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Abstract
We study the existence of at least two positive solutions for a system of Riemann-
Liouville fractional differential equations with multipoint boundary conditions. We
use method of iterations to prove our results. We require the nondecreasing property
of a nonlinear function on a certain range to prove our results.
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1 Introduction

In this paper, we use monotone iteration method to obtain sufficient conditions for the
existence of at least one positive solution of the scalar equation

Dg u(t) + a(t) f(t, u(t)) =0, t € (0,1) (1.1)

with the multipoint fractional BCs

u(0) = v (0) = ... =u""2 =0, D u(t)|i=1 = a:D§ u(t)|i=e, (1.2)

=1
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where c e R,a€ (n—1,nl,neN,n>3§ eRforalli =1,2,...mmeN), 0<& <
§2<...<&m <1,pgeRpe(l,n—2],qe [0,p]. Further, D§,,Df  and D, denote
the Riemann-Liouville derivative of order «, p and ¢ respectively, and the nonlinearity on
f may change sign and may be singular at ¢t = 0 or ¢ = 1, N the set of natural numbers
and R denote the set of real numbers with Ry = [0, c0).

In a recent work, Henderson and Luca [4] used Guo-Krasnosel’skii fixed point
theorem to find sufficient conditions for the existence of positive solutions of (1.1). In [5]
and [6], Handerson and Luca used fixed point index approach to study the existence and
multiplicity of positive solutions to the coupled system of fractional differential equations

D u(t) +a(t) f(t,u(t), v(t)) = 0, t € (0,1), (1.3)
3 B .
D0+u(t) + b(t)g(ta ’U,(t), U(t)) - Oa t € (Oa 1)5
with the multipoint boundary conditions (BCs)
u@(0) =0, j=0,...,n—2, DR u(t)li=1 = Y1, aiDFyult)] =, (1.4)
v (0) =0, k=0,...m—2, DR2o(t)|i=1 = S0, b DE0(t) o= '

where o, € R, « € (n—L,n],f € (m—1,m],mn € N, m,n > 3, p1,p2,q1,q2 € R,
p1 € [1,71— 2],p2 S [l,m— 2],(]1 € [0,p1],(]2 S [0,p2], &,a; € Rfori=1,2,..., NN € N,
0<&f <& <. <én<1,mbeRfori =1,2,... MMMeN O0<m<n<..<
nv <1, D§, Dg Db, D3, D and D denote the Riemann-Liouville derivatives of
orders «, (3 p1, q1, p2 and ¢o respectively and f and g : [0,1] x R x R — R, are continuous
functions, and a,b: [0, 1] — [0, c0) are continuous functions.

The works in [6] extends the work in [5], where fixed point index method was used when
f and g are nonsingular or singular at the points ¢t = 0 and/or ¢t = 1. Xie and Xie [14] used
fixed-point index theory to obtain sufficient conditions for the existence and multiplicity of
positive solutions of the system of higher-order nonlinear fractional differential equations

D8‘+u(t) + Alfl(ta ’U,(t), U(t)) = Oa te (Oa 1)5 (1 5)
Dg'yut) + Aot u(t), v(t) = 0, t € (0,1), |
together with the BCs containing the fractional derivatives
Dy, v(1) = n2Dg v(62).

where Ay > 0, A2 > 0 are parameters D, Dg +»Df and D] are the standard Riemman-
Liouville fractional derivatives of orders «, 3, u and ~ respectively, with «, 8 € (n — 1, n],
n>31<pmy<n—2neNE,&e (0,1),0<me ™ <1, 0<me ™ <1, and
fi € C(J0,1] x Ry x Ry, Ry), i =1,2. The assumption on the functions f and g in (1.3)
are more general than the ones in [6] and [14], that is, the assumption of the function f
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in (1.1), and the functions f; and f; in (1.5). It is assumed in [6] that the function f
and g : [0,1] x Ry x Ry — Ry are continuous. Luca [7] used Guo-Krasnoselskii’s fixed
point theorem and extended the works of Henderson and Luca [5] to a system of three
fractional differential equations with nonlocal boundary conditions containing fractional
derivatives. Recently, Padhi et al [11, 12] used Leray Schauder alternate, Avery-peterson
fixed point theorem and Fixed point index approach tp study the existence of positive
solutions of (1.3) together with the boundary condition (1.4). The results of Padhi et al.
[11, 12] extends the works of [5, 6].

