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Abstract

We study the existence of at least two positive solutions for a system of Riemann-
Liouville fractional differential equations with multipoint boundary conditions. We
use method of iterations to prove our results. We require the nondecreasing property
of a nonlinear function on a certain range to prove our results.
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1 Introduction

In this paper, we use monotone iteration method to obtain sufficient conditions for the
existence of at least one positive solution of the scalar equation

Dα
0+u(t) + a(t)f(t, u(t)) = 0, t ∈ (0, 1) (1.1)

with the multipoint fractional BCs

u(0) = u′(0) = ... = u(n−2) = 0, Dp
0+u(t)|t=1 =

m∑

i=1

aiD
q
0+u(t)|t=ξi , (1.2)
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where α ∈ R, α ∈ (n − 1, n], n ∈ N, n ≥ 3, ξi ∈ R for all i = 1, 2, ..., m(m ∈ N), 0 < ξ1 <
ξ2 < .... < ξm < 1, p, q,∈ R, p ∈ [1, n − 2], q ∈ [0, p]. Further, Dα

0+, Dp
0+ and Dq

0+ denote
the Riemann-Liouville derivative of order α, p and q respectively, and the nonlinearity on
f may change sign and may be singular at t = 0 or t = 1, N the set of natural numbers
and R denote the set of real numbers with R+ = [0,∞).

In a recent work, Henderson and Luca [4] used Guo-Krasnosel’skii fixed point
theorem to find sufficient conditions for the existence of positive solutions of (1.1). In [5]
and [6], Handerson and Luca used fixed point index approach to study the existence and
multiplicity of positive solutions to the coupled system of fractional differential equations

{
Dα

0+u(t) + a(t)f(t, u(t), v(t)) = 0, t ∈ (0, 1),
Dβ

0+u(t) + b(t)g(t, u(t), v(t)) = 0, t ∈ (0, 1),
(1.3)

with the multipoint boundary conditions (BCs)
{

u(j)(0) = 0, j = 0, ..., n− 2, Dp1
0+u(t)|t=1 =

∑N
i=1 aiD

q1
0+u(t)|t=ξi ,

v(k)(0) = 0, k = 0, ..., m− 2, Dp2
0+v(t)|t=1 =

∑M
i=1 biD

q2
0+v(t)|t=ηi ,

(1.4)

where α, β ∈ R, α ∈ (n − 1, n], β ∈ (m − 1, m], m, n ∈ N, m, n ≥ 3, p1, p2, q1, q2 ∈ R,
p1 ∈ [1, n− 2], p2 ∈ [1, m − 2], q1 ∈ [0, p1], q2 ∈ [0, p2], ξi, ai ∈ R for i = 1, 2, ..., N, N ∈ N,
0 < ξ1 < ξ2 < ... < ξN ≤ 1, ηi, bi ∈ R for i = 1, 2, ..., M, M ∈ N, 0 < η1 < η2 < ... <
ηM ≤ 1, Dα

0+, Dβ
0+, Dp1

0+, Dq1
0+, Dp2

0+ and Dq2
0+ denote the Riemann-Liouville derivatives of

orders α, β p1, q1, p2 and q2 respectively and f and g : [0, 1]×R×R → R+ are continuous
functions, and a, b : [0, 1] → [0,∞) are continuous functions.

The works in [6] extends the work in [5], where fixed point index method was used when
f and g are nonsingular or singular at the points t = 0 and/or t = 1. Xie and Xie [14] used
fixed-point index theory to obtain sufficient conditions for the existence and multiplicity of
positive solutions of the system of higher-order nonlinear fractional differential equations

{
Dα

0+u(t) + λ1f1(t, u(t), v(t)) = 0, t ∈ (0, 1),
Dβ

0+u(t) + λ2f2(t, u(t), v(t)) = 0, t ∈ (0, 1),
(1.5)

together with the BCs containing the fractional derivatives
{

Dµ
0+u(1) = η1D

µ
0+u(ξ1),

Dγ
0+v(1) = η2D

γ
0+v(ξ2).

