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Abstract. In this paper, we study the existence of at least one positive
solution to the fourth-order two-point boundary value problem(BVP){

u′′′′(t) = λq(t)f(t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

which models a cantilever beam equation, where one end is kept free.
Here f ∈ C ([0, 1]× R+,R+), g ∈ C ([0, 1],R+) and λ is a positive param-
eter. The sufficient conditions are interesting, new and easy to verify. We
have used some inequalities on the nonlinear function f and eigenvalues
of a linear integral operator as bounds for the parameter λ in order to
obtain our results. Our approach is based on a revised version of a fixed
point theorem due to Gustafson and Schmitt.
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1. Introduction

In this work, we are interested in demonstrating the use of revised versions
of two fixed point theorems due to Gustafson and Schmitt [6, 7] for studying
the existence of a positive solution to the nonlinear fourth order two point
boundary value problem (BVP){

u′′′′(t) = λq(t)f(t, u(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.1)
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which describes a cantilever beam equation on the deflection of an elastic
beam fixed at left end and freed at the other end. Here we assume that
f ∈ C ([0, 1]× R+,R+) and q ∈ C ([0, 1],R+) and λ is a positive parameter.

Boundary value problems of type (1.1) with various nonlinearities on f ,
have been studies by many authors [1, 2, 3, 5, 8, 9, 11, 12, 13, 17, 18, 20].
The methods used in these papers are contracting mapping principle, iterative
method, fixed point index theory in cones, Krasnosel’skii fixed point theorem,
lower and upper solution method and degree theory.

Our results in this paper are completely different from the approach by
the authors in [1, 2, 3, 5, 8, 9, 11, 12, 13, 17, 18, 19, 20]. In a recent work [15],
the author applied monotone iterative method to obtain sufficient conditions
on the existence of one positive solution of (1.1), and an iterative scheme
for approximating the solutions. In this present work, we shall use two fixed
point theorems by Gatika and Smith [12] to provide ranges on the parameter
λ in (1.1) in order to obtain sufficient conditions for the existence of positive
solutions. The ranges on the parameter depends on the eigenvalues a linear
integral operator, that is, (3.2) given in Section 3. Unlike the other papers, in
this article, we shall study the existence of positive solutions of the integral
equation

u(t) =

1∫
0

G(t, s)q(s)f(s, u(s)) ds, (1.2)

corresponding to the BVP (1.1), where G(t, s) is a Green’s function.
The motivation for this present study has come from the paper due to

Webb and Lan [16], a recent work due to Cheng et al. [4] and a recent work
due Padhi et al. [14]. Webb and Lan [16] studied the existence of positive solu-
tions of (1.2) with an arbitrary and measurable Green’s function G(t, s) (See
Remark 3.11 for the conditions on G(t, s)). Motivated by the work of Ituri-
iaga et al. [10], Padhi et al. [14] introduced a measurable function b(t). The
ranges on λ in our theorems are completely dependent on the first eigenvalue
of the eigenvalue problem, considered in Section 3, with m(t) = q(t)b(t). Most
recently, Cheng et al. [4] studied the existence of positive solutions of a sys-
tem of Hammerstein integral equations, which are the generalizations of (1.2),
where the Green’s function satisfies the condition conditions G(t, s) = G(s, t),
s, t ∈ Ω and Ω ⊂ Rn is a bounded domain. In this paper, we have used the
property G(t, s) = G(s, t), s, t ∈ [0, 1] in [4], and techniques employed [14]
and [16], and applied the eigenvalue and the corresponding eigenfunction of
a linearized integral equation corresponding to (1.2). Thus, our results can
be applied to those differential equations which can be transformed into an
integral equation of the form (1.2).

