

(University Polytechnic)

DIPLOMA PROGRAMME COURSE STRUCTURE [3RD YEAR ONWARD COURSES]

Based on CBCS system & OBE model
Recommended scheme of study
(For Diploma in Electrical & Electronics Engineering)

Semester of Study (Recommended)		Course Code	Subjects	Mode of delivery & credits L-Lecture. T-Tutorial. P-practical L T P			Total Credits C- Credit
	<u>I</u>	T	HEORY		Į		
		DEE 601	Switch Gear and Protection	3	1	0	4
	PC	DEE 603	Utilization of Electric power	3	0	0	3
	PE	DPE 641/642/633	PE-IV	3	0	0	3
SIXTH	OE	DOE 641/642/643	OE-III [Courses from other Branches]	3	0	0	3
	HSS	DHS 601	Entrepreneurship and Startup	3	0	0	3
	Mandatory Course	DAU 601	Indian Constitution	2	0	0	0 (Non-credit)
			SESSIONAL	•			
	PC	DEE 602	POWER SYSTEM LAB	0	0	2	1
		DPE 635/644	PE-V LAB	0	0	2	1
	Project	DPR 642	MAJOR PROJECT	0	0	4	2
	Seminar	DSE 642	SEMINAR	1	0	0	1
	PER	IODS PER W	EEK	18	1	8	
Te	OTAL (THI	EORY + LAB	S) CREDITS				21
	TOTAL 1	PERIODS PE	R WEEK				27
(GRAND TO	TAL FOR TH	HIRD YEAR				43

DEPA	ARTMENT (OF ELECTRICAL AND ELECT PROGRAMME ELECTIVES (EER	RIN	G	
SEMESTER	Code no.	Name of the PE courses	Prerequisite/ Corequisite courses with code	L	Т	P	C
		PE-I	I				
CEDA IV	DPE 441	Electrical Equipment Maintenance	Electrical Machine	3	0	0	3
SEM-IV	DPE 442	Industrial Instrumentation And Condition Monitoring	Electrical Measurements and Instrumentation	3	0	0	3
	DPE 443	Applied Communication	Basic Electronics	3	0	0	3
		PE-II					
SEM- V	DPE 541	Industrial Automation & Control.	Electrical Measurements and Instrumentation	3	0	0	3
	DPE 542	Communication Technologies	Analog & digital Electronics	3	0	0	3
	DPE 543	Principle of Electric Vehicle	Power electronics	3	0	0	3
		PE-III					
	DPE 544	Solar Power Technologies	Electrical energy generation	3	0	0	3
SEM-V	DPE 545	Electric Traction	Utilization of Electric power	3	0	0	3
	DPE 546	Electrical Testing and Commissioning	Power system	3	0	0	3
	I	PE-IV					
	DPE 641	Applications of IOT	Microprocessor and Microcontroller	3	0	0	3
SEM-VI	DPE 642	Industrial Drives	Utilization of Electric power	3	0	0	3
	DPE 633	Programmable Logic Controllers	Microprocessor and Microcontroller	3	0	0	3
		PE-V [Sessional]					
SEM-VI	DPE 635	Programmable Logic Controllers Lab	Microprocessor and Microcontroller	0	0	2	1
	DPE 644	Industrial Drives Lab	Utilization of Electric power	0	0	2	1

DEPA	ARTMENT	OF ELECTRICAL AND ELECTRON OPEN ELECTIVES (OE)*	NICS ENGINE	EER	ING	ſ	
SEMESTER	Code No.	Name of the OE courses	Prerequisites courses with code	L	Т	P	С
		OE-I					
	DOE 441	Utilization of Electrical Energy		3	0	0	3
FOURTH	DOE 442	Electrical Energy Generation System				0	3
	D0E 443	Fundamental of Power Electronics				0	3
		OE- II					
	DOE 541	Introduction to Power System		3	0	0	3
FIFTH	DOE 542	Computational technique in Electrical Engineering					3
	DOE 543	Building Electrification and House Wiring	3	0	0	3	
		OE- III					
	DOE 651	Consumer Electronics		3	0	0	3
SIXTH	DOE 652	Introduction to Sustainable Energy	3	0	0	3	
	DOE 653	Electromechanical Energy Conversion		3	0	0	3
*OPEN	N ELECTIV	ES TO BE OPTED ONLY BY OTHER DI	EPARTMENT S	STU	DEN	TS	•

SWITCH GEAR & PROTECTION

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DEE 601			COURSE T	TITLE: SWI	TCH GEAR 8	& PROTECT	ION
COMPULSO	RY / OPTIO	NAL: COM F	PULSORY (Basic Elec	trical Engine	ering, Power	Systems)	
	Teach	ning Scheme	and Credits		EXAMI	NATION SC	НЕМЕ
L	Т	Р	HOURS/WEEEK	CREDIT	PE FINAL T		TOTAL
3	0	0	3	3	50	50	100

RATIONALE:

This course envisions imparting to students to:

1.	To understand the concepts of electrical protection systems for power systems.
2.	To study different types of switchgear, circuit breakers, and protective relays.
3.	To learn about overcurrent, differential, and distance protection schemes
4.	To develop knowledge of insulation coordination and earthing in electrical systems
5.	To analyze fault detection, isolation, and system recovery mechanisms.