(1.6)

where λ1 > 0, λ2 > 0 are parameters Dα
0+, Dβ

0+, Dµ
0+ and Dγ

0+ are the standard Riemman-
Liouville fractional derivatives of orders α, β, µ and γ respectively, with α, β ∈ (n − 1, n],
n ≥ 3, 1 ≤ µ, γ ≤ n − 2, n ∈ N, ξ1, ξ2 ∈ (0, 1), 0 < η1ξ

α−µ−1
1 < 1, 0 < η2ξ

β−γ−1
2 < 1, and

fi ∈ C([0, 1]× R+ × R+, R+), i = 1, 2. The assumption on the functions f and g in (1.3)
are more general than the ones in [6] and [14], that is, the assumption of the function f
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in (1.1), and the functions f1 and f2 in (1.5). It is assumed in [6] that the function f
and g : [0, 1] × R+ × R+ → R+ are continuous. Luca [7] used Guo-Krasnoselskii’s fixed
point theorem and extended the works of Henderson and Luca [5] to a system of three
fractional differential equations with nonlocal boundary conditions containing fractional
derivatives. Recently, Padhi et al [11, 12] used Leray Schauder alternate, Avery-peterson
fixed point theorem and Fixed point index approach tp study the existence of positive
solutions of (1.3) together with the boundary condition (1.4). The results of Padhi et al.
[11, 12] extends the works of [5, 6].

Padhi and Pati [8] used fixed point index approach, and Padhi et al. [10] used
Krasnosel’skii fixed point theorem and a fixed point theorem due to Avery and Peterson
to study the existence and multiplicity of positive solutions of equations of the form (1.1)
with Riemann-Stieltjes type integral boundary conditions without the parameter λ.

By a positive solution of the problem (1.1)–(1.2), we mean a function u ∈ (C([0, 1] : R+)
satisfying (1.1)–(1.2) with u(t) > 0 for all t ∈ (0, 1].

The motivation for the present work has come from a recent work due to the Padhi
and Prasad [9]. In this work, we shall use monotone iteration theorem to obtain suffi-
cient conditions for the existence of positive solutions of (1.1). One can observe from the
assumption (3.4) (See Theorem 3.2) that, we do not require any super-linearity or sub-
linearity on f either at 0 or ∞. The only assumption we require on f is that f must be
monotonically nondecreasing with respect to u in some subinterval, say [0, R] of [0,∞).
The function f may decrease or non-decrease or indentically zero on the other half of the
interval [0, R]. This shows that our assumption (3.4) is not comparable with the results
in [4, 11, 12].

This work has been divided into three sections. Section 2 contains the basic results
and the well-known monotone iterative method (see [1, 2, 3] or Theorem 7.A in [4]). Section
3 contains the main result of this paper. The study is supplemented with examples to
illustrate the applicability of our results.

2 Preliminaries

Let us consider the fractional differential equation

Dα
0+u(t) + x(t) = 0, t ∈ (0, 1) (2.1)

with the multipoint BCs

u(j)(0) = 0, j = 0, 1, · · · , n− 2, Dp
0+u(t)|t=1 =

N∑

i=1

aiD
q
0+u(t)|t=ξi , (2.2)

where α ∈ (n − 1, n], n ∈ N, n ≥ 3, ai, ξi ∈ R, i = 1, 2, · · · , N (N ∈ N), 0 < ξ1 < ξ2 < · · · <
ξN ≤ 1, p, q ∈ R, p ∈ [1, n− 2], q ∈ [0, p], and x ∈ C[0, 1].
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If we set

∆ :=
Γ(α)

Γ(α − p)
− Γ(α)

Γ(α − q)

N∑

i=1

aiξ
α−q−1
i 6= 0,

then a unique solution of (2.1)–(2.2) is given by the integral equation

u(t) =
∫ 1

0

G(t, s)x(s) ds, t ∈ [0, 1],

where

G(t, s) = g1(t, s) +
tα−1

∆1

N∑

i=1

aig2(ξi, s), (t, s) ∈ [0, 1]× [0, 1], (2.3)

and

g1(t, s) =
1

Γ(α)

{
tα−1(1 − s)α−p−1 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−p−1, 0 ≤ t ≤ s ≤ 1,

g2(t, s) =
1

Γ(α − q)

{
tα−q−1(1 − s)α−p−1 − (t − s)α−q−1, 0 ≤ s ≤ t ≤ 1,

tα−q−1(1 − s)α−p−1, 0 ≤ t ≤ s ≤ 1.

The functions g1(t, s) and g2(t, s) have the following properties.