Our results can also be extended to system of integral equations of the
form

ui(t) =

1∫
0

Gi(t, s)q(s)fi(s, u1(s), u2(s), · · ·ui(s)) ds, i = 1, 2, · · · , n,
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where fi ∈ C
(
[0, 1]× Rn+,R+

)
, i = 1, 2, · · · , n, and q ∈ C ([0, 1],R+) and

λi, i = 1, 2, · · · , n are positive parameters, Gi(t, s) ≥ 0 for all t, s ∈ [0, 1], i =
1, 2, · · · , n, and measurable, satisfying the property (3.3) for all i = 1, 2, · · · , n.

This work has been divided into three sections. Section 1 contains the
basic informations on the BVP (1.1). Section 2 is Preliminary, where all basic
results are incorporated. In Section 3, we prove the main results of this paper.

2. Preliminaries

We shall use the following fixed point results in a cone [7] that are revised
versions of theorems due to Gustafson and Schmitt [6].

Theorem 2.1. Let X be a Banach space and K be a cone in X. Let r and R
be real numbers with 0 < r < R,

D = {u ∈ K : r ≤ ‖u‖ ≤ R},

and let T : D → K be a compact continuous operator such that

(a) u ∈ D, µ < 1, and u = µTu imply ‖u‖ 6= R;
(b) u ∈ D, µ > 1, and u = µTu imply ‖u‖ 6= r;
(c) inf

‖u‖=r
‖Tu‖ > 0.

Then T has a fixed point in D.

Theorem 2.2. Let X be a Banach space and K be a cone in X. Let r and R
be real numbers with 0 < r < R,

D = {u ∈ K : r ≤ ‖u‖ ≤ R},

and Let T : D → K be a compact continuous operator such that

(a) u ∈ D, µ > 1, and u = µTu imply ‖u‖ 6= R;
(b) u ∈ D, µ < 1, and u = µTu imply ‖u‖ 6= r;
(c) inf

‖u‖=R
‖Tu‖ > 0.

Then T has a fixed point in D.

In this paper, we set X = C[0, 1] to be the Banach space with standard
norm

‖u‖ = max
0≤t≤1

|u(t)|. (2.1)

Define a cone K on X by

K = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}, (2.2)

and an operator T : K → K by

Tu(t) = λ

1∫
0

G(t, s)q(s)f(s, u(s)) ds, (2.3)
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where G(t, s) is the Green’s kernel, given by

G(t, s) =
1

6

{
s2(3t− s), 0 ≤ s ≤ t ≤ 1,

t2(3s− t), 0 ≤ t ≤ s ≤ 1.
(2.4)

Let g(s) = s2

2 and c(t) = 2
3 t

2. From a straight forward calculation, also
proved in [11], one can show that G(t, s) satisfies the inequality

c(t)g(s) ≤ G(t, s) ≤ g(s) for 0 ≤ t, s ≤ 1. (2.5)

Since (2.5) is valid for any t ∈ [0, 1], then we have

1

24
· s

2

2
:=

g(s)

24
≤ G(t, s) ≤ s2

2
:= g(s) (2.6)

replaces (2.5), where min
t∈[1/4,3/4]

c(t) = min
t∈[1/4,3/4]

2
3 t

2 = 1
24 . Thus, we have the

following important lemma.

Lemma 2.3. u(t) is a positive solution of the problem (1.1) if and only if u(t)
is a fixed point of the operator T on the cone K. Further, the solution u(t)
of (1.1) satisfies the inequality

min
t∈[1/4,3/4]

u(t) ≥ 1

24
‖u‖. (2.7)

In order to satisfy condition (c) in Theorems 2.1 and 2.2, we shall make
extensive use of the following lemma.

Lemma 2.4. Let f(t, u) > 0 for t ∈ (0, 1) and u > 0. If R > 0 is a real
number, then

inf{‖Tu‖ : u ∈ P, ‖u‖ = R} > 0

for any solution u of (1.1).

