

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

DIPLOMA PROGRAMME COURSE STRUCTURE |2ND YEAR ONWARD COURSES| **Based on CBCS system & OBE model** Recommended scheme of study (For Diploma in Electrical & Electronics Engineering) **Total** Semester Category Course **Subjects** Mode of Of of Code delivery & **Credits** credits *C*-Study course (Recommended) L-Lecture. Credit T-Tutorial. P-practical $L \mid T \mid P$ C **THEORY** Power Electronics **DEE 401** 3 1 4 **DEC 403** Microprocessor and 3 0 0 3 Microcontroller 3 **DEE 405** AC Rotating Machines 1 0 4 PC **DPE** PE-I 3 0 0 **FOURTH** 3 PE 441/442/443 OE-I [Courses from 3 0 0 3 DOE **OE** other Branches] 441/442/443 SESSIONAL **DEE 402** Power Electronics Lab 0 0 1 PC **DEC 404** Microprocessor and 0 0 2 1 Microcontroller Lab **DEE 406** Electrical machine Lab. 0 0 2 1 $DAU\overline{401}$ Essence of Indian 0 Mandatory 2 0 0 (Non-Course **Knowledge and Tradition** credit) PERIODS PER WEEK 17 2 6 20 TOTAL (THEORY + LABS) CREDITS TOTAL PERIODS PER WEEK 25 GRAND TOTAL CREDITS FOR SECOND YEAR 42

DEPA	ARTMENT (OF ELECTRICAL AND ELECT PROGRAMME ELECTIVES (EER	RIN	G	
SEMESTER	Code no.	Name of the PE courses	Prerequisite/ Corequisite courses with code	L	Т	P	C
		PE-I	I				
CEDA IV	DPE 441	Electrical Equipment Maintenance	Electrical Machine	3	0	0	3
SEM-IV	DPE 442	Industrial Instrumentation And Condition Monitoring	Electrical Measurements and Instrumentation	3	0	0	3
	DPE 443	Applied Communication	Basic Electronics	3	0	0	3
		PE-II					
SEM- V	DPE 541	Industrial Automation & Control.	Electrical Measurements and Instrumentation	3	0	0	3
	DPE 542	Communication Technologies	Analog & digital Electronics	3	0	0	3
	DPE 543	Principle of Electric Vehicle	Power electronics	3	0	0	3
		PE-III					
	DPE 544	Solar Power Technologies	Electrical energy generation	3	0	0	3
SEM-V	DPE 545	Electric Traction	Utilization of Electric power	3	0	0	3
DPE 540		Electrical Testing and Commissioning	Power system	3	0	0	3
	I	PE-IV					
	DPE 641	Applications of IOT	Microprocessor and Microcontroller	3	0	0	3
SEM-VI	DPE 642	Industrial Drives	Utilization of Electric power	3	0	0	3
	DPE 633	Programmable Logic Controllers	Microprocessor and Microcontroller	3	0	0	3
		PE-V [Sessional]					
SEM-VI	DPE 635	Programmable Logic Controllers Lab	Microprocessor and Microcontroller	0	0	2	1
	DPE 644	Industrial Drives Lab	Utilization of Electric power	0	0	2	1

DEPA	ARTMENT	OF ELECTRICAL AND ELECTRON OPEN ELECTIVES (OE)*	NICS ENGINE	EER	ING	ſ	
SEMESTER	Code No.	1 1		L	Т	P	С
		OE-I					
	DOE 441	Utilization of Electrical Energy		3	0	0	3
FOURTH	DOE 442	Electrical Energy Generation System		3	0	0	3
	D0E 443	Fundamental of Power Electronics				0	3
		OE- II					
	DOE 541	Introduction to Power System		3	0	0	3
FIFTH	DOE 542	Computational technique in Electrical Engineering				0	3
	DOE 543						3
		OE- III					
	DOE 651	Consumer Electronics		3	0	0	3
SIXTH	TH DOE 652 Introduction to Sustainable Energy						3
	DOE 653	Electromechanical Energy Conversion			0	0	3
*OPEN	N ELECTIV	ES TO BE OPTED ONLY BY OTHER DI	EPARTMENT S	STU	DEN	TS	•

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

IV Semester POWER ELECTRONICS

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DEE 401			COURSE TITLE: POWER ELECTRONICS				
COMPULSC	RY / OPTIO	NAL: COMP	ULSORY				
Teaching Schemo			e and Credits		EXAMI	NATION SC	НЕМЕ
L	Т	Р	HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL
3	1	0	4	4	50	50	100

RATIONALE:

This course envisions imparting to students to:

1.	To understand the various applications of power electronic devices for conversion, control and conditioning of the electrical power and to get an overview of different types of power semiconductor devices and their dynamic characteristics.
2.	To understand the operation, characteristics and performance parameters of controlled rectifiers.
3.	To study the operation, switching techniques and basic topologies of DC-DC switching regulators.
4.	To learn the different modulation techniques of pulse width modulated inverters and to understand harmonic reduction methods.
5.	To study the operation of AC voltage controller and various configurations of AC voltage controller

Course Outcomes:

CO 1.	Understand the operation of semiconductor controlled devices.				
CO 2.	Analyze the various uncontrolled rectifiers and design suitable filter circuits				
CO 3.	Analyze the operation of the n-pulse converters and evaluate the performance				
	parameters				
CO 4.	Understand various PWM techniques and apply voltage control and harmonic				
	elimination methods to inverter circuits.				
CO 5.	Understand the operation of AC voltage controllers and its applications.				

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

		ENT DETAILS:		
MODULE		S/SUBTOPICS	. D	
		: Power Semiconductor		
	1.1	Introduction to power e		
	1.2	Study of switching device		
1	1.3	Switching devices characteristics		
	1.4	Performance parameter	·S.	
		Course Outsomer CO1	Touching Houses O has	Marko 20 (DE LEIMAL)
		Course Outcome: CO1	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)
	2.1	: Thyristors: Introduction & basic stru	ucture of SCP	
	2.1	Static and dynamic char		
	2.2	Two transistor model of		
2	2.4	Methods of turning & R		
_	2.5	Protection of SCR	and ite ining circuit	
	2.6	Commutation circuits fo	or SCR	
		Course Outcome: CO2	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)
	TITLE	: CONTROLLED RECTIFIE	ERS:	
	3.1	Review of uncontrolled		
	3.2	1-phase controlled recti		
	3.3	H.W and F.W with resist	ive and inductive load	
3	3.4	Effect of freewheeling d		
	3.5	Current distortion, ripple	e and harmonic factor	
	3.6	3-phase controlled recti		
		Course Outcome: CO3	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)
		: DC-DC Converters(Cho		Warks. 20 (FETTIVAL)
	4.1	Step down and step up		
	4.2	Different control strateg		
4	4.3	Classification of chopp		
_	4.4	Buck and Boost converte		
	7.4	buck and boost converte		
		Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)
	TITLE	: Inverters:		
	5.1	Single phase series reso	nant inverter	
	5.2	Single phase and three p	phase voltage source inverters	
_	5.3	Voltage control of invert	ters.	
5	5.4	•	hniques PWM and SPWM.	
	5.5	Current source inverte	•	
		6 6.1	To die to	14. 1. 20 (05. 59.41)
	(Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Power Electronics: Converters, applications and design	Ned Mohan, T.M.Undeland, W.P.Robbins, John Wiley and Sons, 3rd Edition (reprint), 2009	
2.	Power Electronics Circuits, Devices and Applications	Rashid M.H., , Prentice Hall India, 3rd Edition, New Delhi, 2004.	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Power Electronics	Cyril. W. Lander, McGraw Hill International, Third Edition, 1993.	
2.	Power Electronics	P.S.Bimbhra, Khanna Publishers, Third Edition 2003	
3.	Power Electronics	P.C.Sen, Tata McGraw-Hill, 30th reprint, 2008.	