(A1) g1(t, s) ≤ h1(s) for all t, s ∈ [0, 1], where

h1(s) =
1

Γ(α)
(1 − s)α−p−1(1 − (1 − s)p), s ∈ [0, 1];

(A2) g1(t, s) ≥ tα−1h1(s) for all t, s ∈ [0, 1];

(A3) g1(t, s) ≤ tα−1

Γ(α) for all t, s ∈ [0, 1];

(A4) g2(t, s) ≥ tα−q−1h2(s) for all t, s ∈ [0, 1], where

h2(s) =
1

Γ(α − q)
(1 − s)α−p−1(1 − (1 − s)p−q), s ∈ [0, 1];

(A5) g2(t, s) ≤ tα−q−1

Γ(α−q)
for all t, s ∈ [0, 1];

(A6) the functions g1 and g2 are continuous on [0, 1]× [0, 1], g1(t, s) ≥ 0, g2(t, s) ≥ 0 for
all t, s ∈ [0, 1] and g1(t, s) > 0, g2(t, s) > 0 for all t, s ∈ (0, 1].
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Let ∆ > 0 and ai ≥ 0 for all i = 1, 2, · · · , N . An application of the properties
(A1) − (A6) on g1(t, s) and g2(t, s), we obtain the following inequalities on the Green’s
function G(t, s).

(A7) G(t, s) ≤ J(s) for all t, s ∈ [0, 1], where

J(s) = h1(s) +
1
∆

N∑

i=1

aig2(ξi, s), s ∈ [0, 1];

(A8) G(t, s) ≥ tα−1J(s) for all t, s ∈ [0, 1].

Setting φ(t) = tα−1, the inequalities in (A7) − (A8) can be interpreted into the
following Harnack type inequality

φ(t)J(s) ≤ G(t, s) ≤ J(s), t, s ∈ [0, 1], i = 1, 2. (2.4)

Since the functions gi(t, s), i = 1, 2, 3, 4 are continuous on t, s ∈ [0, 1], gi(t, s) ≥ 0 for
(t, s) ∈ [0, 1]× [0, 1] with gi(t, s) > 0 for (t, s) ∈ (0, 1] × (0, 1], we have (2.4) is valid for
arbitrary [a, b] ⊂ [0, 1], for which the inequality

µJ(s) ≤ G(t, s) ≤ J(s), s ∈ [0, 1] (2.5)

is a replacement for the inequality (2.4), where

µ = min
t∈[a,b]

φ(t) = cα−1

with
c = min{a, 1− b}. (2.6)

It is well known that [a, b] = [1/4, 3/4] is the optimal subinterval of [0, 1] to work in a cone
to obtain multiplicity results. In particular, for [a, b] = [1/4, 3/4], we have µ = 1

4α−1 .
Now, we provide some basic concepts of the cones in a Banach space and monotone

iteration method.

Definition 2.1 Let X be a real Banach space. A nonempty convex closed set K ⊂ X is
said to be a cone provided that

(i) kx ∈ K for all x ∈ K and for all k ≥ 0, and

(ii) x,−x ∈ K implies x = 0.

We note that an operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets. We shall use the following well-known monotone
iterative method (see [1, 2, 3] or Theorem 7.A in [4]).
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Theorem 2.2 Let X be a real Banach space and K be a cone in X. Assume that there
exist constants v0 and w0 with v0 ≤ w0 and [v0, w0] ⊂ X such that

(i) T : [v0, w0] → X is completely continuous;

(ii) T is a monotonic increasing operator on [v0, w0];

(iii) v0 is a lower solution of T , that is, v0 ≤ Tv0;

(iv) w0 is an upper solution of T , that is, Tw0 ≤ w0.

Then T has a fixed point and the iterative sequence vn+1 = Tvn and wn+1 = Twn, n =
1, 2, 3, . . . with

v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn ≤ . . . ≤ wn ≤ wn−1 ≤ . . . ≤ w1 ≤ w0

converges to v and w respectively, which are the greatest and lowest fixed points of T in
[v0, w0].

3 Main Result

In this section, we consider X is a Banach space with the max norm ‖u‖ = max0≤t≤1 |u(t)|.
Consider an operator T : X → X by

T (u)(t) =
∫ 1

0

G(t, s)a(s)f(s, u(s))ds. (3.1)

Define a cone P on X by

P =
{

u ∈ X : min
t∈[1/4,3/4]

u(t) ≥ 1
4α−1

‖u‖
}

.

