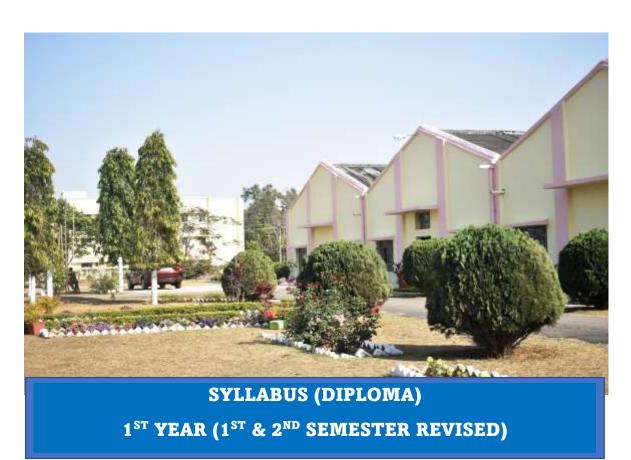


COURSE STRUCTURE AND FULL-LENGTH SYLLABUS OF FIRST YEAR DIPLOMA IN ENGINEERING



BIRLA INSTITUTE OF TECHNOLOGY MESRA
UNIVERSITY POLYTECHNIC

UNIVERSITY POLYTECHNIC BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI

COURSE STRUCTURE (DIPLOMA ALL BRANCHES)

1ST SEMESTER

S. N.	COURSE CODE	COURSE TITLE	SEGMENT	L	T	P	LECTURE HOUR	CREDIT
1	DBS 101	Engineering Chemistry	BS	3	1		4	4
2	DBS 103	Applied Physics-I	BS	2	1		3	3
3	DBS 105	Mathematics-I	BS	3	1		4	4
4	DES 101	Introduction to IT Systems	ES	2	1		3	3
5	DBS 104	Applied Physics Lab	BS			2	2	1
6	DHS 103	Communication Skills	HS	3	0	0	3	3
7	DHS 102/104/106	Sports and Yoga/NSS/NCC	HS			2	2	1
8	DES 102	Engineering Graphics	ES			3	3	1.5
9	DES 104	Engineering Workshop Practice	ES			3	3	1.5
		Periods per week		13	4	10	27	
		Total credits						22
		Total periods per week						27

COURSE STRUCTURE (DIPLOMA ALL BRANCHES)

2ND SEMESTER (DIPLOMA)

S.	COURSE	COURSE TITLE SEGMENT L T I		P	LECTURE	CREDIT		
N.	CODE						HOUR	
1	DBS 201	Applied Physics-II	BS	2	1		3	3
2	DBS 203	Mathematics-II	BS	3	1		4	4
3	DES 205	Fundamentals of	ES	3			3	3
		Electrical &						
		Electronics						
		Engineering						
4	DES 203	Engineering	ES	3			3	3
		Mechanics						
5	DAU 201	Environmental	AUDIT	2			2	0
		Sciences						
6	DBS 202	Applied Chemistry	BS			2	2	1
		Lab						
7	DES 202	Fundamentals of	ES			2	2	1
		Electrical &						
		Electronics						
		Engineering Lab						
8	DES 204	Engineering	ES			2	2	1
		Mechanics Lab						
9	DES 206	Introduction To IT	ES			2	2	1
		Systems Lab						
10	DHS	Sports and	HS			2	2	1
	202/204/206	Yoga/NSS/NCC						
		Periods per week		13	2	10	25	
		Total credits						18
		Total periods per						25
		week						

ENGINEERING CHEMISTRY

PROGRA	PROGRAMME: DIPLOMA IN ENGINEERING (ALL BRANCHES)							
COURSI	COURSE CODE: DBS 101 COURSE TITLE: ENGINEERING CHEMISTRY							
COMPU	LSORY /	OPTION A	AL: COMPULSORY	7				
	Teaching Scheme and Credits EXAMINATION SCHEME							
L	T	P	HOURS/WEEK	HOURS/WEEK CREDIT PE FINAL TOTAL				
4	1 4 4 QUIZ- 50 100					100		
	20, TA-							
	5, MID-							
					25			