Proof. Clearly, u(t) in a solution of (1.1) if and only if Tu = u. Since f(t, u) >
0 for t ∈ [ 14 ,

3
4 ] and u ∈ [ 1

24R,R], for

p = inf

{
f(t, u) : (t, u) ∈

[
1

4
,

3

4

]
×
[
R

24
, R

]}
> 0

and

q = inf
t∈[ 14 ,

3
4 ]
t2q(t),

we have

(Tu)(t) = λ

∫ 1

0

G(t, s)q(s)f(s, u(s)) ds ≥ λ 1

48

∫ 3
4

1
4

s2q(s)f(s, u(s)) ds ≥ λ

96
pq > 0,

and so ‖Tu‖ ≥ λ
96pq > 0 for all u ∈ K with ‖u‖ = R. This proves the

lemma. �
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3. Main Results

In this section, we consider the operator T defined in (2.3), the Banach space
X in (2.1), and the cone K in (2.2).

Let us consider the eigenvalue problem{
u′′′′(t) = q(t)b(t)u(t), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(3.1)

where b : [0, 1]→ [0,∞) is a continuous function. Let L be the linear operator
defined by

Lu(t) =

1∫
0

G(t, s)q(s)b(s)u(s) ds, (3.2)

where G(t, s) is the Green’s kernel, given (2.4). Then the existence of a pos-
itive solution of (3.1) is equivalent to the existence of a fixed point of the
operator L in the cone K, defined in (2.2). The Green’s function G(t, s) is
measurable, positive for all t, s ∈ [0, 1], and satisfies the property

lim
t→τ
|G(t, s)−G(τ, s)| = 0 for a.e. s ∈ [0, 1], and τ ∈ [0, 1]. (3.3)

Applying the above, and assuming
∫ 1

0
s4q(s)b(s) ds < ∞, we can prove that

L : K → K is a completely continuous operator and satisfies L(K) ⊂ K.
Further, with the above assumptions, if we proceed in the lines of Lemma
2.5 in [16], we can find the existence of a eigenvalue and its corresponding
eigenfunction φ. However, we prove the lemma here for our completeness.

Lemma 3.1. Suppose that
∫ 3/4

1/4
s4q(s)b(s) ds > 0. Let r(L) be the spectral

radius of L. Then r(L) > 0 and there exists φ ∈ K\{0} such that Lφ = r(L)φ.

Proof. For u ∈ K, t ∈ [1/4, 3/4], and using (2.7) we have

Lu(t) =

∫ 1

0

G(t, s)b(s)q(s)u(s) ds

≥
∫ 3/4

1/4

G(t, s)b(s)q(s)u(s) ds

≥ ‖u‖
24

∫ 3/4

1/4

G(t, s)b(s)q(s) ds.

Then

L2u(t) ≥
∫ 1

0

G(t, s1)b(s1)q(s1)

(
‖u‖
24

∫ 3/4

1/4

G(s1, s2)b(s2)q(s2) ds2

)
ds1

≥ ‖u‖
24

∫ 3/4

1/4

∫ 3/4

1/4

G(t, s1)G(s1, s2)b(s1)b(s2)q(s1)q(s2) ds2ds1.
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By induction, we have

‖Lnu‖ ≥‖u‖
24

max
0≤t≤1

∫ 3/4

1/4

∫ 3/4

1/4

· · ·
∫ 3/4

1/4︸ ︷︷ ︸
n−times

G(t, sn)G(sn, sn−1), · · ·G(s2, s1)

q(sn)q(sn−1) · · · q(s1)b(sn)b(sn−1) · · · b(s1) ds1ds2 · · · dsn

≥‖u‖
24

max
0≤t≤1

∫ 3/4

1/4

∫ 3/4

1/4

· · ·
∫ 3/4

1/4︸ ︷︷ ︸
n−times

(
2t2

3

)(
s2n
2

)(
2s2n
3

)(
s2n−1

2

)
· · ·
(

2s22
3

)(
s21
2

)