Padhi and Pati [8] used fixed point index approach, and Padhi et al. [10] used
Krasnosel’skii fixed point theorem and a fixed point theorem due to Avery and Peterson
to study the existence and multiplicity of positive solutions of equations of the form (1.1)
with Riemann-Stieltjes type integral boundary conditions without the parameter .

By a positive solution of the problem (1.1)—(1.2), we mean a function u € (C([0,1] : Ry)
satisfying (1.1)—(1.2) with u(t) > 0 for all ¢ € (0, 1].

The motivation for the present work has come from a recent work due to the Padhi
and Prasad [9]. In this work, we shall use monotone iteration theorem to obtain suffi-
cient conditions for the existence of positive solutions of (1.1). One can observe from the
assumption (3.4) (See Theorem 3.2) that, we do not require any super-linearity or sub-
linearity on f either at 0 or co. The only assumption we require on f is that f must be
monotonically nondecreasing with respect to u in some subinterval, say [0, R] of [0, o).
The function f may decrease or non-decrease or indentically zero on the other half of the
interval [0, R]. This shows that our assumption (3.4) is not comparable with the results
in [4, 11, 12].

This work has been divided into three sections. Section 2 contains the basic results
and the well-known monotone iterative method (see [1, 2, 3] or Theorem 7.A in [4]). Section
3 contains the main result of this paper. The study is supplemented with examples to
illustrate the applicability of our results.

2 Preliminaries
Let us consider the fractional differential equation
Dy u(t) +x(t) =0,t € (0,1) (2.1)

with the multipoint BCs

N
u(0)=0,5=0,1,--+,n—2, Dy u(®)|i=1 =Y _ a;D{, u(t)]i=c., (2.2)

=1

where o € (n —1,n],neNn>3 0a;,§ eRi=1,2,--- N(INeN),0 <& <& < - <
§N S lapaqeRape [1,77,—2], qc [Oap]a a’ndxec[oa 1]
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If we set N
M) T &
AT Ta-g2 s #0

then a unique solution of (2.1)—(2.2) is given by the integral equation

/Gts s)ds, t € ]0,1],

where
afl N
G(t S) - gl t S Z a;g2 515 ) € [Oa 1] X [Oa 1]5 (23)
and
1 [t il =—s) Pl (t—s)*l, 0<s<t <1,
it s) = — CH( )ai B (t—s)
I(a) |71 —s)@7PL, 0<t<s<1,

1 toma N 1 =) Pl —(t )il 0<s <t <,

IMNa—gq) |t Y1 — s)27P L, 0<t<s<l1

The functions g1 (¢, s) and g2(t, s) have the following properties.

(A1) g1(t,s) < hy(s) for all ¢, s € [0, 1], where

hi(s) = 5= (1 =) (1= (1= 9)), s €[0,1];

(A2) g1(t,s) > t*thy(s) for all t,s € [0,1];

(A3) gi(t,s) < £ [0, 1];

(A4) go(t,s) > t* 97 Lhy(s) for all ¢, s € [0, 1], where

Z

ha(s) = e (1= (= (1= ~), s € 1)

(45) ga(t, s) < L for all t,s € [0, 1];

(A6) the functions g; and g2 are continuous on [0, 1] x [0, 1], g1(¢,s) > 0, g2(t,s) > 0 for
all t,s € [0,1] and g1(¢, s) > 0, g2(t,s) > 0 for all ¢, s € (0,1].

Q
=
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Let A > 0 and a; > 0 for all 4 = 1,2,---, N. An application of the properties
(A1) — (A6) on g1(t,s) and ga(t, s), we obtain the following inequalities on the Green’s
function G(t, s).

(A7) G(t,s) < J(s) for all t, s € [0, 1], where
L N
J(S) = h1(5> + Z Zang(gia S)a s € [Oa 1]a
i=1

(A8) G(t,s) >t*"LJ(s) for all t,s € [0, 1].

