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1. INTRODUCTION

In this article, we investigate the existence of multiple positive radial solutions

of the elliptic equation
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∆u+ λg(|x|)f(u) = 0, R1 < |x| < R2, (1.1)

where x ∈ RN , N ≥ 2, along with the following linear boundary conditions at

R1 and R2:

u = 0 on |x| = R1 and |x| = R2,

u = 0 on |x| = R1 and
∂u

∂r
= 0 on |x| = R2,

∂u

∂r
= 0on |x| = R1 and u = 0 on |x| = R2,























(1.2)

where x ∈ RN , N ≥ 2, r = |x| and ∂
∂r denotes the differentiation in the radial

direction, and 0 < R1 < R2 <∞.

Equation (1.1) appears in several applications in mechanics and physics,

and in particular, it can be an equation of equilibrium states in thin films.

Equations of the form

ut = −∇.(f(u)∇u)−∇.(g(u)∇u) (1.3)

have been used in modelling the dynamics of thin films of viscous fluids, where

z = u(x, t) is the height of the air/liquid interface. The coefficient f(u) reflects

surface tension effects; a typical choice is f(u) = u3. For a detailed background

on the equation (1.3), we refer to [3, 4, 5, 13, 15, 16, 17] and the references

cited there in.

Boundary value problems of the form (1.1) with λ = 1 and

u = 0 and |x| = R1 and |x| = R2 (1.4)

has been studied by many authors. Wang [34] used cone compression and cone

expansion method to find the existence of at least one positive radial solution

of (1.1) and (1.4). Arcoya [1] used Mountain Pass method to find the existence

of positive radial solutions of (1.1) and (1.4).

A particular case of (1.1) is the semilinear elliptic equation

∆u+ λf(u) = 0. (1.5)

Lin [19] used supersolution and subsolution method to find the existence of

at least one positive solution of (1.5) and (1.4). Hai and Smith [12] studied

the existence and uniqueness of the positive solutions for the boundary value

problem (1.5) and

u = 0 on ∂Ω, (1.6)
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where Ω is a bounded domain in Rn with smooth boundary ∂Ω, f : (0,∞) →

(0,∞) is possibly singular at 0 and λ is a positive parameter. Dancer and

Schmitt [6] used supersolution and subsolution method to find the existence

of positive solutions of (1.5) and (1.6). Wang [35] used Mountain Pass theorem

to find the existence of positive solutions of (1.1) and (1.6) with λ = 1. Garzier

[11] proved that if f satisfies

(A1) f ∈ [0,∞), f(u) > 0 for u 6= 0 and f(0) = 0;

(A2) d1u
k ≤ f(u) ≤ d2u

k for large u, where d1, d2 > 0, k > −1; and

(A3) f0 = 0 and k > 1 or f0 = ∞ and k < 1, where

f0 = lim
u→0+

f(u)

u
and f∞ = lim

u→∞

f(u)

u
,

then there exists a radial solution to (1.1) and (1.4) with λ = 1.

Bandle, Coffman and Marcus [2] proved that, let f ∈ C1[0,∞) satisfying

(A1) and

(A4) f is nondecreasing on (0,∞).

If f is superlinear at 0 and ∞, or f0 = 0 and f∞ = ∞, then there exists a

positive, radial symmetric solution to (1.1) and (1.4) with λ = 1.

Moussaoui and Precup [25] used Leray-Schauder alternative method to find

the existence result for semilinear equation

−∆u = f(x, u) (1.7)

and (1.6), where Ω ⊂ RN , (N ≥ 2) is a nonempty bounded open set with

smooth boundary ∂Ω and f : Ω × R → R is a continuous function. Lu and

Bai [21] used supersolution and subsolution method to find the existence of

positive solutions of

−∆u = f(|x|, u), in B,

u > 0 for x ∈ B,

and u = 0 on x ∈ ∂B,

where B is the unit open ball centered at the origin in Rn, that is, B = {x ∈

Rn; |x| < 1} and the function f is allowed to change the sign.
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From the works due to Wang [34] and Bandle et al. [2], it has been observed

that the obtained sufficient conditions on the existence of at least one positive

radial solutions of (1.1) subject to either one of the boundary conditions given

in (1.2) is satisfied. Our aim of this paper is to obtain sufficient conditions

for the existence of multiple positive solutions of (1.1) subjected to all the

boundary conditions given in (1.2) are satisfied. Erbe and Wang [8] used cone

expansion and cone compression method to find the existence of at least two

positive radial solutions of (1.1) when all the boundary conditions in (1.2) are

satisfied. It has been observed that very few papers exist in the literature on

the existence of at least two positive solutions of (1.1) and (1.2). Maya and

Robinson [22] used supersolution and subsolution method to obtain sufficient

conditions for the existence of at least three positive solutions of the equation