q(sn)q(sn−1) · · · q(s1)b(sn)b(sn−1) · · · b(s1) ds1ds2 · · · dsn

=
‖u‖
24

max
0≤t≤1

(
2t2

3

)∫ 3/4

1/4

∫ 3/4

1/4

· · ·
∫ 3/4

1/4︸ ︷︷ ︸
n−times

(
s2n
2

)(
2s2n
3

)(
s2n−1

2

)
· · ·
(

2s22
3

)(
s21
2

)

q(sn)q(sn−1) · · · q(s1)b(sn)b(sn−1) · · · b(s1) ds1ds2 · · · dsn

=
‖u‖
24

max
0≤t≤1

(
2t2

3

)(∫ 3/4

1/4

s2

2
q(s)b(s) ds

)(∫ 3/4

1/4

2s2

3

s2

2
q(s)b(s) ds

)n−1

=
‖u‖
24

2

3

(∫ 3/4

1/4

s2

2
q(s)b(s) ds

)
1

3n−1

(∫ 3/4

1/4

s4q(s)b(s) ds

)n−1
.

Consequently,

‖Ln‖‖u‖ ≥ ‖Lnu‖ ≥ ‖u‖
24

2

3

(∫ 3/4

1/4

s2

2
q(s)b(s) ds

)
1

3n−1

(∫ 3/4

1/4

s4q(s)b(s) ds

)n−1
,

which implies that

‖Ln‖ ≥ 1

24

1

3n

(∫ 3/4

1/4

s2q(s)b(s) ds

)(∫ 3/4

1/4

s4q(s)b(s) ds

)n−1
.

By Gelfand’s formula for spectral radius, we have

r(L) = lim
n→∞

(‖Ln‖)1/n

≥ lim
n→∞

 1

12

1

3n

(∫ 3/4

1/4

s2

2
q(s)b(s) ds

)(∫ 3/4

1/4

s4q(s)b(s) ds

)n−11/n

=
1

3

∫ 3/4

1/4

s4q(s)b(s) ds > 0.

Now the rest of the proof follows from Krein-Rutman theorem. �

As discussed in Section 1, the main theorems of this section uses the
eigenvalues and their corresponding eigenfunctions to provide inequalities on
the function f(t, u) and ranges on λ for the existence of positive solutions
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to (1.1). By Lemma 3.1, there exists a positive eigenvalue, say λ1,qb := 1
r(L)

of (1.1), which we call first eigenvalue. Let us denote φ1,qb be the associated
eigenfunction. Then by Lemma 3.1, λ1,qb and φ1,qb satisfy the properties
φ1,qb > 0 and λ1,qbLφ1,qb = φ1,qb, that is, Lφ1,qb = r(L)φ1,qb.

Theorem 3.2. Assume that there exist a continuous function b : [0, 1] →
(0,∞) and positive constants c, δ, and R with c > 1 and 0 < δ < R such that

(H1) f(t, u) ≤ b(t)u for u ∈ (0, δ) uniformly for t ∈ (0, 1)

and

(H2) f(t, u) ≥ cb(t)u for u ≥ R uniformly for t ∈ (0, 1).

Then the BVP (1.1) has a positive solution for every λ with

λ1,qb
c

< λ < λ1,qb.

Proof. To apply Theorem 2.2, let r ∈ (0, δ). We claim that the integral equa-
tion

u(t) = µTu, 0 < µ < 1, (3.4)

has no solution with norm r. If u0(t) was such a solution, then u0(t) is a
solution of

u0(t) = µλ

∫ 1

0

G(t, s)q(s)f(s, u0(s)) ds. (3.5)

Multiplying bothsides of (3.5) by b(t)q(t)φ1,qb(t) and integrating from 0 to 1,
we obtain∫ 1

0

b(t)q(t)φ1,qb(t)u(t) dt =µλ

∫ 1

0

b(t)q(t)φ1,qb(t)