Setting ¢(t) = t*~1, the inequalities in (A7) — (A8) can be interpreted into the
following Harnack type inequality

d()J(s) < G(t,s) < J(s), t,s € [0,1],i=1,2. (2.4)

Since the functions g;(t,s), i = 1,2,3,4 are continuous on t,s € [0,1], g;(¢t,s) > 0 for
(t,s) € [0,1] x [0,1] with g;(t,s) > 0 for (¢,s) € (0,1] x (0, 1], we have (2.4) is valid for
arbitrary [a,b] C [0, 1], for which the inequality

uI(s) < Glt,5) < J(s), s € [0,1] (2.5)
is a replacement for the inequality (2.4), where

= mi t) =1
p=min p(t) =c
with
¢ = min{a, 1 — b}. (2.6)

It is well known that [a, b] = [1/4, 3/4] is the optimal subinterval of [0, 1] to work in a cone
to obtain multiplicity results. In particular, for [a,b] = [1/4,3/4], we have p = 52—.

Now, we provide some basic concepts of the cones in a Banach space and monotone
iteration method.

Definition 2.1 Let X be a real Banach space. A monempty convex closed set K C X is
said to be a cone provided that

(i) kx € K for allx € K and for all k >0, and
(ii) x,—x € K implies x = 0.

We note that an operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets. We shall use the following well-known monotone
iterative method (see [1, 2, 3] or Theorem 7.A in [4]).
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Theorem 2.2 Let X be a real Banach space and K be a cone in X. Assume that there
exist constants vy and wo with vo < wg and [vy, wo] C X such that

(1) T : [vo, wo] — X is completely continuous;

(ii) T is a monotonic increasing operator on [vo, wo;

(iii) wvo is a lower solution of T, that is, vo < Tvp;

(iv) wyg is an upper solution of T, that is, Twy < wy.

Then T has a fized point and the iterative sequence vy11 = T, and wpy1 = Twy, n =
1,2,3,... with
VSV S .. .SV S Swy Swpo1 S Swp Swg

converges to v and w respectively, which are the greatest and lowest fixed points of T in
[UOa '(UO] °

3 Main Result

In this section, we consider X is a Banach space with the max norm ||u|| = maxo<i<1 |u(t)|.
Consider an operator T': X — X by

T(u)(t)—/o G(t,s)a(s)f(s,u(s))ds. (3.1)

Define a cone P on X by

1
r= X i t) > '
{u © te[{r/ligﬂl]u( )= fo—1 |u|}

Then w is a solution of (1.1)—(1.2) if and only if u is a fixed point of T in X.

Theorem 3.1 Let u(t) be a solution of (1.1)-(1.2). Then u(t) is nondecreasing.

Proof. Clearly u(t) is a solution of the problem (1.1)-(1.2) if and only if u(t) is a
solution of the integral equation

u(t) = /0 G1(t, s)a(s)f(s,u(s))ds, te][0,1]. (3.2)
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Differentiating both sides of (3.2) with respect to ¢, we obtain

(a—1)t22

w(t) = Cqd— [ 1= s ute))as

(04—1) ! a—2
- (o) /(t—s) f(s,u(s))ds

o — a—2 m
g 2 [ et st as

(3.3)

13
- / (& — 5)* 1 f (s, u(s)) ds]
Let
I =t*72(1 —5)* P71t — (t — 5)*72,

and
L =& 1—s) P — (& —s)* 70

Let I <0for 0 < s<t<1. Then for s <t <1 and p > 1, we the inequality
a—2 a—p—1 a—2 5\ 2 a—2 a—2
21— e Pl < ¢ (1_;) <1021 - g)a 2,

which gives 1 < (1 — s)P < 1, a contradiction. Now let Io < 0 for 0 < s < ¢;. Clearly
a—q—1>0. Since (1——) <1 s, then

a—q—1
L CED R (S N
implies that

(1—s)m 7t < (1- 2)“71 <(1—s)*a L,

Thus we obtain 1 < (1 — s)P~7 < 1, which is a contradiction. So I; > 0 and Iy > 0 yields
that «(t) is nondecreasing in [0, 1]. The lemma is proved.
Now we shall prove the main result of this paper.