Course Outcomes:

CO 1.	Explain the fundamentals of switchgear and protection in power systems.
CO 2.	Understand the working principles, types, and applications of circuit breakers.
CO 3.	Analyze different types of protective relays and their applications.
CO 4.	Apply protection techniques for transformers, generators, transmission lines, and busbars
CO 5.	Demonstrate the significance of earthing and insulation coordination in electrical
	networks.

	CONTENT DETAILS:							
MODULE	TOPICS/SUBTOPICS							
	TITLE: FUNDAMENTALS OF PROTECTION SYSTEMS							
	1.1 Need for protective relays and switchgear in power systems.							
1	1.2 Components of a protection system: CTs, PTs, relays, and circuit breakers.							
_	1.3 Basic protection principles: Over current, short circuit, and earth fault protection.							
	Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
	TITLE: CIRCUIT BREAKERS & ARC EXTINCTION							
	2.1 Working principles and construction of circuit breakers.							
	2.2 Types of circuit breakers: Air Circuit Breaker (ACB), Oil Circuit Breaker (OCB), SF6 Circuit							
2	Breaker, Vacuum Circuit Breaker (VCB).							
	2.3 Arc extinction methods: High resistance and low resistance interruption.							
	2.4 Testing and maintenance of circuit breakers.							
	Course Outcome: CO3 Touching House, 8 has Mayler, 20 (DE EINAL)							
	Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
	TITLE: PROTECTIVE RELAYS							
	3.1 Classification of relays: Electromagnetic, Static, and Numerical relays.							
	3.2 Operating principles of Over current, Earth Fault, Differential, and Distance relays.							
3	3.3 Directional and Non-Directional relays.							
	3.4 Protection coordination between relays and breakers.							
	Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
	TITLE: PROTECTION OF POWER SYSTEM COMPONENTS							
	4.1 Transformer protection: Buchholz relay, differential protection, and overcurrent							
	protection.							
4	4.2 Generator protection: Reverse power protection, differential protection.							
_	4.3 Transmission line protection: Distance protection, pilot wire protection.							
	4.4 Bus bar protection: Differential protection and frame leakage protection.							
	Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
	TITLE: EARTHING & INSULATION COORDINATION							
	5.1 Importance of earthing in power systems.							
5	5.2 Types of earthing: Solid, Resistance, and Reactance grounding.5.3 Insulation coordination in power systems.							
3	5.4 Protection against lightning and surge arresters.							
	5.1.1. Occount against ngriting and sarge arresters.							
	Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							

(University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1	Switchgear and Protection	Sunil S. Rao	
2.	Power System Protection and Switchgear	Badriram & Vishwakarma	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3.	Electrical Power System	C.L. Wadhwa	
	Protection		
4.	Fundamentals of Power System	Y.G. Paithankar & S.R. Bhide	
	Protection		
5.	The Art & Science of Protective	C. Russell Mason	
	Relaying		

E- Reference

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes						PSO		
	1	2	3	4	5	6	7	1	2	3
1	3	2	2	1	2	2	2	2	2	1
2	3	3	3	2	3	3	2	3	1	2
3	3	3	3	3	3	2	2	2	1	1
4	3	3	2	3	3	2	1	3	1	2
5	2	2	2	3	3	2	2	2	1	3

UTILIZATION OF ELECTRIC POWER

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DEE 603			COURSE TITLE: UTILIZATION OF ELECTRIC POWER				OWER
COMPULSO	RY / OPTIO	NAL: OPTIC	DNAL				
	Teach	ning Scheme	and Credits		EXAMI	NATION SC	НЕМЕ
L	Т	Р	HOURS/WEEEK	CREDIT	PE FINAL T		TOTAL
3	0	0	3	3	50	50	100

RATIONALE:

This course envisions imparting to students to:

1.	To understand the concepts of electric drives, traction, and heating systems.
2.	To study the various methods of electric heating, welding, and illumination systems.
3.	To gain knowledge of electric traction systems and their control.
4.	To learn about energy conservation techniques in electrical systems.
5.	To analyze industrial applications of electric power.

Course Outcomes:

CO 1.	Explain the working and selection criteria of electric drives and motors.
CO 2.	Understand electric heating and welding processes used in industries.
CO 3.	Apply the principles of illumination for designing lighting systems.
CO 4.	Analyze electric traction systems and their control.
CO 5.	Implement energy conservation techniques in electrical systems.

Department of Electrical and Electronics Engineering

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

	CONTENT DETAILS:							
MODULE	•							
	TITLE: HEATING & WELDING							
	1.1 Introduction and types of electric heating							
	1.2 Electric furnaces							
1	1.3 Di electric heating	1.3 Di electric heating						
	1.4 Introduction and types of e	electric welding						
	Course Outcome: CO1	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)					
	TITLE : ELECTROLYTIC & ELECT	RO-METALLURGICAL PRO	OCESSES					
	2.1 Introduction							
	2.2 Faraday's law of electroly	rsis						
2	2.3 Extraction of metals							
	2.4 Refining of metals							
	_							
	Course Outcome: CO2	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)					
	TITLE: CONTROL OF MOTORS							
	3.1Introduction to control of motors							
	3.2 1-ph & 3-ph motor controls	S						
3	3.3 Electrical and mechanical b	raking of motors.						
	3.4 Introduction to electric traction.							
	Course Outcome: CO3	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)					
	TITLE: INDUSTRIAL APPLICATI	ONS OF ELECTRIC MOTO	R					
	5.5 Introduction							
	5.6 Selection of motors							
4	5.7 Electric drives							
	5.8 Motors for particular services							
	Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)					
	TITLE: ILLUMINATION	-	-					
	5.1 Introduction							
	5.2 Lows of illumination							
5	5.3 Lighting Fittings							
	5.4 illumination of different pu	ırposes						
		F - 2 - 2						
	Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)					
1			. , ,					