E- Reference

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes					PSO			
	1	2	3	4	5	6	7	1	2	3
1	2	3	2	1	1	1	1	1	2	3
2	2	3	2	2	1	1	1	2	1	2
3	2	3	3	3	1	1	1	2	1	2
4	2	2	1	2	1	1	1	2	1	2
5	2	3	2	2	1	1	1	2	1	2

EXPERT CONSULTATION COMMITTEE (ACADEMICS / INDUSTRIES)

S. No	Name	DESIGNATION	INSTITUTE/ORGANIZATION
1.			
2.			

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

AC ROTATING MACHINES

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DEE 405			COURSE TITLE: AC ROTATING MACHINES				
COMPULSO	RY / OPTIO	NAL: COMP	ULSORY				
Teaching Scheme			e and Credits		EXAMI	NATION SC	НЕМЕ
L T P HOURS/WEEEK CREDIT PE FINAL				TOTAL			
3	1	0	4	4	50	50	100

RATIONALE:

This course envisions imparting to students to:

1.	Know fully about ac machines.
2.	Operation, maintenance and proper connection and hence will enable them to work as a good supervisor.
3.	The topics of special motor used and that of electroplating will provide full insight of practical.
4.	They will learn to use electrical equipment.
5.	Know and define the basic elements; electric circuit terminology; energy sources used in electric circuit and also AC waveform and its various quantities.

Course Outcomes:

CO 1	State and explain working principle, constructions as well as steady- state behaviour of an ac
	machines
CO 2	Understanding the concepts of three phase Induction motors.
CO 3	Identify, formulate and solve problems related to Synchronous Generators.
CO 4	Specify, constructions and working principle of Three Phase Synchronous Motor
CO 5	Aspire for developing career with specialization in areas of single phase ac motor.

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

	E CONTENT DETAILS:										
MODULE		CS/SUBTOPICS									
1	Title:	Introduction to AC Mac	chine								
	1.1	Basic Construction.									
	1.2	Induction and synchro	nous machine.								
	1.3	MMF of distributed single phase and three phase,									
	1.4	Generated voltage in AC machine,									
	1.5	Torque-slip characteri	stics.								
		Course Outcome: CO1	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)							
2	Title:	Three Phase Induction									
	2.1		ction and types of 3-ph Inc	luction motors.							
	2.2	Speed, Slip & Torque.									
	2.3		IM and its applications.								
	2.4	· '	duction motor.								
	2.5	Speed control.									
		Course Outcome: CO2	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)							
3		Synchronous Generator									
	3.1		ators & Advantages of rota	ating field.							
	3.2	Voltage generation an	<u>-</u>								
		Armature reaction & v	-								
	3.4	Synchronizing of alter	nator								
		C Out 602	To makin m Hannan O har	A4							
4		Course Outcome: CO3	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)							
4		Three Phase Synchrono									
	4.1	Principle of operation									
	4.2	Study of Synchronous									
	4.3	Characteristics of Sync									
	4.4	Hunting or phase swag									
	4.5	Synchronous condens	er and applications.								
		Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)							
5	-	Single Phase AC motors									
	5.1	Introduction and basic									
	5.2	Starting method of sin	• •								
	5.3	Speed control and its	• '								
	5.4	Comparison between	• •								
		•	•								
		Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)							

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Electric Machines	J. Nagrath, D.P. Kothari, 4th Edition, TMH, New Delhi, 2014.	
2.	Electrical Machines	P. S. Bimbhra, Khanna Publishers, New Delhi, 7th Edition 2014.	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Electric Machinery	E. Fitzgerald, Charles Kingsley, Stephen D. Umans;, McGraw Hill Education (India) Pvt. Ltd., Noida, 6th Edition, 2003.	
2.	Theory of Alternating Current Machinery	Alexander Suss Langsdorf;, McGraw-Hill, New York 1955.	
3.	Electrical Machines	Smarajit Ghosh,; Pearson, New Delhi, 2nd Edition, 2012.	

E- Reference

Mapping of Course Outcomes onto Program Outcomes

mapping or obtained duttoring onto 1 regioning duttoring										
Course Outcome #		Program Outcomes								
	1	2	3	4	5	6	7	1	2	3
1	2	3	2	1	1	1	1	1	2	3
2	2	3	2	2	1	2	1	2	1	2
3	2	3	3	3	3	1	1	2	2	2
4	2	2	1	2	1	1	1	2	1	2
5	2	3	2	2	1	3	1	2	1	2

EXPERT CONSULTATION COMMITTEE (ACADEMICS / INDUSTRIES)

S. No	Name	DESIGNATION	INSTITUTE/ORGANIZATION
1.			
2.			

MICROPROCESSOR AND MICROCONTROLLER

PROGRAMME: : DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING									
COURSE CODE: DEC 403 COURSE TITLE: Microprocessor and Microcontroller									
COMPUL	COMPULSORY / OPTIONAL: Core								
	Tea	ching Schen		EXAM	INATION SO	CHEME			
L	T	P	HOURS/WEEK CREDIT PE FINAL T						
3	0	0	3	3 3 50 50					

RATIONALE: Students are expected to:

- 1. Understand and Compare Fundamentals of Microprocessors and Microcontrollers.
- 2. Illustrate the Architecture of INTEL 8086 Microprocessor.
- 3. Interface I/O and Peripheral Devices with 8085 Microprocessor.
- 4. Understand the Architecture of the Microcontroller series (MCS) 51.