Then u is a solution of (1.1)–(1.2) if and only if u is a fixed point of T in X.

Theorem 3.1 Let u(t) be a solution of (1.1)–(1.2). Then u(t) is nondecreasing.

Proof. Clearly u(t) is a solution of the problem (1.1)–(1.2) if and only if u(t) is a
solution of the integral equation

u(t) =
∫ 1

0

G1(t, s)a(s)f(s, u(s))ds, t ∈ [0, 1]. (3.2)
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Differentiating both sides of (3.2) with respect to t, we obtain

u′(t) =
(α − 1)tα−2

Γ(α)

∫ 1

0

(1 − s)α−p−1f(s, u(s))ds

− (α − 1)
Γ(α)

∫ t

0

(t − s)α−2f(s, u(s))ds

+
(α − 1)tα−2

∆Γ(α − q)

m∑

i=1

ai

[∫ 1

0

ξα−q−1
i (1 − s)α−p−1f(s, u(s)) ds

−
∫ ξi

0

(ξi − s)α−q−1f(s, u(s)) ds
]
.

(3.3)

Let
I1 = tα−2(1 − s)α−p−1 − (t − s)α−2,

and
I2 = ξα−q−1

i (1 − s)α−p−1 − (ξi − s)α−q−1.

Let I1 ≤ 0 for 0 ≤ s ≤ t ≤ 1. Then for s ≤ t ≤ 1 and p ≥ 1, we the inequality

tα−2(1 − s)α−p−1 ≤ tα−2
(
1 − s

t

)α−2

≤ tα−2(1 − s)α−2,

which gives 1 ≤ (1 − s)p < 1, a contradiction. Now let I2 ≤ 0 for 0 ≤ s ≤ ξi. Clearly
α − q − 1 > 0. Since

(
1 − s

ξi

)
< 1 − s, then

ξα−q−1
i (1 − s)α−p−1 ≤ (ξi − s)α−q−1 = ξα−q−1

i

(
1 −

s

ξi

)α−q−1

implies that

(1 − s)α−p−1 <
(
1 − s

ξi

)α−q−1

≤ (1 − s)α−q−1.

Thus we obtain 1 ≤ (1 − s)p−q < 1, which is a contradiction. So I1 ≥ 0 and I2 ≥ 0 yields
that u(t) is nondecreasing in [0, 1]. The lemma is proved.

Now we shall prove the main result of this paper.

Theorem 3.2 If there exists a positive constant R such that

0 ≤ f(t, u) ≤ f(t, v) ≤ R
1∫
0

J(s)a(s) ds

for 0 ≤ u ≤ v ≤ R and 0 ≤ t ≤ 1, (3.4)

and
f(t, 0) 6= 0 for all 0 ≤ t ≤ 1 (3.5)

are satisfied, then the problem (1.1)–(1.2) has at least two nondecreasing positive solutions.
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Proof. Let u ∈ P . Then

‖Tu‖ ≤
1∫

0

J(s)a(s)f(s, u(s)) ds

and

min
t∈[1/4,3/4]

Tu(t) ≥ µ

1∫

0

J(s)a(s)f(s, u(s)) ds ≥ µ‖Tu‖

implies that T : P → P . Also, T is well-defined. Set v0 = 0 and w0 = R; then v0 ≤ w0.
Now we shall show that T : [v0, w0] → P is completely continuous.

Define an open bounded set U on the Banach space X as

U = {u(t) : u(t) ∈ X, ‖u‖ ≤ R, t ∈ [0, 1]}.

The for u ∈ U , we have

‖Tu‖ ≤
∫ 1

0

J(s)a(s)f(s, u(s)) ds ≤
∫ 1

0

J(s)a(s)f(s, R) ds ≤ R,

which implies that ‖Tu‖ ≤ R. Hence T (U ) ⊆ U .