Theorem 3.2 If there exists a positive constant R such that

ng(t,u)gf(t,v)g#for()gugvgl{and()gtgl, (3.4)
[ J(s)a(s)ds
0
and
f(t,0)#£0 forall0<t<1 (3.5)

are satisfied, then the problem (1.1)-(1.2) has at least two nondecreasing positive solutions.
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Proof. Let uw € P. Then

1

HﬂMS/ﬁ@M@ﬂ&M@MS

0

and

1
HgngMﬂZu/J@M@ﬂ&MQMsZMWw
0

implies that 7' : P — P. Also, T is well-defined. Set vy = 0 and wy = R; then vy < wyp.
Now we shall show that T : [vg, wg] — P is completely continuous.

Define an open bounded set U on the Banach space X as
U = {u(t) : ult) € X, |[ull < R,t € [0,1]}.

The for u € U, we have

1

1
Tu J(s)a(s)f(s,u(s))ds < J(s)a(s)f(s,R)ds < R,
| IS/O (s)a(s)f(s,u(s)) </0 (s)a(s)f(s,R)ds <
which implies that ||Tu|| < R. Hence T(U) C U.

Since G, f, and a are continuous functions, T is continuous. Now, we shall show
that T is a completely continuous operator. For this, let us assume

M _ . M _
F7 = max {|f(tu(t)| - u € U}, and o™ = max a(t).
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Let ¢t and 7 € [0, 1] be such that ¢ < 7. Then for any v € U, we have

IT(u)(t) - T(os)(7)]
/ IG(t,5) — G(r, )|a(s)| f(s. u(s))|ds

SfMaM/O |G(t,s) — G(r,s)|ds

_fMaM[/ |gl(t,s)—gl(7',s)|ds+/T lg1(t, s) — g1(7, s)|ds
[ a— l_tafl] N

/ |91 t S) gl(’?’ S)|dS =+ ﬁ Z aigf‘*Q*l

i=1
1 t
= MM [—F(a) /0 [t 1 — 5)* P — (t —s) L — 7o 1 —5) P (1 — 5)* Y ds
1 T
+ —/ [t 1 — s)* P~ — 7o (1 — 5) 7P (1 — 5)* Y ds

+ / |to¢ 1 _ a p—1 _ 7_0471(1 _ S)a7p71|ds
N
(T -t 1) a—q—1
e ) a
Alr(a —q) ; “iss

MaM_af_al _ a 715 L ! _Safl_ _Safls
<f l |/ 97 s s [ (=9 (=9

ta 1 — ra— 1| 1 T
a pfld _ afld
@ / s+ (o) /t (t—9) s

|to¢ 1 a 1_to¢71)

a—1 N
*ff'/f et ) S |
. MCLM |ta71_7_a71| — s a—p—1 s L !
=/ l o) /0(1 o+ |
L T _ s\ 1gs (Tail —tail) al a a—q—1
i ) e s e ]

=1

= fMaM [(Ta;(_a)tal) @ ip) + F(la) /Ot [(7’ —s) = (t— s)afl}ds

(1 —5)*"t —(t—s)*"Yds

tafl N

1 T a—1 T a—qg—1
+@/t(7_5> d”mr(a—q)z e ]
— MCLM (Tail_ta71> 1 TT_Safl S—L ! A e
-/ l el i@, (T e g o

(7_0471 _ tafl) N a—q-1
T AT 26 ]

=1

a—1 _ tafl a +e a—1 _ tafl N o
_fMaMl(T )+ T (T >Zai§;‘lql

(@—pT@ @ af(a) al(a)  Al(a—gq) 2

= fMaM(rot — o h ! + = XN: £t
(a—p)T(a) Al(a—q) P R

LM, M(T —1%)
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for 0 <t < 7 < 1. Since the functions t*, t*~!, are uniformly continuous on the interval
[0, 1], we have TU is an equicontinuous set. Further, TU C U implies that T is uniformly
bounded. Thus T is completely continuous.

