
Advances
in Nonlinear Variational Inequalities

Volume 23 (2020), Number 2, 15 - 22

Monotone Iterative Method for Solutions
of a Cantilever Beam Equation

with One Free End

Seshadev Padhi
Department of Mathematics
Birla Institute of Technology
Mesra, Ranchi - 835215, India

spadhi@bitmesra.ac.in

B. S. R. V. Prasad
Department of Mathematics

Vellore Institute of Technology
Vellore, Tamilnadu - 632014, India

srvprasad.bh@vit.ac.in

Communicated by the Editors
(Received April 9, 2020; Revised Version Accepted April 24, 2020)

www.internationalpubls.com

Abstract

In this paper, we apply the monotone iterative method for the existence of two
positive solutions of fourth-order two-point boundary value problem

u′′′′(t) = f(t, u(t)), 0 < t < 1,

u(0) =u′(0) = u′′(1) = u′′′(1) = 0,

which models a cantilever beam equation, where one end is kept free. Here f ∈
C ([0, 1]× R+,R+). The sufficient condition is interesting, new and easy to verify.
Our condition do not require any super-linearity or sub-linearity conditions on the
function f at 0 or ∞. Our result uses the monotonically increasing property of f
in a certain interval to prove the existence of a positive solution(s). This approach
completely differs from the existing results in the literature. An example is presented
at the end to illustrate the usefulness of our result. Although our theorem predicts
the existence of two positive solutions, our example and the iterative scheme con-
structed in the example shows that the two iterative sequences of solutions converge
to a single solution.
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1 Introduction

In this work, we are interested in demonstrating the use of monotone iteration method
for studying the existence of two positive solutions of the nonlinear fourth order two point
boundary value problem (BVP)

x′′′′(t) = f(t, x(t)), t ∈ [0, 1],

x(0) =x′(0) = x′′(1) = x′′′(1) = 0,
(1.1)

which is a cantilever beam equation describing the models of deflection of an elastic beam
fixed at left end and freed at the other end. Here, f ∈ C ([0, 1]× R+,R+).

Boundary value problems of type (1.1) with various nonlinearities on f , have been
studies by many authors [4, 7, 8, 10, 11, 12, 13, 14, 15, 16]. The methods used in
[4, 7, 8, 10, 11, 12, 13, 14, 15, 16] are contracting mapping principle, iterative method,
fixed point index theory in cones, Krasnosel’skii fixed point theorem, lower and upper
solution method and degree theory.

Equation (1.1) is a particular case of a (n, p) boundary value problem, studied by Agar-
wal and Regan [1, 2]. If we choose n = 4 and p = 2, then the problem considered in [1, 2],
reduces to the problem (1.1). The results in [1, 2] are completely based on Krasnosel’skii
fixed point theorem in a cone.

Our results in this paper are completely different from the approach by the authors
in [4, 7, 8, 10, 11, 12, 13, 14, 15, 16]. We shall apply the monotone iterative method to
obtain sufficient conditions on the existence of one positive solution of (1.1), and an itera-
tive scheme for approximating the solutions. The monotone iteration method we shall use
in this paper, is imported from [5, 6, 9, 17]. Our work is motivated by a recent work of
Zhang [18], who used iteration method for existence of monotone positive solutions of an
elastic beam equation with a different boundary conditions.

The following theorem states the main result of this paper.

Theorem 1.1. If there exists constants r and R with 0 < r < R such that

(A1): 6r ≤ f(t, u) ≤ f(t, v) ≤ 6R for
1

36
r ≤ u ≤ v ≤ R and

1

2
≤ t ≤ 1, (1.2)

then the problem (1.1) has two positive solutions.

Remark 1.2. Although Theorem 1.1 claims, under the assumption (A1), that the problem
(1.1) has two positive solutions, they may be equal also, as we shall see in our Example
3.1.

Remark 1.3. One can observe from the assumption (A1) that, we do not require any
super-linearity or sub-linearity on f either at 0 or ∞. The only assumption we require on
f is that f must be monotonically nondecreasing in the subinterval [1/2, 1]. The function f
may decrease or non-decrease or indentically zero on the other half of the interval [1/2, 1].
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This shows that our assumption (A1) is not comparable with the results in [1, 2, 3, 4, 7,
8, 10, 11, 12, 13, 14, 15, 16]. Our monotone iterative method is different from the ones
used in a recent paper due to Dang and Qay [8], and the conditions on f are also different.