(∫ 1

0

G(t, s)q(s)f(s, u0(s)) ds

)
dt

≤µλ
∫ 1

0

b(t)q(t)φ1,qb(t)

(∫ 1

0

G(t, s)q(s)b(s)u0(s) ds

)
dt

=µλ

∫ 1

0

q(s)b(s)u0(s)

(∫ 1

0

G(s, t)b(t)q(t)φ1,qb(t) dt

)
ds

=µλ
1

λ1,qb

∫ 1

0

q(s)b(s)u0(s)φ1,qb(s) ds

<µ

∫ 1

0

q(s)b(s)u0(s)φ1,qb(s) ds,

which is a contradiction since µ < 1. Thus, our claim holds, that is, (3.4) has
no solution with norm r, and so condition (b) of Theorem 2.2 is satisfied.

On the set

D = {u ∈ K : r ≤ ‖u‖ ≤ R}
it is again clear that T : D → K is compact and continuous. To prove that
condition (a) of Theorem 2.2 is satisfied we need to show that for any R̄ ≥ R,
the problem u = µTu, µ > 1, has no solution of norm ‖R̄‖. If this was not
the case, then there is a sequence {Rn}∞n=1 → ∞ as n → ∞, with Rn ≥ R̄,
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a sequence {µn}∞n=1 with µn > 1, and a sequence of functions {un}∞n=1 with
‖un‖ = Rn such that un = µnTun holds, that is,

un(t) = µnλ

∫ 1

0

G(t, s)q(s)f(s, un(s)) ds, 0 < tn < 1,

for n = 1, 2, . . . , which further by using (H2), gives

un(t) ≥ cµnλ
∫ 1

0

G(t, s)q(s)b(s)un(s) ds, 0 < tn < 1, (3.6)

Multiplying both sides of (3.12) by b(t)q(t)φ1,qb(t) and integrating from 0 to
1, we obtain∫ 1

0

b(t)q(t)φ1,qb(t)u(t) dt ≥ cµnλ
∫ 1

0

b(t)q(t)φ1,qb(t)

(∫ 1

0

G(t, s)q(s)b(s)un(s) ds

)
dt

= cµnλ

∫ 1

0

q(s)b(s)un(s)

(∫ 1

0

G(s, t)b(t)q(t)φ1,qb(t) dt

)
ds

= cµnλ
1

λ1,qb

∫ 1

0

q(s)b(s)un(s)φ1,qb(s) ds

> cµn

∫ 1

0

q(s)b(s)un(s)φ1,qb(s) ds,

which is a contradiction, because µn > 1. Hence, condition (a) of Theorem
2.2 is satisfied. The proof of condition (c) of Theorem 2.2 follows from Lemma
2.4. By Theorem 2.2, the BVP (1.1) has a positive solution in D, and this
proves the theorem. �

Theorem 3.3. Assume that there exists a continuous function b : [0, 1] →
(0,∞) and positive constants c, δ, and R with c > 1 and 0 < δ < R such that

(H3) f(t, u) ≤ b(t)u for u ≥ R uniformly for t ∈ (0, 1)

and

(H4) f(t, u) ≥ cb(t)u for u ∈ (0, δ) uniformly for t ∈ (0, 1).

Then the BVP (1.1) has a positive solution for every λ with

λ1,qb
c

< λ < λ1,qb.

Proof. We shall use Theorem 2.1 to prove the theorem. Let r ∈ (0, δ) and
u(t) be a solution of u = µTu with µ > 1. We claim that ‖u‖ 6= r. If this
is not true, there exists a solution u0(t) of u(t) = µTu(t), µ > 1, and u0(t)
satisfies the property ‖u0‖ = r. Then u0(t) is a solution of

u0(t) = µλ

∫ 1

0

G(t, s)q(s)f(s, u0(s)) ds. 0 < t < 1, µ > 1. (3.7)

Multiplying both sides of Eq.(3.13) by b(t)q(t)φ1,qb(t), integrating from 0 to

1, and using (H4) and the fact that λ >
λ1,qb

c , we obtain∫ 1

0

b(t)q(t)φ1,qb(t)u0(t) dt > µ

∫ 1

0

b(t)q(t)φ1,qb(t)u0(t) dt,
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which is a contradiction because µ > 1. So our claim holds. Thus, if we
consider the set

D = {u ∈ K : r ≤ ‖u‖ ≤ R},
then T : D → K is compact and continuous. Furthermore, for the above
choice of r, condition (b) of Theorem 2.1 is satisfied.