COURSE OUTCOMES

CO1	Compare fundamentals of Microprocessors and Microcontrollers.
CO2	Discuss the Architecture of the INTEL 8086 Microprocessor
CO3	Identify Peripheral Devices and understand the process of partitioning.
CO4	Identify the Peripheral ICs and their Interfacing with microprocessors.
CO5	Demonstrate the architecture details of Microcontroller series (MCS) – 51

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

MODULE	TOPICS/SUBTOPICS								
1	Introduction to Microprocessors and Microcontrollers								
	1.1 Definition of microprocessors and microcontrollers								
	1.2 Differences between microprocessors and microcontrollers								
	1.3 Evolution and history								
	1.4Applications in various fields								
2	Course Outcome: CO1 Teaching Hours: 6 hrs Marks: 31 (PE+FINAL)								
2	INTEL 8086 Microprocessor 2.1 Introduction, Architecture: Bus Interface Unit, Execution Unit								
	2.2 Pin-description								
	2.3 Operating modes: Pin–description for Minimum and Maximum mode								
	2.4 Operation								
	2.5 Registers								
	2.5 registers								
	Course Outcome: CO2 Teaching Hours: 9 hrs Marks: 21 (PE+FINAL)								
3	Peripheral Devices								
	3.1 Address space partitioning – Memory mapped I/O Scheme;								
	3.2 Address space partitioning –I/O mapped I/O Scheme								
	3.3 Memory and I/O interfacing,								
	3.4 Data-transfer schemes								
	3.5 Interrupts of Intel 8086								
	Course Outcome: CO3 Teaching Hours: 7 hrs Marks: 16 (PE+FINAL)								
4	Peripheral Devices and their Interfacing:								
	4.1 Brief Introduction to 8255								
	4.2 Brief Introduction to 8253								
	4.3 Interfacing of 8255 with Microprocessor.								
	4.4 Interfacing of 8253 with Microprocessor.								
	Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 21 (PE+FINAL)								
5	Microcontroller series (MCS) – 51 Overview:								
	5.1 Architecture of 8051/8031 Microcontroller								
	5.2 Pin Details								
	5.3 Input Output Ports								
	5.4 Memory Organization,								
	5.5 Special Function Registers (SFRs)								
	5.6 External Memory								
	Course Outcome: CO5 Teaching Hours: 10 hrs Marks: 11 (PE+FINAL)								
L	Towns Town Town Town Town Town Town Town Town								

TEXT AND REFERENCE BOOKS:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Fundamentals of Microprocessor and Microcontrollers	B. Ram, Dhanpat Rai Publications, Seventh Edition,31 March 2018	978-8189928605
2.	The 8051 Microcontroller	Kenneth J. Ayala THOMSON, Cengage Learning, Third Edition	978-1401861582
3.	Microcontrollers (Theory and Applications)	Ajay V. Deshmukh, McGraw-Hill Education (India) Pvt Limited, 2005	978-0070585959
4.	Microcontrollers and Applications	Santanu Chattopadhyay, All India Council for Technical Education, January 2023	978-81-960576- 0-2
5.	Microprocessor and Microcontroller	Saurabh Chaudhury, Risha Mal, All India Council for Technical Education, March, 2023	978-81-960576- 9-5
6.	Microprocessors and Microcontrollers	Krishna Kant, PHI Learning Private Limited, Second Edition, 2012	978-81-203- 3191-4

E-REFERENCES:

- 1. https://dokumen.pub_microprocessors-and-microcontrollers-architecture-programming-and-system-design-8085-8086-8051-8096-8120331915-9788120331914
- 2. <a href="https://www.google.com/search?sca_esv=595668565&sxsrf=AM9HkK11daRHzM4OLRqH_0V6BZO_w-uAHg:1704374518334&q=vdoc.pub_microprocessors-and-microcontrollers-architecture-programming-interfacing-using-8085-8086-and-8051&nfpr=1&sa=X&ved=2ahUKEwiK1Ort6cODAxVG3TgGHY0yA9sQvgUoAXoECAcQAw

CO VS PO MAPPING

		PO								PSO		
CO	1	2	3	4	5	6	7	1	2	3		
1	1	2	2	2	1	3	3	2	2	2		
2	1	3	3	2	1	3	3	2	2	2		
3	1	2	2	2	1	3	3	2	2	2		
4	1	2	2	2	1	2	3	2	2	2		
5	1	2	2	2	1	3	3	2	2	2		

MICROPROCESSOR AND MICROCONTROLLER LAB

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING										
COURSE CODE: DEC 404 COURSE TITLE: Microprocessor and Microcontroller Lab										
COMPUI	COMPULSORY / OPTIONAL: Core									
	Tea	ching Sch		EXAMI	NATION SO	CHEME				
L	T	P	HOURS/WEEK CREDIT PE FINAL		FINAL	TOTAL				
0	0	2	2	1	60	40	100			

RATIONALE: Students are expected to:

- 1. List each component's various components and characteristics in an 8085 Microprocessor and commands for working on the experiment kit.
- 2. Understand the programming concepts of 8085 for efficient coding
- 3. Write and explain algorithms and flowcharts for simple programs.
- 4. Explain examples for different addressing modes and no. of bytes for different instructions.
- 5. Write the code for a given requirement, execute the program, debug, and demonstrate that the program produces the required result/output.

COURSE OUTCOMES: After the completion of the course, students will be able to:

CO1	Identify and explain the functionality of various components in an 8085
	Microprocessor and 8051 Microcontroller and work on experiment kit.
CO2	Explain the programming concepts of 8085/8051 for efficient coding.
CO3	Write and explain algorithms and flowcharts for simple programs.
CO4	Explain examples for different addressing modes and no. of bytes for different instructions.
CO5	Write the code for a given requirement, execute the program, debug, and demonstrate that the program produces the required result/output.

Birla Institute of Technology, Mesra, Ranchi - 835215 (India)

(University Polytechnic)

COURSE CONTENT DETAILS:

TOPICS/SUBTOPICS TITLE: Basics of 8085 Training Kit and Assembly Language Programming 1. Study of 8085 microprocessor training kit. 2. Basics of Assembly Language Programming Course Outcome: CO1 Teaching Hours: 4 hrs TITLE: Program for addition 2.1 Write an ALP to add two 8-bit numbers; sum: 8 Bits.
1. Study of 8085 microprocessor training kit. 2. Basics of Assembly Language Programming Course Outcome: CO1 Teaching Hours: 4 hrs TITLE: Program for addition 2.1 Write an ALP to add two 8-bit numbers; sum: 8 Bits.
2. Basics of Assembly Language Programming Course Outcome: CO1 Teaching Hours: 4 hrs TITLE: Program for addition 2.1 Write an ALP to add two 8-bit numbers; sum: 8 Bits.
Course Outcome: CO1 Teaching Hours: 4 hrs TITLE: Program for addition 2.1 Write an ALP to add two 8-bit numbers; sum: 8 Bits.
TITLE: Program for addition 2.1 Write an ALP to add two 8-bit numbers; sum: 8 Bits.
2.1 Write an ALP to add two 8-bit numbers; sum: 8 Bits.
2.2 Write an ALP to add two 8-bit numbers; sum: 16 Bits.
2.3 Write an ALP to add two 16-bit numbers; sum: 16 Bits or more.
Course Outcome: CO2 Teaching Hours: 4 hrs
TITLE: ALP for Subtraction and Multiplication
3.1 Write an ALP to subtract two unsigned numbers and store the result in memory
location XX90H. How would you determine whether the result is a straight binary
number or 2's complement? Verify with examples.
3.2 Write an ALP to multiply two 8-bit numbers, the product being 16 bits.
Course Outcome: CO3 Teaching Hours: 4 hrs
TITLE: ALP for Sorting and Block transfer of Data
4.1 (a) Write an ALP to arrange a data array in ascending order.
(b) Write an ALP to arrange a data array in descending order
4.2 Write an ALP for block transfer of data.
Course Outcome: CO4 Teaching Hours: 4 hrs
TITLE: Basics of 8051 Training Kit
5.1 Study of microcontroller INTEL 8051 Training Kit.
5.2 Write and execute an assembly language program for 8-bit addition.
5.3 Write and execute an assembly language program for 8- bit subtraction
5.4 Write and execute an assembly language program for 8- bit multiplication
5.5 Write and execute an assembly language program for 8- bit division.
Course Outcome: CO5 Teaching Hours: 4 hrs