2 Preliminaries

In this section, we provide some basic concepts monotone iteration method. We shall use
the following well-known monotone iterative method (see [5, 6, 9] or Theorem 7.A in [17]).

Theorem 2.1. Let X be a real Banach space and K be a cone in X. Assume that there
exist constants v0 and w0 with v0 ≤ w0 and [v0, w0] ⊂ X such that

(i) T : [v0, w0]→ X is completely continuous;

(ii) T is a monotonic increasing operator on [v0, w0];

(iii) v0 is a lower solution of T , that is, v0 ≤ Tv0;

(iv) w0 is an upper solution of T , that is, Tw0 ≤ w0.

Then T has a fixed point and the iterative sequence vn+1 = Tvn and wn+1 = Twn, n =
1, 2, 3, . . . with

v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn ≤ . . . ≤ wn ≤ wn−1 ≤ . . . ≤ w1 ≤ w0

converges to v and w respectively, which are the greatest and lowest fixed points of T in
[v0, w0].

In this paper, we set X = C[0, 1] to be the Banach space with standard norm

‖x‖ = max
0≤t≤1

|x(t)|.

Define a cone K on X by

K = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]},

and an operator T : K → K by

Tx(t) =

1∫
0

G(t, s)f(s, x(s)) ds, (2.1)

where G(t, s) is the Green’s kernel, given by

G(t, s) =
1

6

{
s2(3t− s), 0 ≤ s ≤ t ≤ 1,

t2(3s− t), 0 ≤ t ≤ s ≤ 1.
(2.2)
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Let g(s) = s2

2 and c(t) = 2
3 t

2. From a straight forward calculation, also proved in [12],
one can show that G(t, s) satisfies the inequality

c(t)g(s) ≤ G(t, s) ≤ g(s) for 0 ≤ t, s ≤ 1. (2.3)

Since it is useful to work on a smaller cone than K, we consider a cone K1 of the type

K1 = {x ∈ K : x(t) ≥ 0 and min
t∈[0,1]

x(t) ≥ ca,b‖x‖},

where ca,b = min
t∈[a,b]

c(t) and [a, b] is an arbitrary subinterval of [0, 1] with ca,b > 0. For

[a, b] ⊂ [0, 1], if ca,b > 0, the condition (2.3) ensures that T maps K into K1. Since (2.3)
is valid for any t ∈ [0, 1], we can work on the subinterval [1/2, 1] ⊂ [0, 1], for which the
inequality

1

6
· s

2

2
≤ G(t, s) ≤ s2

2
(2.4)

replaces (2.3), where min
t∈[1/2,1]

= min
t∈[1/2,1]

2
3 t

2 = 1
6 := µ. In this case, the operation T , defined

in (2.1), maps the cone K into the subcone P , where

P = {x ∈ C[0, 1] : min
t∈[1/2,1]

x(t) ≥ 1

6
‖x‖}. (2.5)

Clearly, x(t) is a positive solution of the problem (1.1) if and only if x(t) is a fixed
point of the operator T on the subcone P .

3 Proof of Theorem 1.1

In order to prove our theorem, we shall consider the cone P , defined in (2.5). Let x ∈ P .
Then

‖Tx‖ ≤ 1

2

1∫
0

s2f(s, x(s)) ds

and

min
t∈[1/2,1]

Tx(t) ≥
(

min
t∈[1/2,1]

2

3
t2
) 1∫

0

1

2
s2f(s, x(s)) ds =

1

6
· 1

2

1∫
0

s2f(s, x(s)) ds ≥ 1

6
‖Tx‖

implies that T : P → P . Also, T is well-defined. Set v0 = 1
36r and w0 = R; then

v0 ≤ w0. By the continuity of f(t, x(t)) and G(t, s) for t, s ∈ [0, 1], it is easy to show that
T : [v0, w0]→ P is completely continuous.

Let u, v ∈ [v0, w0] be such that u ≤ v. Then v0 ≤ u ≤ v ≤ w0. By (A1), we have

Tu(t) =

1∫
0

G(t, s)f(s, u(s)) ds ≤
1∫

0

G(t, s)f(s, v(s)) ds = Tv(t),
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thus, T is monotonically increasing in [v0, w0].