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1	Utilization of Electrical Power	R.K. Rajput	
2.	Utilization of Electrical Energy	E. Openshaw Taylor	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3.	Art and Science of Utilization of Electrical Energy	H. Partab	
4.	Electric Traction	J. Upadhyay & S.N. Mahendra	
5.	Energy Management and Conservation	W.R. Murphy & G. McKay	

E- Reference

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					PSO			
	1	2	3	4	5	6	7	1	2	3
1	3	3	3	2	2	3	1	1	2	3
2	3	3	3	2	2	3	2	1	1	2
3	3	3	2	2	3	3	1	1	2	2
4	2	2	3	3	3	2	2	2	1	3
5	3	3	2	2	3	1	2	2	1	3

APPLICATIONS OF IOT

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING								
COURSE CODE: DPE 641 COURSE TITLE: APPLICATIONS OF IOT								
COMPULSORY / OPTIONAL: OPTIONAL								
	Teaching Scheme and Credits EXAMINATION SCHEME							
L	PE	FINAL	TOTAL					
3	0	0	3	3	50	50	100	

RATIONALE:

This course envisions imparting to students to:

1.	To understand the fundamentals of the Internet of Things (IoT) and its applications.
2.	To learn about IoT architecture, sensors, and communication protocols.
3.	To explore IoT applications in electrical engineering and automation.
4.	To develop skills in IoT-based system design and cloud integration
5.	To analyze real-time data collection, processing, and security aspects of IoT

Course Outcomes:

CO 1.	Explain the fundamental concepts and architecture of IoT.
CO 2.	Describe the working of sensors, actuators, and embedded systems in IoT applications.
CO 3.	Implement IoT communication protocols for data exchange.
CO 4.	Design and develop IoT applications in electrical engineering.
CO 5.	Analyze security challenges and data management in IoT networks.

	CONTENT DETAILS:						
MODULE	,						
	TITLE: INTRODUCTION TO IOT						
	1.1 Overview of IoT and its importance.						
	1.2 Components of IoT: Sensors, Actuators, Processors, Communication Networks.						
1	1.3 IoT Architecture and its layers.						
	1.4 Applications of IoT in electrical engineering.						
	Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
	TITLE: SENSORS, ACTUATORS, AND EMBEDDED SYSTEMS						
	2.1 Types of sensors and actuators used in IoT.						
	2.2 Basics of microcontrollers (Arduino, ESP8266, ESP32, Raspberry Pi).						
2	2.3 Communication interfaces: I2C, SPI, UART.						
	2.4 Hands-on practice: Interfacing sensors with microcontrollers.						
	Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
	TITLE: IOT COMMUNICATION PROTOCOLS & NETWORKING						
	3.1 IoT Communication Technologies: Wi-Fi, Bluetooth, Zigbee, LoRa, RFID, NFC.						
	3.2 Internet Protocols: HTTP, MQTT, CoAP.						
3	3.3 Cloud computing and IoT: Data storage and processing.						
	3.4 Hands-on practice: Data transmission using MQTT and HTTP.						
	Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
	TITLE: IOT APPLICATIONS IN ELECTRICAL ENGINEERING						
	1.1 Smart Home Automation (Controlling appliances using IoT).						
	1.2 Smart Grid and Smart Metering.						
	1.3 Industrial Automation using IoT.						
4	1.4 Predictive maintenance and fault detection in electrical systems.						
	1.5 Hands-on practice: IoT-based home automation project.						
	Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
	TITLE: IOT SECURITY & DATA MANAGEMENT						
	5.1 Security challenges in IoT systems.						
	5.2 Data encryption and authentication methods.						
5	5.3 Privacy issues and secure communication in IoT networks.						
	5.4 Case studies on IoT security breaches.						
	5.1. Gase stadies on for security breaches.						
	Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
	Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						

(University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Internet of Things: Architecture and Design Principles	Raj Kamal	
2.	Mastering the Internet of Things	Peter Waher	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3.	Internet of Things with ESP8266	Marco Schwartz	
4.	Internet of Things: Principles and Paradigms	Rajkumar Buyya & Amir Vahid Dastjerdi	
5.	Building the Internet of Things	Maciej Kranz	

E- Reference

_				
Г				

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes						PSO		
	1	2	3	4	5	6	7	1	2	3
1	3	2	2	2	3	2	2	1	2	3
2	3	3	3	2	2	1	2	2	1	2
3	3	3	2	2	2	3	3	1	1	3
4	2	3	3	3	2	3	3	2	2	3
5	3	3	3	2	2	3	3	2	1	2

INDUSTRIAL DRIVES

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DPE 642 COURSE TITLE: INDUSTRIAL DRIVES							
COMPULSORY / OPTIONAL: OPTIONAL							
	Teach	ning Scheme	and Credits		EXAMI	NATION SC	HEME
L T P HOURS/WEEEK			CREDIT	PE	FINAL	TOTAL	
3	0	0	3	3	50	50	100

RATIONALE:

This course envisions imparting to students to:

1.	To understand the fundamental principles of electric drives and their control.
2.	To study different types of motors used in industrial drives and their applications.
3.	To analyze the working of power electronic converters used for motor control.
4.	To learn about speed control techniques for DC and AC drives.
5.	To explore industrial applications of electric drives and their selection criteria.