−∆u = φg(u)u−α on Ω

with the boundary condition (1.6), where Ω ∈ Rn is a bounded domain, φ is a

nonnegative function in L∞(Ω) such that φ > 0 on some subset of Ω of positive

measure, g : [0,∞) → ∞ is continuous and α > 0. In another attempt, Maya

and Shivaji [23] studied the existence of two positive classical solutions of (1.1)

and (1.6), when λ > 0 is a parameter, Ω is a bounded region in Rn with smooth

boundary ∂Ω. They obtained their result with the additional condition that

f(0) = 0, f ′(0) < 0, there exists a β > 0 such that f(u) < 0 for u ∈ (0, β),

f(u) > 0 for u > β, f is eventually increasing and lim
u→∞

f(u)
u = 0. Marcos do

Ó et al. [24] used a fixed point theorem of Guo and Lakshmikantham [7] to

find the existence of at least three positive radial solution of (1.1) along with

the boundary condition

u > 0 in Ω and u = a in ∂Ω,

where Ω is the ball of radious R0 centered at the origin, λ, a are posi-

tive parameters, f ∈ C([0,∞), [0,∞)) is an increasing function and k ∈

C([0, R0], [0,∞)) is not identically zero in any interval of [0, R0]. The use

of Leggett-Williams multiple fixed point theorem for the existence of multi-

plicity of positive solutions of (1.1) is scarce in the literature. In this paper, by

using Leggett-Williams multiple fixed point theorem, we provide some suffi-

cient conditions on the existence of three solutions to (1.1) with the boundary

conditions given in (1.2), at least two of which are positive radial solutions.
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The method used in this paper are motivated from the works by the author

in [27, 28, 29, 30, 31, 32, 33]. A detailed use of Leggett-Williams multiple

fixed point theorem has been used in the monograph due to Padhi, Graef and

Srinivasu in [26].

2. PRELIMINARIES

Because of the radial symmetry, the existence of positive radial solutions of

(1.1) is equivalent to the existence of positive solutions of the second order

equation

u′′(r) +
N − 1

r
u′(r) + λg(r)f(u(r)) = 0, R1 ≤ r ≤ R2. (2.1)

By the change of variables v(s) = u(r(s)), the transformation

s = −

∫ R2

r

1

tN−1
dt

transforms (2.1) into

v′′(s) + λr2(N−1)(s)g(r(s))f(v(s)) = 0, m < s < 0, (2.2)

where m = −
∫ R2

R1

1
tN−1 dt. Again the transformation t = m−s

m and y(t) = v(s)

transforms (2.2) into the equation

y′′(t) + λh(t)f(y(t)) = 0, 0 < t < 1, (2.3)

where

h(t) = m2r2(N−1)(m(1 − t))g(r(m(1 − t))), (2.4)

and the set of boundary conditions in (1.2) reduces to

αy(0) − βy′(0) = 0

γy(1) + δy′(1) = 0

}

(2.5)

where with suitable choices of α, β, γ and δ are nonnegative reals with

ρ = γβ + αγ + αδ > 0. (2.6)
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The boundary value problem (2.3)-(2.5) has been studied by many authors.

One may refer to Erbe and Wang [9], which has been extended to (1.1)-(1.2)

in [8] using the same method.

Let g(|x|) > 0 for all R1 ≤ |x| ≤ R2 and t ≥ 0. It is clear that h(t) ≥ 0 for

t ≥ 0. Let f(u) > 0 for u > 0 and both f and h are continuous in its respective

domain. Then it follows from the series of transformations used above, that

the existence of a positive radial solution of the boundary value problem (1.1)-

(1.2) is equivalent to the existence of a positive solution of the boundary value

problem (2.3)-(2.5), subject to the condition that (2.6) is satisfied.

The boundary value problem (2.3) and (2.5) is equivalent to the integral

equation

y(t) = λ

∫ 1

0
G(t, s)h(s)f(y(s)) ds,

where G(t, s) is the Green’s function for the problem −y′′ = 0 subject to the

boundary condition (2.5), which is given by

G(t, s) =
1

ρ

{

(γ + δ − γt)(β + αs), 0 ≤ s ≤ t ≤ 1

(β + αt)(γ + δ − γs), 0 ≤ t ≤ s ≤ 1,
(2.7)

and ρ is given in (2.6).

The following lemmas give some estimates on the Green’s kernel G(t, s).