Next, we show condition (a) of Theorem 2.1 is satisfied. Let u(t) ∈ D
be a solution of u = µTu with µ < 1. We shall show that ‖u‖ 6= R. It suffices
to show that the problem u = µTu, µ < 1, has no solution of norm R̄ for any
R̄ ≥ R. Suppose there is such a solution u1(t) with ‖u1‖ = R0 ≥ R. Then
proceeding as before, using λ < λ1,qb, we can obtain the contradiction∫ 1

0

q(t)b(t)φ1,qb(t)u1(t)dt < µ

∫ 1

0

q(t)φ1,qb(t)b(t)u1(t)dt.

Hence, our claim is true and condition (a) of Theorem 2.1 holds. The proof
that condition (c) of Theorem 2.1 holds is similar to the proof of Lemma 2.4.
Therefore, by Theorem 2.1, the BVP (1.1) has at least one positive solution
u(t). This completes the proof of the theorem. �

Example 3.4. Consider the problem{
u′′′′(t) = λu3, t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(3.8)

Here f(t, u) = u3 and q(t) = 1. Setting b(t) = 1, it is easy to verify that
λ1,qb = 16π4 is the first eigenvalue of{

u′′′′(t) = λu, t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

Let c > 1 be a constant and choose δ ∈ (0, 1) such that cδ2 > 1. Then for
u ∈ (0, δ), we have f(t, u) = u3 < u. Hence, condition (H1) of Theorem 3.2 is
satisfied. Set R = cδ; then for u ≥ R, we have f(t, u) = u3 = u2u > c2δ2u =
c · cδ2u > cu. Thus, condition (H2) of Theorem 3.2 is satisfied. Hence, by

Theorem 3.2, (3.8) has a positive solution for every 16π4

c < λ < 16π4.

Example 3.5. Consider two constants δ ∈ (0, 1) and R > 1 and choose c = 1
δ2 .

Then by Theorem 3.3, the problem{
u′′′′(t) = λu−1, t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,

has a positive solution u(t) for each λ ∈ (16δ2π4, 16π4).

Finally, we consider the case, when λ = 1. Then the BVP (1.1) becomes{
u′′′′(t) = q(t)f(t, u(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(3.9)



10 S. Padhi

where f ∈ C ([0, 1]× R+,R+) and q ∈ C ([0, 1],R+).

Proceeding as in the lines of Theorems 3.2 and 3.3, we can obtain the
following results.

Theorem 3.6. Assume that there exist a continuous function b : [0, 1] →
(0,∞) and positive constants c, δ, and R with c ≥ 1 and 0 < δ < R such that

(H5) f(t, u) ≤ λ1,qbb(t)u for u ∈ (0, δ) uniformly for t ∈ (0, 1)

and

(H6) f(t, u) ≥ cλ1,qbb(t)u for u ≥ R uniformly for t ∈ (0, 1).

Then the BVP (3.9) has a positive solution.