Course Outcomes:

CO 1.	Explain the fundamentals of industrial drives and their classifications.
CO 2.	Analyze the working and speed control techniques of DC drives.
CO 3.	Understand AC drives and their speed control methods.
CO 4.	Implement power electronic converters for industrial drive applications.
CO 5.	Select appropriate drives for industrial applications considering efficiency and automation.

(University Polytechnic)

MODULE	TOPICS/SUBTOPICS							
	TITLE: FUNDAMENTALS OF ELECTRIC DRIVES							
	1.1 Introduction to electric drives and their classification.							
	1.2 Components of an electric drive system.							
1	1.3 Advantages and disadvantages of electric drives over mechanical drives.							
	1.4 Load characteristics and torque-speed curves.							
	Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
	TITLE : DC DRIVES							
	2.1 DC motor characteristics and their applications.							
	2.2 Speed control of DC motors using converters and choppers.							
2	2.3 Regenerative braking, plugging, and dynamic braking.							
	2.4 Industrial applications of DC drives.							
	Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
	TITLE : AC DRIVES							
	3.1 Types of AC motors used in industrial drives.							
	3.2 Speed control of induction motors using voltage control, frequency control, and rotor							
3	resistance control.							
3	3.3 Variable Frequency Drives (VFDs) and their applications.							
	3.4 Industrial applications of AC drives.							
	Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
	TITLE: POWER ELECTRONIC CONVERTERS FOR DRIVES							
	4.1 Rectifiers, choppers, inverters, and their role in industrial drives.							
	4.2 Control of drives using thyristors, IGBTs, and MOSFETs.							
4	4.3 Vector control and direct torque control of AC motors.							
_	4.4 Hands-on practice: Speed control of an induction motor using a VFD.							
	Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
	TITLE: INDUSTRIAL APPLICATIONS & SELECTION OF DRIVES							
	5.1 Selection of drives for industrial applications.							
	5.2 Applications in industries such as steel mills, paper mills, textile industries, and							
5	robotics.							
	5.3 Case studies on industrial drive systems.							
	5.4 Energy-efficient drive systems and their role in automation.							
	Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							

Books recommended:

Textbook:

S. N.	Title	Title Author, Publisher, Edition and Year of publication			
1	. Fundamentals of Electric Drives	G.K. Dubey			
2	Electric Drives: Concepts and Applications	Vedam Subrahmanyam			

Reference book:

		·	
S. N.	Title	Author, Publisher, Edition and Year of	ISBN
		publication	
3.	Power Semiconductor	G.K. Dubey	
	Controlled Drives		
4.	Electrical Machines, Drives, and	Theodore Wildi	
	Power System		
5.	Industrial Motor Control	Stephen Herman	

E- Reference

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					PSO			
	1	2	3	4	5	6	7	1	2	3
1	3	2	2	2	3	2	2	3	2	3
2	3	3	3	2	3	2	2	2	2	2
3	2	2	3	2	3	2	3	3	1	2
4	3	3	3	2	2	2	3	3	1	2
5	3	3	3	2	3	2	2	2	1	2

PROGRAMMABLE LOGIC CONTROLLERS

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DPE 633 COURSE TITLE: PROGRAMMABLE LOGIC CONTROLLERS							
COMPULSORY / OPTIONAL: OPTIONAL							
Teaching Scheme and Credits EXAMIN					NATION SC	HEME	
L T P HOURS/WEEEK CREDIT			CREDIT	PE	FINAL	TOTAL	
3	0	0	3	3	50	50	100

RATIONALE:

This course envisions imparting to students to: Understand and develop a basic circuit. To use this knowledge and programming skill in the field of automation it is also necessary to learn about Programmable Logic Controller. Programmable Logic Controller works as brain of automation system, which can be programmed for desired functions for controlling different Machines. The Industries therefore demand for persons having automation knowledge with skill of P.L.C. programming. To cater to the need of Industries and to convert their basic skill in to some advance level, this course is being introduced.

Course Outcomes:

CO 1.	Explain the architecture, operation, and types of Programmable Logic Controllers used in industrial automation.
CO 2.	Develop and troubleshoot basic ladder logic programs using timers, counters, and logical instructions.
CO 3.	Apply advanced PLC functions such as arithmetic, comparison, and shift operations in real-time scenarios.
CO 4.	Interface PLCs with field devices and communication networks for industrial automation tasks.
CO 5.	Design, implement, and simulate a PLC-based automation project with appropriate documentation and safety considerations.