TEXT AND REFERENCE BOOKS:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Fundamentals of Microprocessor and Microcontrollers	B. Ram, Dhanpat Rai Publications, Seventh Edition,31 March 2018	978-8189928605
2.	Microprocessor Architecture, Programming, and Applications with the 8085	Ramesh Gaonkar, Penram International Publishing (I) PVT. LTD., 6 th Edition, 1 October 2013	978-8187972884
3.	The 8051 Microcontroller	Kenneth J. Ayala THOMSON, Cengage Learning, Third Edition	978-1401861582

4.	Microcontrollers (Theory and Applications)	Ajay V. Deshmukh, McGraw-Hill Education (India) Pvt Limited, 2005	978-0070585959
5.	The 8051 Microcontroller and Embedded Systems	Md. Ali Mazidi, Pearson Education India, 2007	9788131758991

E-REFERENCES:

- 1. https://dokumen.pub_microprocessors-and-microcontrollers-architecture-programming-and-system-design-8085-8086-8051-8096-8120331915-9788120331914
- 2. <a href="https://www.google.com/search?sca_esv=595668565&sxsrf=AM9HkK11daRHzM4OLRqH_0V6BZO_w-uAHg:1704374518334&q=vdoc.pub_microprocessors-and-microcontrollers-architecture-programming-interfacing-using-8085-8086-and-8051&nfpr=1&sa=X&ved=2ahUKEwiK1Ort6cODAxVG3TgGHY0yA9sQvgUoAXoECAcQAw

CO VS PO MAPPING

	PO						PSO			
CO	1	2	3	4	5	6	7	1	2	3
1	1	3	3	2	1	3	3	2	2	2
2	1	3	3	2	1	3	3	2	2	2
3	1	3	3	2	1	3	3	2	2	2
4	1	3	3	2	1	3	3	2	2	2
5	1	3	3	2	1	3	3	2	2	2

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

POWER ELECTRONICS LAB.

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING								
COURSE CODE: DEE 402 COURSE TITLE: POWER ELECTRONICS LAB.								
COMPULSARY / OPTIONAL: COMPULSORY								
Teaching Scheme and Credits EXAMINATION SCHEME				НЕМЕ				
L T P HOURS/WEEEK CREDIT PE FINAL TOTAL								
0	0	2	2	1	50	50	100	

Course Objectives

This course envisions imparting to students to:

1.	Identify semiconductor switches and carryout experimentation to reproduce the I-V characteristics.
2.	Explain the operation of triggering circuits, commutation circuits for the semiconductor switches and different energy conversion topologies through experimentation.
3.	Demonstrate and draw the waveforms of the circuit variables such as current through and voltage across the switches and load in different energy conversion topologies, though experimentation.
4.	Calculate the performance parameters of energy conversion topologies through experimental and analytical approach. Design assigned circuit topology for given specification and fabricate the circuitry of any of the power converter;
5.	Design the proper closed loop controller and to evaluate the performance of controller in case of a power converter topologies.

Course Outcomes

CO 1	Identify different types of semiconductor based switching devices available in market						
CO 2	Observe different characteristics of semiconductor based switching devices						
CO 3	Choose a suitable and proper switching device for a required power electronics based						
	design						
CO 4	Evaluate the performance of power converter based systems such as electrical drive ,						
	renewable energy integration.						
CO 5	Design power electronics system which requires a multi disciplinary approach and						
	teamwork.						

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

List of Experiments (The experiment list may vary to accommodate recent development in the field)

MODULE	TOPICS/SUBTOPICS					
	TITLE: Power Semiconductor Devices:					
	1.1 To determine characteristics of SCR.					
1	1.2 To determine characteristics of Mosfet					
1	1.3 To determine characteristics of IGBT.					
	Course Outcome: CO1 Teaching Hours: 4 hrs					
	TITLE: Thyristors:					
	2.1 To Generate gate pulse using R & RC circuit.					
2	2.2 To study class A and Class B commutation circuits of SCR.					
	2.3 To study class C and Class D commutation circuits of SCR.					
	Course Outcome: CO2 Teaching Hours: 4 hrs					
	TITLE: Converters:					
	3.1 To study the performance of H.W uncontrolled rectifier.					
	3.2 To study the performance of F.W uncontrolled rectifier.					
3	3.3 To study the performance of AC to DC fully Controlled converter for R and RL					
	Load and calculate the ripple factor.					
	Course Outcome: CO3 Teaching Hours: 4 hrs					
	TITLE: DC-DC Converters(Chopper)					
	4.1 To determine the characteristics of step down chopper for different duty					
	cycle and frequency					
4	4.2 To determine the characteristics of step up chopper.					
	4.3 Control of dc motor using two quadrant chopper.					
	Course Outcome: CO4 Teaching Hours: 4 hrs					
	TITLE: Inverter.					
	5.1 To study the working of a series inverter.					
	5.2 To study single phase full bridge inverter and calculate THD.					
_	5.3 Study of Three phase PWM and Non-PWM inverter.					
5	5.4 To study speed control of induction motor and plot speed vs firing angle.					
	Course Outcome: CO5 Teaching Hours: 4 hrs					

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
3.	Power Electronics: Converters, applications and design	Ned Mohan, T.M.Undeland, W.P.Robbins, John Wiley and Sons, 3rd Edition (reprint), 2009	
4.	Power Electronics Circuits, Devices and Applications	Rashid M.H., , Prentice Hall India, 3rd Edition, New Delhi, 2004.	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
4.	Power Electronics	Cyril. W. Lander, McGraw Hill International, Third Edition, 1993.	
5.	Power Electronics	P.S.Bimbhra, Khanna Publishers, Third Edition 2003	
6.	Power Electronics	P.C.Sen, Tata McGraw-Hill, 30th reprint, 2008.	

E- Reference

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes						PSO		
	1	2	3	4	5	6	7	1	2	3
1	2	3	2	1	1	1	1	1	2	3
2	2	3	2	2	1	1	1	2	1	2
3	2	3	3	3	1	1	1	2	1	2
4	2	2	1	2	1	1	1	2	1	2
5	2	3	2	2	1	1	1	2	1	2

EXPERT CONSULTATION COMMITTEE (ACADEMICS / INDUSTRIES)

S. No	Name	DESIGNATION	INSTITUTE/ORGANIZATION
1.			
2.			

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

ELECTRICAL MACHINE LAB.

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DEE 406			COURSE TITLE: ELECTRICAL MACHINE LAB.				
COMPULSO	COMPULSORY / OPTIONAL: COMPULSORY						
	Teach	ning Scheme	e and Credits		EXAMI	NATION SC	HEME
L	Т	Р	HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL
0	0	2	2	1	50	50	100

Course Objectives

This course envisions imparting to students to:

1.	To the basic fundamentals related to the principle, construction and operation of Transformer
	and DC Machines and to give them experimental skill
2.	To measure the performance of a transformer and DC Machines by conducting various tests and to calculate the parameters.
3.	To basic skills needed to test and analyse the performance leading to design of electric machines.
4.	To work in a group and evaluate the results to prepare the report.