Proof. To apply Theorem 2.2, let r ∈ (0, δ). We claim that the integral equa-
tion

u(t) = µTu, 0 < µ < 1, (3.10)

has no solution with norm r. If u0(t) was such a solution, then u0(t) is a
solution of

u0(t) = µ

∫ 1

0

G(t, s)q(s)f(s, u0(s)) ds. (3.11)

Multiplying bothsides of (3.11) by b(t)q(t)φ1,qb(t) and integrating from 0 to
1, we obtain∫ 1

0

b(t)q(t)φ1,qb(t)u(t) dt =µ

∫ 1

0

b(t)q(t)φ1,qb(t)

(∫ 1

0

G(t, s)q(s)f(s, u0(s)) ds

)
dt

≤µλ1,qb
∫ 1

0

b(t)q(t)φ1,qb(t)

(∫ 1

0

G(t, s)q(s)b(s)u0(s) ds

)
dt

=µλ1,qb

∫ 1

0

q(s)b(s)u0(s)

(∫ 1

0

G(s, t)b(t)q(t)φ1,qb(t) dt

)
ds

=µλ1,qb
1

λ1,qb

∫ 1

0

q(s)b(s)u0(s)φ1,qb(s) ds

<µ

∫ 1

0

q(s)b(s)u0(s)φ1,qb(s) ds,

which is a contradiction since µ < 1. Thus, our claim holds, that is, (3.10)
has no solution with norm r, and so condition (b) of Theorem 2.2 is satisfied.

On the set
D = {u ∈ K : r ≤ ‖u‖ ≤ R}

it is again clear that T : D → K is compact and continuous. To prove that
condition (a) of Theorem 2.2 is satisfied we need to show that for any R̄ ≥ R,
the problem u = µTu, µ > 1, has no solution of norm ‖R̄‖. If this was not
the case, then there is a sequence {Rn}∞n=1 → ∞ as n → ∞, with Rn ≥ R̄,
a sequence {µn}∞n=1 with µn > 1, and a sequence of functions {un}∞n=1 with
‖un‖ = Rn such that un = µnTun holds, that is,

un(t) = µn

∫ 1

0

G(t, s)q(s)f(s, un(s)) ds, 0 < tn < 1,
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for n = 1, 2, . . . , which further by using (H6), gives

un(t) ≥ cµnλ1,qb
∫ 1

0

G(t, s)q(s)b(s)un(s) ds, 0 < tn < 1, (3.12)

Multiplying both sides of (3.12) by b(t)q(t)φ1,qb(t) and integrating from 0 to
1, we obtain∫ 1

0

b(t)q(t)φ1,qb(t)u(t) dt ≥ cµn
∫ 1

0

b(t)q(t)φ1,qb(t)

(∫ 1

0

G(t, s)q(s)b(s)un(s) ds

)
dt

= cµn

∫ 1

0

q(s)b(s)un(s)

(∫ 1

0

G(s, t)b(t)q(t)φ1,qb(t) dt

)
ds

= cµn
1

λ1,qb

∫ 1

0

q(s)b(s)un(s)φ1,qb(s) ds

> cµn

∫ 1

0

q(s)b(s)un(s)φ1,qb(s) ds,

which is a contradiction, because µn > 1. Hence, condition (a) of Theorem
2.2 is satisfied. The proof of condition (c) of Theorem 2.2 follows from Lemma
2.4. By Theorem 2.2, the BVP (3.9) has a positive solution in D, and this
proves the theorem. �

Theorem 3.7. Assume that there exists a continuous function b : [0, 1] →
(0,∞) and positive constants c, δ, and R with c ≥ 1 and 0 < δ < R such that

(H7) f(t, u) ≤ λ1,qbb(t)u for u ≥ R uniformly for t ∈ (0, 1)

and

(H8) f(t, u) ≥ cλ1,qbb(t)u for u ∈ (0, δ) uniformly for t ∈ (0, 1).

Then the BVP (1.1) has a positive solution.