(University Polytechnic)

	CONTENT DETAILS:						
MODULE	TOPICS/SUBTOPICS						
	TITLE: PLC Overview						
	1.1 Principles of operation of PLC						
	1.2 PLC verses computer						
1	1.3 PLC hardware components						
_	1.4 Scan time of a cycle.						
	1.5 Industrial PLC.						
	1.6 Application of PLC						
	Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
	TITLE: Memory and Logical Sensor						
	2.1 Memory Address.						
	2.2 Program Files.						
	2.3 Data files: User Bits Memory, Timer Counter Memory, PLC Status Bits, User						
2	Function Control Memory, Integer Memory, Floating Point Memory						
	2.4 Sensor wiring: Switches, TTL, Sinking and sourcing, Connection of switch						
	2.5 Human/ product Presence Detection Sensors: Reed Switch, Optical Sensor,						
	Capacitive Sensor, Inductive Sensor						
	Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL						
	TITLE: Boolean Logic Design and Timers, Counter, Latch Concept						
	3.1 Boolean algebra: Rules of Boolean Algebra, Logic Design for a given application.						
	3.2 Common Logic Forms: Complex gate forms, Multiplexer.						
3	3.3 Timers: On-delay timer, Off delay timer, Retentive timer.						
	3.4 Counters: Up-Counters, Down Counter, Up-Down Counter.						
	3.5 Master Control Relay.						
	Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
	TITLE : Logic Function Ladder and Advance functions of PLC						
	4.1 Data handling Function: Move Function, Mathematical Function, Conversion						
	Function						
4	4.2 Logic Function: Comparison of Value, Boolean Function						
	4.3 List Function: Shift registers, Stacks, Sequencer						
	4.4 Program Control: Branching						
	Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
	TITLE : Applications of PLC						
	5.1 Object counter						
	5.2 On-off control						
5	5.3 Sequential starting of motors – Motor in forward and reverse direction						
	5.4 Traffic light control, Car parking, Filling of Bottle						
	5.5 Room Automation.						
	J.J NOUIII AULUIIIIIIIIII.						

Department of Electrical and Electronics Engineering

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Programmable Logic Controllers	W. Bolton	
2.	Programmable Logic Controllers: Principles and Applications	John W. Webb and Ronald A. Reis	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3.	Programmable Logic Controllers: Hardware and Programming	Max Rabiee	
4.	Industrial Automation and Process Control	Jon Stenerson & Jeffery W. Finch	

F- Reference

r- veie	Tellce				

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes						PSO		
	1	2	3	4	5	6	7	1	2	3
1	2	3	2	3	3	2	2	2	2	2
2	3	3	3	3	2	2	2	3	3	2
3	3	2	2	2	2	2	1	2	1	2
4	2	3	3	2	3	3	3	3	2	1
5	2	3	2	2	1	1	1	2	1	2

PROGRAMMABLE LOGIC CONTROLLERS LAB.

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CO	DE: DPE 63	5	COURSE TITLE: PROGRAMMABLE LOGIC CONTROLLERS LAB.				
COMPULSO	RY / OPTIO	NAL: OPTIC	NAL				
	Teach	ning Scheme	and Credits		EXAMI	NATION SC	НЕМЕ
L	Т	Р	HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL
0	0	2	2	1	50	50	100

Course Objectives

This course envisions imparting to students to: This course is offered by Dept. of Electrical and Electronics Engineering as a lab, targeting students who wish to pursue research & development in industries or higher studies in field of Automation Engineering, including Embedded systems, Robotics, and other advanced systems. Offers hands-on experience on varied programmable Logic Controllers testing boards.

Course Outcomes

CO 1	Understand the basics functionalities of PLC
CO 2	Understand different applications of PLC in industrial automation
CO 3	Implement interfacing of different switches, sensors and actuators with PLC
CO 4	Design , edit ,test ,and document PLC ladder logic program.
CO 5	Design and Implement PLC program to control different industrial processes such as traffic
	light, lift control and bottle filling plant.

List of Experiments (The experiment list may vary to accommodate recent development in the field)

- 1. Study of Logic Gates and implementation using PLC ladder diagram.
- 2. Implementation of Latching circuit and study of its application.
- 3. Implementation of Switching of Light circuit using PLC logic.
- 4. Implementation of Door Bell.
- 5. To perform Stepper Motor Control using PLC ladder programming
- 6. Implementation of Process control using PLC ladder diagram.
- 7. To perform Traffic Light Control using PLC ladder diagram.
- 8. To study and implement Bottle filling Plant using PLC ladder diagram.
- 9. To study and implementation of Conveyor Control System.
- 10. To study and implementation of Conveyor Control System. Ladder diagram
- **11**. Drilling Tool
- 12. Seven segment display using PLC ladder program.
- 13. Implementation of Lift Control logic using PLC ladder diagram
- 14. ity based traffic light Implementation of Density based traffic light system.