Course Outcomes

CO 1	Able to recognize various types of Transformer and DC Machines, detail of name plate data of the machines and sketches the various connection diagrams involving these machines.
CO 2	Describe the features and working principle of transformers, DC Machine and starters.
CO 3	ble to perform experiments which are necessary to determine the parameters and the performance characteristics of the transformer and dc machines.
CO 4	Describe the features and working principle of transformers, AC and DC rotating Machine and starters.
CO 5	Able to perform experiments which are necessary to determine the parameters and the performance characteristics of the transformer, AC and DC rotating machines.

List of Experiments (The experiment list may vary to accommodate recent development in the field)

- 1. Study of types, characteristic and applications of transformers.
- 2. Study of different types of D.C machines.
- **3.** Study of different types of starters.
- **4.** Open circuit and short circuit test on a single phase transformer.
- **5.** Load test on a single phase transformer.
- **6.** Magnetization characteristic of separately excited D.C. Generator.
- 7. Load Test of a D.C. shunt motor.
- 8. Load Test on a D.C. shunt Generator.
- 9. Load test on a D.C. series Generator...
- 10. Load test on a D.C. compound Generator.
- 11. Speed Control of D.C. Shunt Motor
- 12. Study of A.C. Machines and Starters
- **13.** No-load and blocked-rotor test on 3-phase induction motor.
- **14.** Load test on 3-phase induction motor
- **15.** To perform no load test on induction motor.
- **16.** To perform blocked rotor test on induction motor.
- **17.** Reversal and Speed control of an Induction motor.
- **18.** To find regulation of a 3 phase alternator by O.C. test.
- 19. To find regulation of a 3 phase alternator by S.C. test
- **20.** Determination of 'Regulation' of 3 phase alternator by direct loading.
- **21.** To Study the Starting and Reversal of Synchronous motor.
- 22. Speed control of single phase Induction motor.
- **23.** To Study of universal motor.
- **24.** To study shaded pole motor.

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	The performance and design of DC machines	A.E. Clayton	
2.	Theory of AC machines	A. S. Langsdorf	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Laboratory experiments on electrical machines	C. K. Chanda & A. Chakraborty, Dhanpat Rai & Co., New Delhi.	
2.	Laboratory manual for electromechanics	S. S. Murty, B.P. Singh C. S. Jha and D. P. Kothari, Wiley Eastern Ltd., Delhi.	

E- Reference

Mapping of Course Outcomes onto Program Outcomes

<u>a.</u>	mapping of course cuttomes onto Hogiam cuttomes									
Course Outcome #		Program Outcomes					PSO			
	1	2	3	4	5	6	7	1	2	3
1	2	3	2	1	1	1	1	1	2	3
2	2	3	2	2	1	1	1	2	1	2
3	2	3	3	3	1	1	1	2	1	2
4	2	2	1	2	1	1	1	2	1	2
5	2	3	2	2	1	1	1	2	1	2

EXPERT CONSULTATION COMMITTEE (ACADEMICS / INDUSTRIES)

S. No	Name	DESIGNATION	INSTITUTE/ORGANIZATION
1.			
2.			

ELECTRICAL EQUIPMENT MAINTENANCE

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING							
COURSE CODE: DPE 441			COURSE TITLE: ELECTRICAL EQUIPMENT MAINTENANCE				
COMPULSORY / OPTIONAL: OPTIONAL							
Teaching Scheme and Credits					EXAMI	NATION SC	HEME
L	Т	Р	HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL
3	0	0	3	3	50	50	100

Course Objectives

This course envisions imparting to students to:

1.	Know safety measures & state safety precautions.
2.	Identify / Locate common troubles in electrical machines & switch gear.
3.	Test single phase, three phase transformer, DC & AC machine as per IS.
4.	Plan & carry out routine & preventive maintenance.
5.	Initiate total productive maintenance.

Course Outcomes

CO 1	To know Safety procedure in electrical work.
CO 2	To know about the different installation techniques of AC machines.
CO 3	To know about the different installation techniques and maintenance of transformers.
CO 4	To know about the different Method and installation of earthing.
CO 5	To know about the different maintenance techniques of AC machines.

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

MODULE		CS/SUBTOPICS								
1		procedure and precaution	ons							
	1.1	Safety procedure in elec	ctrical work.							
	1.2	Fire safety in building a	nd electrical installation.							
	1.3	Causes of Electrical Acc	ident and preventive measure	s.						
	1.4	Electric shock and treat	lectric shock and treatments							
		Course Outcome: CO1	urse Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)							
2	Install	ation of Rotating Electric	Machine.							
	2.1	2.1 Introduction to installation								
	2.2	Location and layout, po	sitioning of machine, foundati	on.						
	2.3	Leveling and alignment,	grouting and final alignment.							
	2.4	Drying - out of Electric N	Machines.							
		Course Outcome: CO2	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
3	Install	ation of Transformer.								
	3.1	Installation and mainter	nance of transformer							
	3.2	Delivery, handling and i	•							
	3.3	Parts of Power Transfor	mer.							
		Course Outcome: CO3	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
4	Earthi	•								
	4.1	Method of Earthing								
	4.2	Installation of different	,,							
	4.3	Testing and maintenand	ce							
		Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
5		enance of Electrical mach								
	5.1		enance, preventive maintenan	ce – planning.						
	5.2	Tools and instruments u								
	5.3	Types & causes of vib	ration.							
		Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)						
	1		. c							

Text books:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Installation, commissioning and maintenance of electrical equipment	Tarlok Singh, S K Kataria and Sons, 2013	978-9350143773
2.	A Course in Electrical Installation Estimating and Costing	J.B. Gupta, S K Kataria and Sons, 2013	978-9350142790

REFERENCE BOOKS:

S. N.	Title	Author, Publisher, Edition and	ISBN
		Year of publication, ,	
1.	Electrical Design	Raina K B	978-8122443585
		New Age International Private	
		Limited	
2.	Maintenance of Electrical	P.P. Gupta. Dhanpat Rai & Co. (P)	9789383182008
	Equipment	Ltd 2018	

E-REFERENCES:

CO VS PO MAPPING

	PO							PSO		
CO	1	2	3	4	5	6	7	1	2	3
1	1	2	3	2	1	2	3	2	1	2
2	1	2	3	2	1	2	3	2	1	2
3	2	3	3	1	1	2	2	3	1	2
4	2	3	3	1	1	3	2	3	2	2
5	2	3	3	1	1	3	2	3	2	2

INDUSTRIAL INSTRUMENTATION AND CONDITION MONITORING

	== == == == == == == == == == == == = =							
PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING								
COURSE CC	DE: DPE 44	2	COURSE TITLE: Industrial Instrumentation And Condition					
	Monitoring							
COMPULSA	COMPULSARY / OPTIONAL: OPTIONAL							
	Teach	ning Scheme	e and Credits		EXAMI	NATION SC	HEME	
L	L T P HOURS/WEEEK CREDIT PE FINAL TOTAL					TOTAL		
3	0	0	3	3	50	50	100	