Proof. We shall use Theorem 2.1 to prove the theorem. Let r ∈ (0, δ) and
u(t) be a solution of u = µTu with µ > 1. We claim that ‖u‖ 6= r. If this
is not true, there exists a solution u0(t) of u(t) = µTu(t), µ > 1, and u0(t)
satisfies the property ‖u0‖ = r. Then u0(t) is a solution of

u0(t) = µ

∫ 1

0

G(t, s)q(s)f(s, u0(s)) ds. 0 < t < 1, µ > 1. (3.13)

Multiplying both sides of Eq.(3.13) by b(t)q(t)φ1,qb(t), integrating from 0 to
1, and using (H8), we obtain∫ 1

0

b(t)q(t)φ1,qb(t)u0(t) dt > µ

∫ 1

0

b(t)q(t)φ1,qb(t)u0(t) dt,

which is a contradiction because µ > 1. So our claim holds. Thus, if we
consider the set

D = {u ∈ K : r ≤ ‖u‖ ≤ R},
then T : D → K is compact and continuous. Furthermore, for the above
choice of r, condition (b) of Theorem 2.1 is satisfied.
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Next, we show condition (a) of Theorem 2.1 is satisfied. Let u(t) ∈ D
be a solution of u = µTu with µ < 1. We shall show that ‖u‖ 6= R. It suffices
to show that the problem u = µTu, µ < 1, has no solution of norm R̄ for any
R̄ ≥ R. Suppose there is such a solution u1(t) with ‖u1‖ = R0 ≥ R. Then
proceeding as before, we can obtain the contradiction∫ 1

0

q(t)b(t)φ1,qb(t)u1(t)dt < µ

∫ 1

0

q(t)φ1,qb(t)b(t)u1(t)dt.

Hence, our claim is true and condition (a) of Theorem 2.1 holds. The proof
that condition (c) of Theorem 2.1 holds is similar to the proof of Lemma 2.4.
Therefore, by Theorem 2.1, the BVP (1.1) has at least one positive solution
u(t). This completes the proof of the theorem.

�

Remark 3.8. The conditions (H5) and (H6) of Theorem 3.6, and (H7) and
(H8) of Theorem 3.7 are implied by conditions the following theorems.

Theorem 3.9. Assume that there exists a continuous function b : [0, 1] →
(0,∞) and a constant c > 1 such that

lim sup
u→0+

f(t, u)

u
≤ b(t)λ1,q and lim inf

u→∞

f(t, u)

u
> cb(t)λ1,q (3.14)

holds uniformly for t ∈ (0, 1) . Then the BVP (1.1) has a positive solution.

Theorem 3.10. Assume that there exists a continuous function b : [0, 1] →
(0,∞) and a constant c > 1 such that

lim sup
u→∞

f(t, u)

u
≤ b(t)λ1,q and lim inf

u→0+

f(t, u)

u
> cb(t)λ1,q (3.15)

holds uniformly for t ∈ (0, 1). Then the BVP (1.1) has a positive solution.

Remark 3.11. Since the existence of a positive solution of (1.1) is equivalent to
the existence of a positive solution of the integral equation (1.2), where G(t, s)
is the Green’s function defined in (2.4), then our Theorems 3.9–3.10 can also
be applied to (1.2). Webb and Lan [16] proved some existence theorems for
the general integral equation of the form (1.2) with general Green’s function
G(t, s) which is measurable and satisfies the properties (3.3), there exists a
subinterval [a, b] ⊆ [0, 1], a function Φ ∈ L∞[0, 1], and a constant µ ∈ (0, 1]
such that

qΦ ∈ L1[0, 1], q ≥ 0 a.e. and

∫ b

a

q(s)Φ(s) ds > 0,

G(t, s) ≤ Φ(s) for t ∈ [0, 1] and a.e.s ∈ [0, 1],

and
G(t, s) ≥ µΦ(s) for t ∈ [a, b] and a.e.s ∈ [0, 1]

and f satisfies Caratheodory conditions. In Section 2, we have proved the
above conditions on G(t, s) with µ = 1/24 and Φ(s) = g(s). When b(t) ≡ 1
and c = 1, then the conditions of Theorems 3.9-3.10 are equivalent to the
conditions of Theorem 4.1 due to Webb and Lan [16].
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