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1	Programmable Logic Controllers	McGraw- Hills Publications, 4 th edition, 2010	9780028026619
2.	An Engineering Approach to Digital Design,	William. I. Fletcher, Design, Prentice Hall of India Publishers, New Delhi, 1 st edition, 1999. IV. C. H. Roth, Fundamentals of Logic Design, Jaico Publishing th Edition, 1999. 4. Reis & Reis, Programmable Logic Controllers, PHI Learning Publications, 5 th edition, 2002	9788120306516

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3.	Fundamentals of Logic Design.	C. H. Roth, Jaico Publishing house, 4 th Edition, 1999.	9788172247744
4.	Programmable Logic Controllers	Reis & Reis, PHI Learning Publications, 5 th edition, 2002	9789332555129

E- Reference

Mapping of Course Outcomes onto Program Outcomes

mapping or course cure in the cure of the										
Course Outcome #			Progra	m Outc	omes			PSO		
	1	2	3	4	5	6	7	1	2	3
1	2	2	2	3	1	0	1	2	1	1
2	2	1	2	2	1	1	1	2	1	1
3	2	2	3	3	1	1	1	2	1	1
4	2	2	1	3	1	1	1	2	1	1
5	2	1	2	2	1	1	1	2	1	1

INDUSTRIAL DRIVES LAB.

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING								
COURSE CODE: DPE 644			COURSE TITLE: INDUSTRIAL DRIVES LAB					
COMPULSO	COMPULSORY / OPTIONAL: COMPULSORY							
	Teach	ning Scheme	e and Credits EXAMINATION SCHE			HEME		
L	Т	Р	HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL	
0	0	2	2	1	50	50	100	

Course Objectives

This course envisions imparting to students to:

1.	To provide hands-on experience in the operation and control of electrical drives.
2.	To study different types of DC and AC drives and their control techniques.
3.	To analyze the speed control methods of industrial motors.
4.	To understand the application of power electronic converters in drives.
5.	To familiarize students with modern industrial drive systems and automation techniques.

Course Outcomes

CO 1	Understand different types of industrial drives and their working principles.
CO 2	Perform experiments on DC motor drives and analyze their speed control methods.
CO 3	Implement various speed control techniques for AC motor drives.
CO 4	Apply power electronics concepts in industrial drives and evaluate performance.
CO 5	Explore modern trends in industrial drive automation and smart drive technologies.

List of Experiments (The experiment list may vary to accommodate recent development in the field)

- 1. Study of different types of industrial drives and their applications.
- 2. Identification and testing of components used in industrial drive systems.
- 3. Speed control of a DC shunt motor using a field control method.
- 4. Speed control of a DC series motor using a voltage control method.
- 5. Performance testing of a DC motor drive under loaded and unloaded conditions.
- 6. Experiment on four-quadrant operation of a DC motor drive using a chopper circuit.
- 7. Speed control of a three-phase induction motor using a variable frequency drive (VFD).
- 8. Stator voltage control method for speed control of an induction motor.
- 9. Rotor resistance control method for slip ring induction motor.
- 10. Experiment on single-phase and three-phase rectifiers for drive applications.
- 11. Study and implementation of chopper-controlled DC drives.
- 12. Study and implementation of chopper-controlled DC drives.
- 13. Study of soft-starting techniques for industrial motors.
- 14. Experiment on stepper motor drive and its position control.
- 15. Experiment on servo motor drive and its speed control.
- 16. BLDC motor drive and its speed-torque characteristics.
- 17. Case study on smart drive systems and automation in industrial applications.

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Fundamentals of Electrical Drives	G.K. Dubey	
2.	Electric Drives: Concepts and Applications	Vedam Subrahmanyam	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of	ISBN
		publication	
3.	Power Electronics and Motor	Bimal K. Bose	
	Drives		
4.	Electrical Machines, Drives, and	Theodore Wildi	
	Power Systems		

(University Polytechnic)

CONSUMER ELECTRONICS

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DOE 651 COURSE TITLE: CONSUMER ELECTRONICS					CS		
COMPULSO	COMPULSORY / OPTIONAL: OPTIONAL						
Teaching Scheme and Credits					EXAMI	NATION SC	НЕМЕ
L T P HOUF		HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL	
3	0	0	3	3	50	50	100

RATIONALE:

This course envisions imparting to students to:

1.	To understand the fundamentals of consumer electronic devices and their working principles.
2.	To study audio, video, and home automation systems.
3.	To explore modern display technologies and multimedia systems.
4.	To analyze communication devices and smart appliances.
5.	To gain knowledge about troubleshooting and servicing consumer electronic products.

Course Outcomes:

CO 1.	Understand the fundamentals of consumer electronics and their applications.
CO 2.	Explain the working principles of audio systems and digital sound technology.
CO 3.	Analyze different types of display systems and video technologies.
CO 4.	Demonstrate knowledge of communication devices and smart appliances.
CO 5.	Perform troubleshooting and servicing of common consumer electronic devices.