Lemma 2.1. G(t, s) ≤ G(s, s), s, t ∈ [0, 1].

Lemma 2.2. G(t, s) > σ1G(s, s) for t ∈ [1/4, 3/4] and s ∈ [0, 1], where

σ1 = min

{

γ + 4δ

4(γ + δ)
,
α+ 4β

4(α+ β)

}

.

Proof. Let 0 ≤ s ≤ t ≤ 1. Then

G(t, s)

G(s, s)
=
γ + δ − γt

γ + δ − γs
>
γ + δ − 3γ

4

γ + δ
=

γ + 4δ

4(γ + δ)
.

Again, if 0 ≤ t ≤ s ≤ 1, then

G(t, s)

G(s, s)
=
β + αt

β + αs
>
β + α

4

β + α
=

α+ 4β

4(α+ β)
.

Now, the proof of the lemma follows from the above two inequalities.
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Let X = C[0, 1] be a space of continuous functions under the sup. norm

‖y‖ = sup
t∈[0,1]

|y(t)|,

and define a cone K on X by

K =

{

y ∈ X; min
J
y(t) ≥ σ1‖y‖

}

,

where J = [1/4, 3/4]. Further, we define an operator A on X by

(Ay)(t) = λ

∫ 1

0
G(t, s)h(s)f(y(s)) ds.

Let y ∈ K. Then y ∈ X and

min
J
Ay(t) =min

t∈J
λ

∫ 1

0
G(t, s)h(s)f(y(s)) ds

≥ λσ1

∫ 1

0
G(s, s)h(s)f(y(s)) ds

≥ λσ1 max
t∈[0,1]

∫ 1

0
G(s, s)h(s)f(y(s)) ds

=σ1‖Ay‖,

that is, Ay ∈ K. Hence A : K → K and it is easy to check that this mapping

is completely continuous.

The following concept from Leggett-Williams multiple fixed point theorem

[18] is needed for our use. Let X be a Banach space and K be a cone in X. For

a > 0, define Ka = {x ∈ K; ‖x‖ < a}. A mapping ψ is said to be a concave

nonnegative continuous functional on K if ψ : K → [0,∞) is continuous and

ψ(µx+ (1− µ)y) ≥ µψ(x) + (1− µ)ψ(y), x, y ∈ K,µ ∈ [0, 1].

Let b, c > 0 be constants with K and X as defined above. Define

K(ψ, b, c) = {x ∈ K;ψ(x) ≥ b, ‖x‖ ≤ c}.

Theorem 2.3. ( Theorem 3.5, [18]): Let c3 > 0 be a constant. Assume that

A : Kc3 → K is completely continuous, there exists a concave nonnegative

functional ψ with ψ(x) ≤ ‖x‖, x ∈ K and numbers c1 and c2 with 0 < c1 <

c2 < c3 satisfying the following conditions:
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(i) {x ∈ K(ψ, c2, c3);ψ(x) > c2} 6= φ and ψ(Ax) > c2 if x ∈ K(ψ, c2, c3);

(ii) ‖Ax‖ < c1 if x ∈ Kc1 ;

and

(iii) ψ(Ax) > c2
c3
‖Ax‖ for each x ∈ Kc3 with ‖Ax‖ > c3.

Then A has at least two fixed points x1, x2 in Kc3. Furthermore, ‖x1‖ ≤ c1 <

‖x2‖ < c3.

Theorem 2.4. (Theorem 3.3, [18]) Let X = (X, ‖.‖) be a Banach space

and K ⊂ X a cone, and c4 > 0 a constant. Suppose there exists a concave

nonnegative continuous function ψ on K with ψ(x) ≤ ‖x‖ for x ∈ Kc4 and let

A : Kc4 → Kc4 be a continuous compact map. Assume that there are numbers

c1, c2 and c3 with 0 < c1 < c2 < c3 ≤ c4 such that

(i) {x ∈ K(ψ, c2, c3);ψ(x) > c2} 6= φ and ψ(Ax) > c2 for all x ∈ K(ψ, c2, c3);

(ii) ‖Ax‖ < c1 for all x ∈ Kc1 ;

(iii)ψ(Ax) > c2 for all x ∈ K(ψ, c2, c4) with ‖Ax‖ > c3.

Then A has at least three fixed points x1, x2 and x3 in Kc4 . Furthermore, we

have x1 ∈ Kc1 , x2 ∈ {x ∈ K(ψ, c2, c4);ψ(x) > c2}, x3 ∈ Kc4\{K(ψ, c2, c4) ∪

Kc1}.