Course Objectives

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Use instrumentation equipment for condition monitoring and control

Course Outcomes

CO 1	Have an idea about the temperature standards, calibration, thermocouples; signal				
	conditioning used in RTD's and pyrometer techniques.				
CO 2	Learn about Tachometer, Load cells, Torque meter and various densitometers.				
CO 3	Have an adequate knowledge about pressure transducers.				
CO 4	Understand about various types of flow meters and their installation.				
CO 5	Basic Concept of signal conditioning System				

Birla Institute of Technology, Mesra, Ranchi - 835215 (India)

(University Polytechnic)

COURSE	CONT	ENT DETAILS:								
MODULE	TOPIC	CS/SUBTOPICS								
1	Funda	amentals of instrumentation								
	1.1	Basic purpose of instrumentation.								
	1.2	Basic block diagram (transduction, signal conditioning, signal presentation)								
		and their function.								
	1.3	Construction, working and application of switching devices - Push button,								
		limit switch, float switch, pressure switch, thermostat, electromagnetic relay.								
		Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)								
2	Trans	ducers								
	2.1	Distinguish between Primary and Secondary, Electrical and Mechanical, Analog and Digital, Active and Passive.								
	2.2	Advantages, Factors & characteristics of electric transducers								
	2.3	Construction and principle of resistive transducer-Potentiometer.								
	2.4	Strain gauges and its types.								
	2.5	Construction and principle of Inductive transducers.								
		Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)								
3	Meas	urement of Non-Electrical Quantities								
	3.1	Temperature measurement, Construction and Working of RTD, Thermistor								
		and Thermocouple, radiation pyrometer.								
	3.2	Pressure measurement – Construction and working of bourdon tube, bellow								
		diaphragm and strain gauge,								
	3.3	Speed Measurement by contacting and non-Contact all types of tachometer,								
		magnetic pickup and Stroboscope.								
	3.4	Construction and Working of Vibration measurement by accelerometer-LVDT								
		accelerometer, Piezo electric type.								
		Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)								
4	Signal	l Conditioning								
	4.1	Basic Concept of signal conditioning System.								
	4.2	Draw pin configuration of IC 741.								
	4.3	Different Parameters of op-amp:-Input offset voltage, Input offset current,								
		Input bias current, Differential input resistance, CMMR, SVRR, voltage gain,								
		output voltage, slew rate, gain bandwidth. Output, short circuit current.								
	4.4	Use of op-amp as inverting, non- inverting mode, adder, subtractor, and								
		Working of Differential amplifier and instrumentation amplifier.								
		Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)								

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

5	Data Acquisition System
	5.1 Generalized DAS- Block diagram and description of Transducer, signa conditioner, multiplexer, converter and recorder.
	5.2 Draw Single Channel and Multi-channel DAS- Block diagram only. Difference between Signal Channel and Multi-Channel DAS.
	5.3 Data conversion- Construction and Working of Analog to digital conversion-successive approximation method, ramp type method.
	5.4 Digital to Analog conversion- Construction and Working of binary weighted resistance method.
	5.5 Concept and methods of data transmission of electrical and electronic transmission.
	Course Outcome: CO5 Teachina Hours: 8 hrs Marks: 20 (PE+FINAL)

Text books:

S. N.	Title	Author, Publisher, Edition and			
		Year of publication			
1.	Electric and Electronic	Sawhney, A.K., Dhanpat Rai and	8177001000		
	Measurement and	Co. Author, Nineteenth revised			
	instrumentation	edition 2011 reprint, 2014,			
2.	Electronics and	Mehta, V.K. Third edition-	81-219-2729-3		
	instrumentation	S.Chand and company Pvt Ltd			
		Reprint, 2010,			

REFERENCE BOOKS:

S. N.	Title	Author, Publisher, Edition and	ISBN
		Year of publication, ,	
1.	Instrumentation devices and	Rangan, C.S. G.R.Sharma.	10: 0074633503
	system	andV.S.V.Mani, , Pen ram	
		International Publishing India	
		Pvt. Ltd. Fifth edition,	
2.	Industrial instrumentation	Singh, S.K. Tata McGraw-Hill,	007451914X,
	and control	1987.	9780074519141.
3.	Electronic Measurement and	J.G. Joshi, Khanna Publishing	978-93-86173-621
	Instrumentation	House, New Delhi.	

E-REFERENCES:

Birla Institute of Technology, Mesra, Ranchi - 835215 (India)

(University Polytechnic)

CO VS PO MAPPING

		PO							PSO		
СО	1	2	3	4	5	6	7	1	2	3	
1	2	2	3	2	1	3	3	2	2	2	
2	2	2	3	2	3	2	1	2	1	2	
3	1	3	1	2	3	2	1	1	1	2	
4	1	3	1	2	3	3	3	1	1	2	
5	1	3	1	2	1	3	3	2	2	2	

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

APPLIED COMMUNICATION

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING								
COURSE CO	DE: DPE 44	3	COURSE TITLE: Applied Communication					
COMPULSO	COMPULSORY / OPTIONAL: OPTIONAL							
	Teach	ning Scheme	and Credits		EXAMI	NATION SC	HEME	
L	Т	Р	HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL	
3	0	0	3	3	50	50	100	

Course Objectives

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences: • Use relevant data communication technique.

Course Outcomes

This course envisions imparting to students to:

CO 1.	To know the basics of signals needs of modulation and multiplexing techniques.
CO 2.	To know the modulation and de-modulation methods of AM wave, identify different
	section in radio receiver.
CO 3.	To describe FM system, comparison between AM, FM & PM and troubleshooting AM/FM
	radio receivers.
CO 4.	To know the comparisons between analog and digital communication, Channel capacity,
	entropy, Shannon-Hartley theorem, channel noise and its effect.
CO 5.	To know Sampling theorem, Nyquist rate, aliasing, PAM, PWM, PPM, PCM
	transmitter and receiver, quantization error, companding and inter symbol
	interference.

Birla Institute of Technology, Mesra, Ranchi - 835215 (India)

(University Polytechnic)

		ENT DETAILS:						
MODULE	TOPIC	CS/SUBTOPICS						
1	Comn	nunication of Signals ad Transmission Media:						
	1.1	The communication process, sources of Information						
	1.2	Message and signals, classification of signals,						
	1.3	Block diagram of communication system						
	1.4	Modulation, needs of modulation, Radio frequency spectrum, Coaxial cable and						
		Optical fibers.						
	1.5	Multiplexing, Frequency division multiplexing (FDM) and Time division multiplexing						
		(TDM).						
		Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
2		ransmitter and Receiver:						
	2.1	Generation of AM wave, low level and high level modulation,						
	2.2	Mathematical representation of amplitude modulated wave						
	2.3	Bandwidth requirement, AM transmitter block diagram, Modulation and						
	_	Demodulation of AM						
	2.4	Waves Super heterodyne receiver, Receiver parameters: sensitivity, selectivity,						
		fidelity, tracking.						
	2.5	Image frequency and its rejection, IF amplifiers.						
		Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
3		ransmitter and Receiver:						
	3.1	Mathematical representation of frequency and phase modulation,						
	3.2	Narrow-band FM, wideband FM, transmission BW of FM waves.						
	3.3	Generation of frequency modulated waves, Demodulation of FM waves						
	3.4	Pre-emphasis and de-emphasis, Block diagram of FM receiver						
	3.5	Comparison between AM and FM.						
		Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
4	1	duction of Digital Communication:						
	4.1 4.2	Block diagram of basic digital communication system Channel capacity-definition, Hartley's law, Shannon-Hartley theorem, Channel						
	4.2	capacity equation						
	4.3	Channel noise and its effect, entropy.						
	4.4	Advantages and disadvantages of digital communication.						
		Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
5		Communication:						
	5.1	Introduction, comparison with Continuous Wave Modulation						
	5.2	Sampling theorem, Nyquist rate, aliasing, natural and flat top sampling						
	5.3	PAM, PWM, PPM definition, generation.						
	5.4	Block diagram, waveform analysis, and their comparison.						
	5.5	Pulse code modulation- block diagram of PCM transmitter and receiver						
		Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						