Department of Electrical and Electronics Engineering

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

MODULE	TOPICS/SUBTOPICS						
	TITLE: INTRODUCTION TO CONSU	MER ELECTRONICS					
	1.1 Evolution of consumer electron	nics.					
1	1.2 Classification of consumer electronic products.						
_	1.3 Overview of analog and digital circuits used in consumer devices.						
	Course Outcome: CO1	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	TITLE : AUDIO SYSTEMS		,				
	2.1 Microphones, loudspeakers, an	d their working principles.					
	2.2 Audio amplifiers, equalizers, an	d surround sound systems.					
2	2.3 Digital audio systems: MP3, AA	C, Bluetooth audio.					
	2.4 Noise cancellation technology.						
	Course Outcome: CO2	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	TITLE: VIDEO SYSTEMS & DISPLAY		, ,				
	3.1 Working of CRT, LCD, LED, OLED, and Plasma displays.						
	3.2 elevision technology: Analog TV, Digital TV, Smart TV.						
3	3.3 Video projectors and home theater systems.						
	3.4 Camera sensors and image processing.						
	Course Outcome: CO3	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	TITLE: COMMUNICATION & SMAR		,				
	4.1 Mobile communication technol	logy: GSM, 4G, 5G, VoIP.					
	4.2 Wireless communication: Bluetooth, Wi-Fi, NFC.						
4	4.3 Smart home automation: IoT-ba	ased smart appliances.					
	4.4 Wearable electronics (smartwa	tches, fitness trackers).					
	Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	TITLE: TROUBLESHOOTING & SER		• • • • • • • • • • • • • • • • • • • •				
	5.1 Common faults and troublesho	ooting in audio/video systen	ns.				
	5.2 Repair techniques for mobile p	,					
5	5.3 Circuit testing using multimete		. ,				
	5.4 Safety precautions in servicing	·	cts.				
	Course Outcome: CO5	Feaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	Course Guttonic. Cos	cacining riours. O mis					

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Consumer Electronics	S.P. Bali	
2.	Modern Television Practice	R.R. Gulati	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3	Consumer Electronics	B.R. Gupta	
		William C.Y. Lee	
4.	Mobile Cellular Telecommunications	William C.Y. Lee	
5.	Electronic Communication	George Kennedy & Bernard Davis	
	Systems		

E- Reference

г			

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					PSO			
	1	2	3	4	5	6	7	1	2	3
1	3	2	2	2	3	2	2	1	2	3
2	3	2	2	3	3	3	2	2	2	3
3	2	2	3	3	3	2	2	1	2	2
4	3	2	3	3	3	3	3	2	1	2
5	3	2	2	3	2	2	2	3	1	2

INTRODUCTION TO SUSTAINABLE ENERGY

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CO	DE: DOE 65 2	2	COURSE TITLE: INTRODUCTION TO SUSTAINABLE ENERGY				INABLE
COMPULSO	COMPULSORY / OPTIONAL: OPTIONAL						
	Teach	ning Scheme	and Credits		EXAMI	NATION SC	HEME
L	Т	Р	HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL
3	0	0	3	3	50	50	100

RATIONALE:

This course envisions imparting to students to:

1.	To understand the importance and need for sustainable energy.
2.	To explore different types of renewable energy sources and their applications.
3.	To analyze energy efficiency, conservation, and environmental impact.
4.	To study modern sustainable energy technologies and their implementation.
5.	To develop awareness of global energy challenges and sustainable solutions.

Course Outcomes:

CO 1.	Explain the fundamentals and importance of sustainable energy.
CO 2.	Describe solar energy principles and applications.
CO 3.	Analyze wind and hydropower energy generation techniques.
CO 4.	Evaluate biomass, geothermal, and emerging sustainable energy technologies.
CO 5.	Apply energy efficiency and conservation strategies for sustainable development.

Department of Electrical and Electronics Engineering

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

MODULE	TOPICS/SUBTOPICS						
	TITLE: FUNDAMENTALS OF SUST	AINABLE ENERGY					
	1.1 Introduction to energy, power, and sustainability.						
	1.2 Energy demand, consumption trends, and environmental impact.						
1	1.3 Classification of energy source		•				
	J						
	Course Outcome: CO1	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	TITLE: Solar Energy						
	2.1 Basics of solar radiation and pl	hotovoltaic (PV) effect.					
	2.2 Solar thermal and photovoltain	c systems.					
2	2.3 Solar energy applications: Sola	r panels, water heating, and	solar farms.				
	2.4 Grid-connected and off-grid so	olar power systems.					
	6 6 602	Total Control of the	A4 . 4 . 20 (D5 . 5(N.41)				
	Course Outcome: CO2	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	TITLE: Wind and Hydropower End						
	3.1 Principles of wind energy conversion.						
	3.2 Wind turbine types, components, and power generation.						
3	3.3 Basics of hydropower: Dams, small-scale hydro, and pumped storage.						
	3.4 Environmental and economic	aspects of wind and hydro en	ergy.				
	Course Outcome: CO3	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	TITLE: Biomass, Geothermal & En	nerging Energy Technologies					
	4.1 Biomass energy: Sources, conversion techniques, and biofuels.						
	4.2 Basics of geothermal energy and power plants.						
4	4.3 Ocean energy: Tidal, wave, and	d ocean thermal energy conv	ersion (OTEC).				
	4.4 Hydrogen fuel cells and smart	grid technology.					
	6 6 604	Total Control of the	A4 . 4 . 20 (D5 . 5(N.41)				
	Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				
	TITLE: Energy Efficiency & Sustair	•	مامام				
	5.1 Energy conservation techr	·	enoids.				
5	5.2 Role of smart grids and en						
5	5.3 Government policies, incention energy.		agreements on renewable				
	5.4 Case studies on sustainabl						
	Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)				