We now prove that v0 = 1
36r is a lower solution of T , that is, v0 ≤ Tv0. Indeed, for

v0 ∈ P, we have Tv0 ∈ P and so

Tv0(t) ≥ 1

6
‖Tv0(t)‖ ≥ 1

6
· min
t∈[1/2,1]

Tv0(t)

≥ 1

36
·
∫
s2

2
f(s, v0(s)) ds

≥ 1

36
· 6r ·

1∫
0

s2

2
ds =

1

36
r = v0(t).

Finally, we show that w0 = R is an upper solution of T , that is, Tw0 ≤ w0. Clearly,

Tw0(t) ≤
1∫

0

s2

2
f(s, w0(s)) ds ≤ R = w0(t)

holds, so w0 = R is an upper solution of T .

Thus, if we construct sequences {vn}∞n=1 and {wn}∞n=1 as

vn = Tvn−1, wn = Twn−1, n = 1, 2, 3, . . .

then
v0 ≤ v1 ≤ v2 ≤ . . . ≤ vn ≤ wn ≤ wn−1 ≤ . . . ≤ w1 ≤ w0,

and {vn}∞n=1 and {wn}∞n=1 converges, respectively, to v and w, which are the greatest and
smallest fixed points of T in [v0, w0]. Since v ≤ w, then Theorem 2.1 guarantees that v
and w are the two positive solutions of the problem (1.1). This completes the proof of the
theorem.

In the following, we provide a simple example to illustrate our Theorem 1.1.

Example 3.1. Consider the boundary value problem

x′′′′(t) = f(t, x(t)), 0 < t < 1, x(0) = x′(0) = x′′(1) = x′′′(1) = 0 (3.1)

where

f(t, x) =
1

2

(
35 + exp

(
− 1

x+ 2

))
(3.2)

For u ≤ v, we have exp
(
− 1

u+2

)
≤ exp

(
− 1

v+2

)
, which implies that f(t, u) ≤ f(t, v)

for u ≤ v. Set r = 8
3 and R = 10

3 ; then for 1
2 ≤ t ≤ 1 with µ = 1

6 , we have

f(t, u) ≥ 35

2
= 17.5 > 16 = 6r for u ≥ 2

27
=

1

36
r,
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Figure 1: Plots of the sequences {vi(t)} and {wi(t)}.

Table 1: Table demonstrating the converging nature of sequences {vi(t)} and {wi(t)}
vi(t)\t 0 0.2 0.4 0.6 0.8 1

v0(t) 0.074074074 0.074074074 0.074074074 0.074074074 0.074074074 0.074074074
v1(t) 0 0.15552957 0.541385374 1.057838528 1.633654112 2.226091178
v2(t) 0 0.155579145 0.54225545 1.060915579 1.640165231 2.236830437
v3(t) 0 0.155579175 0.542256831 1.060922621 1.640182382 2.236860034
v4(t) 0 0.155579175 0.542256833 1.060922637 1.640182427 2.236860115
v5(t) 0 0.155579175 0.542256833 1.060922637 1.640182427 2.236860115

wi(t)\t 0 0.2 0.4 0.6 0.8 1

w0(t) 3.333333333 3.333333333 3.333333333 3.333333333 3.333333333 3.333333333
w1(t) 0 0.156453427 0.544601243 1.064122165 1.643358136 2.23931432
w2(t) 0 0.155579691 0.542260551 1.060929946 1.640190773 2.23686686
w3(t) 0 0.155579175 0.542256839 1.060922654 1.640182449 2.236860134
w4(t) 0 0.155579175 0.542256833 1.060922637 1.640182427 2.236860115
w5(t) 0 0.155579175 0.542256833 1.060922637 1.640182427 2.236860115
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and

f(t, v) ≤ 1

2

(
35 + exp

(
− 1

v + 2

))
≤ 18 < 20 = 6R for v ≤ R =

10

3
,

which implies that the condition (A1) of Theorem 1.1 is satisfied. Thus by Theorem 1.1,
the problem (3.1), with f given in (3.2) has at least two positive solutions.

Starting with v0(t) = r
36 = 0.074074074 and w0(t) = R = 3.333333333 and constructing

the sequences vi(t) = Tvi−1(t) and wi(t) = Twi−1(t) for i = 1, 2, 3, 4, 5, we found that the
sequence {vi} and {wi} converges (cf. Table 1) to the solution (cf. Fig 1).
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