Text books:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Electronic communication	Wayne Tomasi, Pearson	
	system	Education	
2.	Digital Communication	Siman Haykin, Jhon wiley &	
		sons	

REFERENCE BOOKS:

S. N.	Title	Author, Publisher, Edition and Year of publication, ,	ISBN
1.	Electronics Communication,	Louis E. Frenzl, Tata McGraw Hill	
2.	Electronic Communications systems,	Roy Blake, Thomson	
3.	Communication System	Roddy Collen, Prentice Hall of India.	

E-REFERENCES:

CO VS PO MAPPING

	PO								PSO		
СО	1	2	3	4	5	6	7	1	2	3	
1	1	3	3	2	1	3	3	2	2	2	
2	1	3	3	2	1	3	3	2	2	2	
3	1	3	3	2	1	3	3	2	2	2	
4	1	3	3	2	1	3	3	2	2	2	
5	1	3	3	2	1	3	3	2	2	2	

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

UTILIZATION OF ELECTRICAL ENERGY

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING								
COURSE CO	DE: DOE 44	1	COURSE TITLE: Utilization of Electrical Energy					
COMPULSORY / OPTIONAL: OPTIONAL								
Teaching Scheme and Credits					EXAMI	NATION SC	НЕМЕ	
L	Т	Р	HOURS/WEEEK	CREDIT	PE	FINAL	TOTAL	
3	0	0	3	3	50	50	100	

Course Objective:

The aim of this course is to help the student to attain the following industry identified competency through various teaching learning experiences: • Maintain electric traction systems.

Course Outcomes

CO 1	Understand the importance of good illumination in factory, residential and flood lighting.							
CO 2	Compare different methods of electric heating and welding.							
CO 3	Select Electric Drive for specific applications.							
CO 4	Explain the working of various components in Electric Traction system and list the							
	advantages.							
CO 5	Analyze the electric circuits of refrigerator, water cooler and air conditioner for							
	troubleshooting.							
CO 6	Apply various measures for economic aspects of utilizing electrical energy.							

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

1 Electrical Heating and Welding: 1.1 Introduction to Heating and Welding. 1.2 Advantages of electrical heating and welding. 1.3 Types of Electrical heating. 1.4 Types of Electrical welding.	
1.2 Advantages of electrical heating and welding.1.3 Types of Electrical heating.	
1.3 Types of Electrical heating.	
1.4 Types of Electrical welding.	
Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINA	<u>,) </u>
2 Illuminations:	
2.1 Introduction to Law of Illuminations.	
2.2 Design of illumination scheme	
2.3 control of lighting system.	
2.4 Various types of modern lighting systems.	
Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINA	<u>) </u>
3 Electrolysis and Electroplating:	
3.1 Basic principle and Laws of electrolysis	
3.2 Extraction of metals.	
3.3 Electroplating	
3.4 Power supply for electrolysis process.	
Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINA	<u>,) </u>
4 Industrial Control:	
4.1 Control of DC and AC motors.	
4.2 Industrial applications of various motors.	
4.3 Methods of speed control of various motors.	
4.4 Electrical breaking of motors.	
Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINA	<u>,) </u>
5 Traction:	
5.1 Introduction to traction.5.2 Advantage of electric traction system over other system.	
5.3 Alternating and direct current, traction motor.	
5.4 Electrical and mechanical braking.	
Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINA)	.)

Text books:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Utilization of electrical power and Electric traction	J.B. Gupta	
2.			

REFERENCE BOOKS:

S. N.	Title	Author, Publisher, Edition and	ISBN
		Year of publication, ,	
1.	Generation , distribution and	C.L Wadhwa	
	utilization of electrical energy		
2.	Utilization of electrical power	N.V. Suryanarayana	
3.			

E-REFERENCES:

CO VS PO MAPPING

	PO								PSO		
СО	1	2	3	4	5	6	7	1	2	3	
1	1	3	3	2	1	3	3	2	2	2	
2	1	3	3	2	1	3	3	2	2	2	
3	1	3	3	2	1	3	3	2	2	2	
4	1	3	3	2	1	3	3	2	2	2	
5	1	3	3	2	1	3	3	2	2	2	

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Electrical Energy Generation System

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING								
COURSE CODE: DOE 442 COURSE TITLE: Electrical Energy Generation System								
COMPULSA	RY / OPTIO	NAL: OPTIC	NAL					
	Teaching Scheme and Credits EXAMINATION SCHEME							
L T P HOURS/WEEEK CREDIT PE FINAL TOTAL								
3 0 0 3 3 50 50 100								

RATIONALE:

1.	Explain the working of different power plants.
2.	Identify different components for various systems in generating stations.
3.	Select suitable sites for different power stations.
4.	Define the terms used in economics of power generation.
5.	Identify the working of Non-conventional Sources of Energy.

Course Outcomes:

CO 1	Outline the significance of various components of the thermal power generation plants
	and explain the governing system for bulk energy generation.
CO 2	The basic knowledge of Hydro electric power generation.
CO 3	Outline the significance of nuclear power plant components.
CO 4	Understanding diesel power plant and its components.
CO 5	The basic knowledge of non-conventional energy sources power plants.

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

MODULE	TOPI	CS/SUBTOPICS		
	TITLE:	Thermal Power Station		
	1.1	Selection of site for a th	nermal Power station.	
1	1.2	Layout and Main comp		
	1.3	Types of boilers and the	eirs characteristics.	
1	1.4	Steam turbines and the	eir characteristics.	
	1.5	Governing system for t	hermal stations.	
	Cour	se Outcome: CO1	Teaching Hours : 8 hrs	Marks: 20 (PE+FINAL)
		: Hydro Power Station	readining reads to mis	Warks 20 (F2 · File it)
	2.1	•	t and Main components.	
	2.2	Classification of Hydro	-	
	2.3	•	and operation of a Hydro Plant.	
2	2.4	Types of turbines using		
	2.5	Governing system for H	•	
		5 ,	•	
	Cour	se Outcome: CO 2	Teaching Hours : 8 hrs	Marks: 20 (PE+FINAL)
	TITLE	: Nuclear Power Station		
	3.1	•		
	3.2			
3	3.3			
	3.4	Safety of nuclear powe	r reactor.	
	Cour	se Outcome: CO 3	Teaching Hours : 8 hrs	Marks: 20 (PE+FINAL)
	TITLE	: Diesel Electric Station		,
	4.1	Selection of site, layout	and Main components.	
	4.2	Choice and characterist	tics of diesel engines.	
4	4.3	Diesel plant efficiency a	and heat balance.	
	4.4	Diesel plant maintenan	ce.	
		rse Outcome: CO 4	Teaching Hours : 8 hrs	Marks: 20 (PE+FINAL)
		: Non-conventional Sou		
	5.1	Wind power plant and	• •	
_	5.2	Solar plant and its appl		
5	5.3	Tidal power plant and i	is applications.	
	5.4	Bio gas power plant.		
	Cou	rse Outcome: CO 5	Teaching Hours : 8 hrs	Marks: 20 (PE+FINAL)