Department of Electrical and Electronics Engineering

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of	ISBN
		publication	
1.	Renewable Energy Sources and Emerging Technologies	D.P. Kothari, K.C. Singal, Rakesh Ranjan	
2.	Fundamentals of Renewable Energy Systems	D. Mukherjee and S. Chakrabarti	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3.	Non-Conventional Energy	G.D. Rai	
	Sources		
4.	Principles of Renewable Energy	Boyle, Godfrey	
5.	Renewable Energy: Power for a	Stephen Peake	
	Sustainable Future		

E- Reference

L	1					

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes							PSO	
	1	2	3	4	5	6	7	1	2	3
1	3	3	3	2	2	2	1	2	2	3
2	3	3	2	2	2	3	3	2	2	3
3	3	3	3	3	2	2	2	2	1	2
4	2	2	2	3	3	3	2	2	2	3
5	3	3	3	2	2	2	3	2	1	2

ELECTROMECHANICAL ENERGY CONVERSION

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CO	COURSE CODE: DOE 653 COURSE TITLE: Electromechanical Energy Conversion						
COMPULSO	RY / OPTIO	NAL: OPTIC	DNAL				
	Teach	ning Scheme	e and Credits		EXAMI	NATION SC	НЕМЕ
L T P HOURS/WEEEK CREDIT PE FINAL TOTAL							TOTAL
3 0 0 3 3 50 50 1					100		

RATIONALE:

This course envisions imparting to students to:

1.	To understand the fundamental principles of electromechanical energy conversion.				
2.	To study the construction, working, and characteristics of electrical machines (DC, AC, and				
	Special Machines).				
3.	To analyze the performance and efficiency of transformers and rotating electrical machines.				
4.	To introduce students to machine control, protection, and maintenance.				
5.	To apply the knowledge of electrical machines in industrial applications.				

Course Outcomes:

CO 1.	Explain the fundamental principles of electromechanical energy conversion.
CO 2.	Describe the construction, operation, and applications of DC machines.
CO 3.	Analyze the working and performance of transformers.
CO 4.	Examine the characteristics and control methods of AC machines.
CO 5.	Identify different types of special electrical machines and their applications.

Department of Electrical and Electronics Engineering

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

	CONTENT DETAILS:								
MODULE	•								
	TITLE: FUNDAMENTALS OF ELECTROMECHANICAL ENERGY CONVERSION								
	1.1 Energy conversion principles								
	1.2 Magnetic field and magnetic circuits								
1	1.3 Faraday's Law of Electromagn								
_	1.4 Torque and EMF in electrome	-							
	1.5 Singly and doubly excited mag	1.5 Singly and doubly excited magnetic systems							
	Course Outcome: CO1	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
	TITLE : DC MACHINES	reaching mours: 6 hrs	Warks: 20 (PE+FINAL)						
	2.1 Construction and types of DC								
	2.2 Working principle of DC motor								
2	2.3 EMF equation of DC generator								
	2.4 Characteristics and application		nt, and compound)						
	2.5 Speed control and starting of I	DC motors							
	Course Outcome: CO3	Toachina Hours 9 hrs	Marks 20 (DE LEINAL)						
	Course Outcome: CO2	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
	TITLE: TRANSFORMERS 3.1 Construction and working principle of single-phase and three-phase transformers								
			ree-phase transformers						
	3.2 EMF equation of transformers								
3	3.3 Equivalent circuit and phasor diagrams								
	3.4 Losses and efficiency calculations								
	3.5 Auto-transformers and instrument transformers								
	Course Outcome: CO3	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
	TITLE : AC MACHINES – INDUCTION	-	•						
	3.1 Construction and working of three-phase induction motors3.2 Slip, torque equation, and torque-slip characteristics								
	3.3 Starters and speed control of induction motors								
4	3.4 Synchronous generators: construction, working, and voltage regulation								
	3.5 Synchronous motors: operation	<u> </u>							
	Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
	TITLE: SPECIAL MACHINES AND I		-						
	5.1 Stepper motors, Servo motors	s, and Universal motors							
	5.2 Permanent Magnet Machines								
5	5.3 Applications of electrical mach		n						
	5.4 Basics of machine protection,								
	Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
	Course outcome. Cos	readining riburs. 0 iiis	17.31 N.S. 20 (1 E 11 114/AL)						

(University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Electric Machinery	Stephen J. Chapman	
	Fundamentals		
2.	Electrical Machines	P.S. Bimbhra	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3.	Principles of Electric Machines	P.C. Sen	
	and Power Electronics		
4.	Electrical Technology Vol-II (AC	B.L. Theraja & A.K. Theraja	
	& DC Machines)		
5.	Electrical Machines	J.B. Gupta	

F- Reference

	are remote									

Mapping of Course Outcomes onto Program Outcomes

Mapping of Course Guttonies Citto Frogram Guttonies											
Course Outcome #	Program Outcomes						PSO				
	1	2	3	4	5	6	7	1	2	3	
1	3	3	2	3	3	1	2	2	1	3	
2	3	3	3	2	2	2	1	1	2	2	
3	3	3	3	3	2	2	2	2	1	2	
4	3	2	2	2	3	3	3	2	1	2	
5	3	3	3	3	2	2	2	2	1	2	