It is well known that the Leggett-Williams multiple fixed point Theorems

2.3 and 2.4 has been used by many authors for the existence of multiple so-

lutions of boundary value problems. Once the problem is transformed to an

equivalent integral operator, then it is easy to study the existence of fixed point

of the operator by using different fixed point theorems which is equivalent to

the existence of periodic solution of the problem. The use of the Theorems

2.3 and 2.4 can be found in [27, 28, 29, 30, 31, 32, 33].

3. MAIN RESULTS

In this section, we shall prove the main results of this paper by using the

Theorems 2.3 and 2.4. Denote

f0 = lim
y→0+

f(y)

y
and f∞ = lim

y→∞

f(y)

y
.

Theorem 3.1. Let f0 = 0 and f∞ = 0. Let g(r) 6≡ 0 in some neighborhood

of 1/2. Then there exists a λ1 > 0 such that the boundary value problem (2.3)
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and (2.5) has three solutions for λ > λ1, at least two of which are positive.

Proof. For y ∈ K, we have

(Ay)(1/2) =λ

∫ 1

0
G(1/2, s)h(s)f(y(s)) ds

≥λ

∫ 3/4

1/4
G(1/2, s)h(s)f(y(s)) ds. (3.1)

Define, for any p > 0,

m(p) = min

{

∫ 3/4

1/4
G(1/2, s)h(s)f(y(s)) ds, y ∈ K, ‖y‖ < p

}

. (3.2)

Clearly, m(p) > 0. Let 0 < p1 < c2 < p2 be arbitrary constants, and define

λ1 = max

{

p1
m(p1)

,
c2

m(c2)
,

p2
m(p2)

}

, (3.3)

where

m(c2) = min

{

σ1

∫ 1

0
G(s, s)h(s)f(y(s)) ds; c2 ≤ y(s) ≤

c2
σ1
, s ∈ [0, 1]

}

.

Then, for λ ≥ λ1, we have

(Ay)(1/2) ≥ λ

∫ 3/4

1/4
G(1/2, s)h(s)f(y(s)) ds ≥ λ1m(p). (3.4)

Hence, in particular, for p = p1, we have

(Ay)(1/2) ≥ λ1m(p1) = λ1
m(p1)

p1
.p1 ≥ p1, (3.5)

and for p = p2, we have

(Ay)(1/2) ≥ λ1m(p2) = λ1
m(p2)

p2
.p2 ≥ p2. (3.6)

Thus, from (3.1)-(3.6), it follows that ‖Ay‖ ≥ ‖y‖ for ‖y‖ ≤ p1 and ‖y‖ ≤ p2.

Since f0 = 0 for any λ ≥ λ1, then we can choose constants q1 > 0 and

η > 0 such that 2q1 < p1 and such that f(y) ≤ ηy for 0 < y ≤ q1, where η

satisfies the property

ηλ

∫ 1

0
G(s, s)h(s) ds < 1. (3.7)
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Set q1 = c1. Then

c1 = q1 < 2q1 < p1 < c2 < p2.

Now, for x ∈ Kc1 , we have

‖(Ay)(t)‖ =λ

∫ 1

0
G(t, s)h(s)f(y(s)) ds

≤λ

∫ 1

0
G(s, s)h(s)f(y(s)) ds

≤λη

∫ 1

0
G(s, s)h(s)y(s) ds

≤λη

∫ 1

0
G(s, s)h(s)‖y‖ ds

≤c1λη

∫ 1

0
G(s, s)h(s) ds

<c1.

Let c3 = c2
σ1

and since σ1 < 1, we have c1 < c2 < c3. Define a nonnegative

continuous concave functional ψ on K by

ψ(y) = min
t∈[0,1]

y(t).

Then ψ(y) ≤ ‖y‖. Clearly,

{y : y ∈ K(ψ, c2, c3); ψ(y) > c2} 6= φ

Further, for y ∈ K(ψ, c2, c3), we have

ψ(Ay) =λ min
t∈[0,1]

∫ 1

0
G(t, s)h(s)f(y(s)) ds

>λσ1

∫ 1

0
G(s, s)h(s)f(y(s)) ds

>λ1m(c2)

≥
c2

m(c2)
m(c2)

=c2.

Since f∞ = 0, we may choose q2 > 2p2 such that f(y) ≤ ηy for y ≥ q2,

where η satisfies (3.7). Set c4 > max
{

c2
σ1
, q2

}

. Then clearly,

0 < c1 = q1 < 2q1 < p1 < c2 < p2 < 2p2 < q2 < c4.
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If f is bounded, say f(y) ≤ N for all y ∈ (0,∞), then we may suppose that

Nλ

∫ 1

0
G(s, s)h(s) ds < c4.

In this case, we have

(Ay)(t) =λ

∫ 1

0
G(t, s)h(s)f(y(s)) ds

≤Nλ

∫ 1

0
G(s, s)h(s) ds

<c4.