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Text books:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Power Plant Engineering	Nag, PK McGraw Hill Education 4th Edition 2017	978-9339204044
2.	A Textbook on Power System Engg.	A. Chakrabarti M.L. Soni P.V. Gupta), U.S. Bhatnagar Dhanpat Rai & Co. (P) Limited. 2016	978-8177000207
3.	Principles of Power System	V.K. & Mehta Rohit S.Chand 2022	978-8121924962

Reference books:

S. N.	Title	Title Author, Publisher, Edition and Year of publication	
1.	Elements of Electrical Power Station Design	Deshpande M.V Prentice Hall India Learning Private Limited 2009	978-8120336476
2.	Electric Power Generation, Transmission and Distribution	Singh S.N , Prentice Hall India Learning Private Limited, 2nd 2008.	978-8120335608
3.	Generation, Distribution and Utilization of Electrical Power	C.L. Wadhwa, John Wiley & Sons (Asia) Pte Ltd, Revised, 1998	978-8122400731

E Reference:

2. power-plant-engineering-pk-nag1-pdf-free.html

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #		Program Outcomes						PSO		
	1	2	3	4	5	6	7	1	2	3
1	2	3	2	1	1	1	1	1	2	3
2	2	3	2	2	1	1	1	2	1	2
3	2	3	3	3	1	1	1	2	1	2
4	2	2	1	2	1	1	1	2	1	2
5	2	3	2	2	1	1	1	2	1	2

EXPERT CONSULTATION COMMITTEE (ACADEMICS / INDUSTRIES)

S. No	Name	DESIGNATION	INSTITUTE/ORGANIZATION
1.			
2.			
3.			

(University Polytechnic)

FUNDAMENTAL OF POWER ELECTRONICS

PROGRAMME: DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING								
COURSE CODE: DOE 443 COURSE TITLE: Fundamental of Power Electronics								
COMPULSO	RY / OPTIO	NAL: OPTIC	DNAL					
	Teaching Scheme and Credits EXAMINATION SCHEME							
L T P HOURS/WEEEK CREDIT PE FINAL TOTAL								
3	0	0	3	3	50	50	100	

RATIONALE:

This course envisions imparting to students to:

1.	To understand the various applications of power electronic devices for conversion, control and conditioning of the electrical power and to get an overview of different types of power semiconductor devices and their dynamic characteristics.
2.	To understand the operation, characteristics and performance parameters of controlled rectifiers.
3.	To study the operation, switching techniques and basic topologies of DC-DC switching regulators.
4.	To learn the different modulation techniques of pulse width modulated inverters and to understand harmonic reduction methods.
5.	To study the operation of AC voltage controller and various configurations of AC voltage controller

Course Outcomes:

CO 1.	Understand the operation of semiconductor controlled devices.				
CO 2.	Analyze the various uncontrolled rectifiers and design suitable filter circuits				
CO 3.	Analyze the operation of the n-pulse converters and evaluate the performance				
	parameters				
CO 4.	Understand various PWM techniques and apply voltage control and harmonic				
	elimination methods to inverter circuits.				
CO 5.	Understand the operation of AC voltage controllers and its applications.				

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

MODULE		ENT DETAILS:		
INIODOLE		S/SUBTOPICS	r Davissa.	
		: Power Semiconductor		
1	1.1	Introduction to power e		
	1.2	Study of switching device		
1	1.3	Switching devices chara		
	1.4	Performance parameter	rs.	
		Caura Outama CO1	Tomahina Hawar Ohus	8.4 miles 20 (DE : 518181)
		Course Outcome: CO1	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)
	2.1	: Thyristors: Introduction & basic str	ucture of SCB	
	2.1	Static and dynamic char		
	2.2	Two transistor model of		
2	2.3	Methods of turning & R		
	2.5	Protection of SCR	and ite ming circuit	
	2.5	Commutation circuits for	or SCD	
	2.0	Commutation circuits ic	JI JEN	
		Course Outcome: CO2	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)
	TITLE	: CONTROLLED RECTIFI	ERS:	
	3.1	Review of uncontrolled		
	3.2	1-phase controlled recti		
	3.3	H.W and F.W with resist	tive and inductive load	
3	3.4	Effect of freewheeling d	liode	
	3.5	Current distortion, rippl	e and harmonic factor	
	3.6	3-phase controlled recti	fiers.	
		Course Outcome: CO3	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)
		: DC-DC Converters(Cho	-	Warks. 20 (FETT IIVAL)
	4.1	Step down and step up		
	4.2	Different control strates	• •	
4	4.3	Classification of chops		
7	4.4	Buck and Boost convert		
	4.4	buck and boost convert	ei	
		Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)
	TITLE	: Inverters:		
	5.1	Single phase series reso	nant inverter	
	5.2	Single phase and three p	phase voltage source inverters	
_	5.3	Voltage control of inver	ters.	
5	5.4	_	hniques PWM and SPWM.	
	5.5	Current source inverte		
		Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)

Birla Institute of Technology, Mesra, Ranchi - 835215 (India) (University Polytechnic)

Books recommended:

Textbook:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Power Electronics: Converters, applications and design	Ned Mohan, T.M.Undeland, W.P.Robbins, John Wiley and Sons, 3rd Edition (reprint), 2009	
2.	Power Electronics Circuits, Devices and Applications	Rashid M.H., , Prentice Hall India, 3rd Edition, New Delhi, 2004.	

Reference book:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Power Electronics	Cyril. W. Lander, McGraw Hill International, Third Edition, 1993.	
2.	Power Electronics	P.S.Bimbhra, Khanna Publishers, Third Edition 2003	
3.	Power Electronics	P.C.Sen, Tata McGraw-Hill, 30th reprint, 2008.	

E- Reference

Mapping of Course Outcomes onto Program Outcomes

Course Outcome #	Program Outcomes					PSO				
	1	2	3	4	5	6	7	1	2	3
1	2	3	2	1	1	1	1	1	2	3
2	2	3	2	2	1	1	1	2	1	2
3	2	3	3	3	1	1	1	2	1	2
4	2	2	1	2	1	1	1	2	1	2
5	2	3	2	2	1	1	1	2	1	2

EXPERT CONSULTATION COMMITTEE (ACADEMICS / INDUSTRIES)

S. No	Name	DESIGNATION	INSTITUTE/ORGANIZATION
1.			
2.			