 1.3

I(Wx)(6)] =p; /t Gi(t, 5)vi(s)Fi(s, u(s), v(s)) ds

2 [T, oF ,
<% [ (0 ats). s o
’;f /0 vi(s) {Z ai(s)ui(s — Tie(s)) + Z bi(s)vi(s — au(s))
+ Z Ci(s) [ Ki(r)ue(r + 5) dr + Z du(s) L La(r)v(r + ) dr

P/5 ‘VJ|0/ I:Z a,k(S)‘”k‘O'i‘Zb’l(S)‘vllo
e [ Raundr+ > a0 [ z"’“)”""df] )

o £ Ao
<TilIxIP = F Tl = Gz lixd < lx]l (3.12)
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Proof of Theorem 1.3

From the inequalities (3.11) and (3.12), we obtain
r=||x|| = p||Px|| < ||x]| = r, which is a contradiction.

Hence ||x|| # r.

Thus, the condition (b) of Theorem 1.1 is satisfied.
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Proof of Theorem 1.3

Next, suppose that x € D and x = u®x with ;2 > 1. We claim that ||x|| # R. If
||x|l = R, then for any t € [0, T], we have

+T
[(®ix)(t)| =0; /t Gi(t, s)ui(s)Fi(s, u(s), v(s)) ds,

06, T
21 5 /0 ui(s)Fi(s, u(s), v(s)) ds,
9,’6,‘ T n m
=0 / ui(s) | 32 an(s) (s — mls)) + 3 bulshuls — auls))
1o k=1 (=1
n 0 m 0
+ Z cik(s) / Ki(T)u (T + s) d7 + Z du(s) / Lu(m)vi(T + ) dT:| ds
k=1 - =1 —oo
9,62 . T n m
>l [ [Zaik(s)mﬁzbn(s)mo
0 k= (=1
n 0 m 0
+Zcik(5)/ Kie(T)uge|o dT + Z diz(S)/ Li(7)|vilo dr] ds
k=1 - =1 -
M; R
Tl = L >_npnX
2M|x|1" = F Mllx]® = M= x> x| (3.13)
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Proof of Theorem 1.3

|(Wx)(1)] :pj/ Gi(t,s)vi(s)Fi(s. u(s), v(s)) ds.

> [ (9 (s uts). ) o,

;i — 1
o [T . 7
—_H / vi(s) [Z i (s)u(s — i(s)) + Z bu(s)vi(s — au(s))
%= 1Jo k=1 =1
n 0 R m . 0 ~
+3 () / Ri(r)ue(r +5) dr + 3 () / Lu(r)u(r +5) dr| ds
k=1 - =1 —o0
pilvilo RS oy
>0 () uelo + Y bu(s)lvilo
00 =1 Jo i =
n 0 R m R 0 .
=3 () / K)o dr + 3 () / L,,(T)v,|0df} ds
k=1 -0 =1 —o0
. M . R
20lx1* = F Il = A= lxd > [l (3.14)
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Proof of Theorem 1.3

By (3.13) and (3.14), we have R = ||x|| = p||®x]|| > [|x]| = R, whichis a
contradiction. Hence ||x|| # R.

Thus, the condition (a) of Theorem 1.1 is satisfied.

Furthermore, the conditions (3.13) and (3.14) implies that
inf =& [ ®x]| = R # 0 holds.

This proves the condition (c) of Theorem 1.1.

Hence, by Theorem 1.1, the system (3.2) has a positive T-periodic solution.
Consequently, the system (1.2) has a positive T-periodic solution. O
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