If f is unbounded, then c4 > q2 > 2p2 is chosen so that f(y) ≤ f(c4) for

0 < y ≤ c4, and f(c4) < ηc4 where η satisfies (3.7). Hence, for y ∈ Kc4 , we

have

(Ay)(t) =λ

∫ 1

0
G(t, s)h(s)f(y(s)) ds

≤λf(c4)

∫ 1

0
G(t, s)h(s) ds

≤ληc4

∫ 1

0
G(t, s)h(s) ds

<c4,

that is, Ay ∈ Kc4 , whenever y ∈ Kc4 .

Next, suppose that y ∈ K(ψ, c2, c4) with ‖Ay‖ > c3. Then

c3 < ‖Ay‖ ≤ λ

∫ 1

0
G(s, s)h(s)f(y(s)) ds

implies that

ψ(Ay) = min
t∈[0,1]

λ

∫ 1

0
G(t, s)h(s)f(y(s)) ds

>σ1λ

∫ 1

0
G(s, s)h(s)f(y(s)) ds

≥σ1c3 = c2.

Hence, by Theorem 2.4, the boundary value problem (2.3) and (2.5) has at

least three solutions. Since f0 = 0 implies f(0) = 0, we have at least two

positive solutions.
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Theorem 3.2. Let λ ≡ 1. Suppose that f0 = 0 and f∞ = ∞. Then the

boundary value problem (2.3) and (2.5) has at least two positive solutions.

Proof. f∞ = ∞ implies that there is a c2 > 0 such that f(y) > My for

c2 ≤ y ≤ c2
σ1
, where M satisfies the property

σ1M

∫ 3/4

1/4
G(1/2, s)h(s) ds > 1.

Set c3 = c2
σ1
. Consider a nonnegative function ψ(y) by ψ(y) = min

t∈[0,1]
y(t).

Clearly, c2 < c3, and the set {y : y ∈ K(ψ, c2, c3); ψ(y) > c2} is nonempty.

For y ∈ K(ψ, c2, c3), we have

ψ(Ay) = min
t∈[0,1]

∫ 1

0
G(t, s)h(s)f(y(s)) ds

≥Mc2 min
t∈[0,1]

∫ 1

0
G(t, s)h(s) ds

≥Mc2σ1 min
t∈[0,1]

∫ 1

0
G(s, s)h(s) ds

>c2.

Now, for any y ∈ K, we have

(Ay)(t) = max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f(y(s)) ds

≤

∫ 1

0
G(s, s)h(s)f(y(s)) ds.

From the condition f0 = 0, we can find a ǫ > 0 and a constant ξ ∈ (0, c2/2)

such that f(y) < ǫy for 0 ≤ y ≤ ξ, where ǫ is chosen so that

ǫ

∫ 1

0
G(s, s)h(s) ds < 1

holds. Set ξ = c1; then, 0 < c1 < c2. For y ∈ Kc1 , we have

‖Ay‖ ≤ǫ

∫ 1

0
G(s, s)h(s)y(s) ds

≤ǫc1

∫ 1

0
G(s, s)h(s) ds

<c1.
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Finally, suppose that y ∈ Kc3 with ‖Ay‖ > c3. Then

ψ(Ay) = min
t∈[0,1]

∫ 1

0
G(t, s)h(s)f(y(s)) ds

≥σ1

∫ 1

0
G(s, s)h(s)f(y(s)) ds.

Thus we have,

c3 < ‖Ay‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s)f(y(s)) ds

≤

∫ 1

0
G(s, s)h(s)f(y(s)) ds

≤
1

σ1
ψ(Ay)

showing that

ψ(Ay) ≥ σ1‖Ay‖ =
c2
c3
‖Ay‖.

Hence, by Theorem 2.3, the boundary value problem (2.3) and (2.5) has at

least two positive solutions.

Remark 3.3. Note that the Theorem 3.2 can be extended to any λ ∈ (λ∗, λ
∗)

such that 0 < λ∗ < 1 < λ∗ <∞ for appropriate λ∗ and λ∗ which satisfy

σ1Mλ∗

∫ 3/4

1/4
G(1/2, s)h(s) ds > 1 and ǫλ∗

∫ 1

0
G(s, s)h(s) ds < 1.
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