Since G, f , and a are continuous functions, T is continuous. Now, we shall show
that T is a completely continuous operator. For this, let us assume

fM = max
0≤t≤1

{|f(t, u(t))| : u ∈ U}, and aM = max
0≤t≤1

a(t).
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Let t and τ ∈ [0, 1] be such that t < τ . Then for any u ∈ U , we have

|T (u)(t) − T (u)(τ )|

≤
∫ 1

0

|G(t, s) − G(τ, s)|a(s)|f(s, u(s))|ds

≤ fM aM

∫ 1

0

|G(t, s) − G(τ, s)|ds

= fM aM

[ ∫ t

0

|g1(t, s) − g1(τ, s)|ds +
∫ τ

t

|g1(t, s) − g1(τ, s)|ds

+
∫ 1

τ

|g1(t, s) − g1(τ, s)|ds +
[τα−1 − tα−1]
∆Γ(α − q)

N∑

i=1

aiξ
α−q−1
i

]

= fM aM

[
1

Γ(α)

∫ t

0

|tα−1(1 − s)α−p−1 − (t − s)α−1 − τα−1(1 − s)α−p−1 + (τ − s)α−1|ds

+
1

Γ(α)

∫ τ

t

|tα−1(1 − s)α−p−1 − τα−1(1 − s)α−p−1 + (τ − s)α−1|ds

+
1

Γ(α)

∫ 1

τ

|tα−1(1 − s)α−p−1 − τα−1(1 − s)α−p−1|ds

+
(τα−1 − tα−1)
∆1Γ(α − q)

N∑

i=1

aiξ
α−q−1
i

]

≤ fM aM

[
1

Γ(α)
|tα−1 − τα−1|

∫ t

0

(1 − s)α−p−1ds +
1

Γ(α)

∫ t

0

|(τ − s)α−1 − (t − s)α−1|ds

+
|tα−1 − τα−1|

Γ(α)

∫ τ

t

(1 − s)α−p−1ds +
1

Γ(α)

∫ τ

t

(τ − s)α−1ds

+
|tα−1 − τα−1|

Γ(α)

∫ 1

τ

(1 − s)α−p−1ds +
(τα−1 − tα−1)
∆1Γ(α − q)

N∑

i=1

aiξ
α−q−1
i

]

= fM aM

[
|tα−1 − τα−1|

Γ(α)

∫ 1

0

(1 − s)α−p−1ds +
1

Γ(α)

∫ t

0

∣∣∣(τ − s)α−1 − (t − s)α−1
∣∣∣ds

+
1

Γ(α)

∫ τ

t

(τ − s)α−1ds +
(τα−1 − tα−1)
∆1Γ(α − q)

N∑

i=1

aiξ
α−q−1
i

]

= fM aM

[
(τα−1 − tα−1)

Γ(α)
1

(α − p)
+

1
Γ(α)

∫ t

0

[
(τ − s)α−1 − (t − s)α−1

]
ds

+
1

Γ(α)

∫ τ

t

(τ − s)α−1ds +
τα−1 − tα−1

∆1Γ(α − q)

N∑

i=1

aiξ
α−q−1
i

]

= fM aM

[
(τα−1 − tα−1)
(α − p)Γ(α)

+
1

Γ(α)

∫ τ

0

(τ − s)α−1ds − 1
Γ(α)

∫ t

0

(t − s)α−1ds

+
(τα−1 − tα−1)
∆1Γ(α − q)

N∑

i=1

aiξ
α−q−1
i

]

= fM aM

[
(τα−1 − tα−1)
(α − p)Γ(α)

+
τα

αΓ(α)
− tα

αΓ(α)
+

(τα−1 − tα−1)
∆1Γ(α − q)

N∑

i=1

aiξ
α−q−1
i

]

= fM aM(τα−1 − tα−1)

[
1

(α − p)Γ(α)
+

1
∆1Γ(α − q)

N∑

i=1

aiξ
α−q−1
i

]

+ fM aM (τα − tα)
Γ( + 1)
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for 0 ≤ t < τ ≤ 1. Since the functions tα, tα−1, are uniformly continuous on the interval
[0, 1], we have TU is an equicontinuous set. Further, TU ⊆ U implies that T is uniformly
bounded. Thus T is completely continuous.

Let u, v ∈ [v0, w0] be such that u ≤ v. Then v0 ≤ u ≤ v ≤ w0. By (A1), we have

Tu(t) =

1∫

0

G(t, s)a(s)f(s, u(s)) ds ≤
1∫

0

G(t, s)a(s)f(s, v(s)) ds = Tv(t),

thus, T is monotonically increasing in [v0, w0].

We now prove that v0 = 0 is a lower solution of T , that is, v0 ≤ Tv0. Indeed, for v0 ∈ P,
we have Tv0 ∈ P and so

Tv0(t) ≥ tα−1

1∫

0

J(s)a(s)f(s, v0(s)) ds

≥ tα−1

1∫

0

J(s)a(s)f(s, 0) ds

≥ 0 = v0(t).