Let u, v € [vg, wo] be such that v < wv. Then vy < u < v < wy. By (Al), we have

Tu(t) = /G(t, s)a(s)f(s,u(s))ds < /G(t, s)a(s)f(s,v(s))ds = Tu(t),
0 0

thus, 7' is monotonically increasing in [vg, wo].

We now prove that vy = 0 is a lower solution of T', that is, vy < Twg. Indeed, for vy € P,
we have Tvg € P and so

Finally, we show that wy = R is an upper solution of 7', that is, Twy < wg. Clearly,

Two(t) < /J(s)a(s)f(s, wo(s))ds < R = wy(t)
0

holds, so wg = R is an upper solution of 7.

Thus, if we construct sequences {v,}22; and {w,}32; as
Uy = TVn—1, Wy =Twp_1,n=1,2,3,...

then
v SV Sv2 <. S Uy S Wy SWpo1 <L S wp < Wo,

and {v,}22; and {w,}22, converges, respectively, to v and w, which are the smallest and
greatest fixed points of T in [vg, wo]. By (3.5), we know that the zero function cannot be
a solution of the problem (1.1)—(1.2). Thus, maxo<i<1v(t) > 0 and maxg<¢<1 w(t) > 0.
Since v < w, then Theorem 2.2 and Theorem 3.1 guarantee that v and w are the two
positive nondecreasing solutions of the problem (1.1)—(1.2). This completes the proof of
the theorem.
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Remark 3.3 If f(t,0) =0 in (3.5), then the conclusion of Theorem 3.2 yields that (1.1)-
(1.2) has at least one nondecreasing nonnegative solution and one nondecreasing positive
solution.

As an application of Theorem 3.2 and Remark 3.3, we consider the case where the
nonlinear function f in (1.1) is a model of hematopoiesis (red blood production model),

that is, we consider
l

u

with the multipoint BCs (1.2). The following theorem provide a sufficient condition for
the existence of three positive solutions to (3.6).

Dy u(t) +

Theorem 3.4 Letm > 1> 0 and

(m—D( ! >%/OIQ(S)J(S)CZ5§1, (3.7)

m m—1

then the BVP (3.6) together with the multipoint BCs (2.2) has at least one zero or non-
negative solution and one positive solution.

1/m 1/m
Proof. Set f(t,u) = 4. Clearly, f'(u) =0atu=(35) . Set R= (7).

Then f/'(u) > 0 for 0 < ulegR, f'(u) <0 for 0 < ugegR, and f'(u)00 for 0 < u = R. Thus

f(t,u) is nondecreasing in (0, R] and attains its maximum at v = R and the maximum
=1

m m—I —

N
value is given by % (ﬁ) " Hence the condition (3.4) is satisfied if

W, which is equivalent to (3.7). Since f(¢,0) = 0, then the first solution v (t)
Jo

may be a zero solution or nonnegative solution, where as the second solution wq(t) is a
positive solution. The theorem is proved.
The following example gives the existence of at least two positive solutions.

Example 3.5 Consider the problem

t1 -2 22
I'(5/2) 3

1
DY 2a(t) + =

2 g(t)] (D 4+ ev" M)y =0, t e (0,1), (3.8)

with the multipoint BCs

1 /
—X
V2
Herem=3,a=5/2,p=1,q=1,M =1, =1/2 a; = 1/V/2,

t1—1t)2 22
I'(5/2) 3

2(0) = 2/(0) = 0, 2/(1) = (1/2). (3.9)

a(t) =

—1
g(t)] , 0<t <,
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(1) = 1 %(1—01/2—(1/2—01/2, t<1/2
= T(5/2) 11—, 1/2<t <1,

flta,y) = 5" t e [0,1]

Clearly, f(t,0) # 0 and fol J(t)a(t)dt = 1. Hence by Theorem 3.2 and Remark 3.3, (3.8)-

(3.9) has at least two positive nondecreasing solutions.

Acknowledgement: The authors are thankful to the referee for his/her comments to
improve the paper into the present form.
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