Finally, we show that w0 = R is an upper solution of T , that is, Tw0 ≤ w0. Clearly,

Tw0(t) ≤
1∫

0

J(s)a(s)f(s, w0(s)) ds ≤ R = w0(t)

holds, so w0 = R is an upper solution of T .

Thus, if we construct sequences {vn}∞n=1 and {wn}∞n=1 as

vn = Tvn−1, wn = Twn−1, n = 1, 2, 3, . . .

then
v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn ≤ wn ≤ wn−1 ≤ . . . ≤ w1 ≤ w0,

and {vn}∞n=1 and {wn}∞n=1 converges, respectively, to v and w, which are the smallest and
greatest fixed points of T in [v0, w0]. By (3.5), we know that the zero function cannot be
a solution of the problem (1.1)–(1.2). Thus, max0≤t≤1 v(t) ≥ 0 and max0≤t≤1 w(t) > 0.
Since v ≤ w, then Theorem 2.2 and Theorem 3.1 guarantee that v and w are the two
positive nondecreasing solutions of the problem (1.1)–(1.2). This completes the proof of
the theorem.
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Remark 3.3 If f(t, 0) = 0 in (3.5), then the conclusion of Theorem 3.2 yields that (1.1)–
(1.2) has at least one nondecreasing nonnegative solution and one nondecreasing positive
solution.

As an application of Theorem 3.2 and Remark 3.3, we consider the case where the
nonlinear function f in (1.1) is a model of hematopoiesis (red blood production model),
that is, we consider

Dα
0+u(t) +

ul

1 + um
= 0, t ∈ (0, 1) (3.6)

with the multipoint BCs (1.2). The following theorem provide a sufficient condition for
the existence of three positive solutions to (3.6).

Theorem 3.4 Let m > l > 0 and

(m − l)
m

(
l

m − l

) l−1
m

∫ 1

0

a(s)J(s) ds ≤ 1, (3.7)

then the BVP (3.6) together with the multipoint BCs (2.2) has at least one zero or non-
negative solution and one positive solution.

Proof. Set f(t, u) = ul

1+um . Clearly, f ′(u) = 0 at u =
(

l
m−l

)1/m

. Set R =
(

l
m−l

)1/m

.
Then f ′(u) ≥ 0 for 0 ≤ uleqR, f ′(u) ≤ 0 for 0 ≤ ugeqR, and f ′(u)00 for 0 ≤ u = R. Thus
f(t, u) is nondecreasing in (0, R] and attains its maximum at u = R and the maximum

value is given by (m−l)
m

(
l

m−l

) l
m

. Hence the condition (3.4) is satisfied if (m−l)
m

(
l

m−l

) l−1
m ≤

1∫ 1
0 a(s)J(s)ds

, which is equivalent to (3.7). Since f(t, 0) = 0, then the first solution v0(t)

may be a zero solution or nonnegative solution, where as the second solution w0(t) is a
positive solution. The theorem is proved.

The following example gives the existence of at least two positive solutions.

Example 3.5 Consider the problem

D
5/2
0+ x(t) +

1
8

[
t(1 − t)1/2

Γ(5/2)
+

2
√

2
3

g(t)

]−1

(ex(t) + ey2(t)) = 0, t ∈ (0, 1), (3.8)

with the multipoint BCs

x(0) = x′(0) = 0, x′(1) =
1√
2
x′(1/2). (3.9)

Here m = 3, α = 5/2, p = 1, q = 1, M = 1, ξ1 = 1/2 a1 = 1/
√

2,

a(t) =

[
t(1 − t)1/2

Γ(5/2)
+

2
√

2
3

g(t)

]−1

, 0 < t < 1,
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g(t) =
1

Γ(5/2)

{
1√
2
(1 − t)1/2 − (1/2 − t)1/2, t ≤ 1/2

1√
2
(1 − t)1/2, 1/2 ≤ t ≤ 1,

f(t, x, y) =
1
8
ex(t) t ∈ [0, 1].

Clearly, f(t, 0) 6= 0 and
∫ 1

0
J(t)a(t) dt = 1. Hence by Theorem 3.2 and Remark 3.3, (3.8)–

(3.9) has at least two positive nondecreasing solutions.

Acknowledgement: The authors are thankful to the referee for his/her comments to
improve the paper into the present form.
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