Keeping in view the continuous development in science & technology and the present need of industries as well as research organizations, the curriculum of Basic Chemistry has been designed so that

- The students will be able to develop knowledge; skill and scientific attitude w.r.t. distinguish, differentiate, analyze and solve basic problems of chemical sciences.
- The students may have better knowledge of Basic chemistry and its applications in the various fields of engineering and allied industries.
- A new chapter on Environmental Chemistry has been introduced to make the students acquainted with various types of pollution hazards, which are becoming more critical every day.
- Fundamental knowledge of measurement; related to different types of solutions.
- Structure and chemical properties of an atom & molecules, periodic trends, chemical bonding, concepts of acids & bases.

COURSE OUTCOMES Students will understand.

CO1	The fundamental knowledge of measurement and concentration in solutions.						
	Better knowledge of Basic chemistry and its applications in the various fields						
	of engineering and allied industries. Apply the knowledge of acids & bases						
	and chemical equilibrium as required in core area.						
CO2	Different types of water used for municipal, domestic, drinking and industrial						
	purposes and its treatments. Students will be able to know the industry related						
	problems of water and their remedies.						
CO3	Overview of metallurgy with special reference to metallurgy of Iron and						
	Aluminium. Alloys and their uses. Engineering materials like Polymers and						
	their uses.						
CO4	Fuel and its classification, properties. Petroleum and its refining process,						
	Knocking of Petrol, Diesel, Gaseous fuel.						
CO5	Corrosion, Types of corrosion and protection. Lubricants. Concept of						
	Electrochemistry and its applications.						

MODULE	TOPICS/SUBTOPICS				
1	TITLE: Basic concepts of Chemistry:				
1	1.1 Mole concept, Equivalent weight, Concentration terms Molarity,				
	Normality and molality with numerical.				
	1.2 Atomic structure: Concept of atom and molecules, Orbit and orbital,				
	Atomic number, Mass number, Bohr's atomic model and its drawback, Hund's				
	rule, Aufbau's rule, Electronic configuration, Dual nature of matter (de				
	Broglie relationship).				
	1.3 Periodic table Modern periodic table, Law and structure of periodic table,				
	Periodic properties (Atomic radius, Ionization energy, Electron affinity and				
	Electronegativity) and its periodic trends,				
	1.4 Chemical bonding : Electrovalent bond, Covalent bond with suitable				
	examples, Lewis dot structure.				
	Course Outcome: CO1 Teaching Hours: 10 hrs				
2	TITLE: Water Technology				
	2.1 Hardness of water. Temporary & Permanent Hardness.				
	2.2 Water Treatment- Lime Soda, Zeolite and Ion exchange method				
	2.3 Action of Soap and detergent, Boiler feed water,				
	2.4 Scale & Sludge formation, Priming and foaming as troubles and remedial				
	measures.				
	Course Outcome: CO2 Teaching Hours: 10 hrs				
3	TITLE: Metallurgy and Polymer				
	3.1 General Process of Extraction.				
	3.2 Definition of metallurgy related term like Ore, Mineral, Gangue (matrix),				
	Flux, Slag.				
	3.3 Extraction of - Iron from haematite ore using blast furnace. (Reactions				
	and Fig)				
	3.4 Extraction of Aluminium from bauxite along with reactions. (Reactions				
	and Flowsheet)				
	3.5 Alloys – Definition, purposes of alloying, ferrous alloys and non-ferrous				
	with suitable examples, properties and applications. General chemical				
	composition, composition-based applications				
	3.6 Polymers, Types of polymerization, monomer.				
	3.7 Thermoplastics and thermosetting plastics				
	3.8 Application of Polymers and the uses, (Polythene, Polypropene, PVC,				
	PS, PTFE,Buna -S, Buna-N, nylon – 6, nylon-6,6 and				
	Bakelite), 3.9 Rubber and vulcanization of rubber				
4	Course Outcome: CO3 Teaching Hours: 10 hrs TITLE: Fuel & Combustion				
4	4.1 Definition, classification of fuels .				
	4.1 Definition, classification of fuers. 4.2 Calorific values (HCV and LCV), calculation of HCV and LCV using				
	Dulong's formula				
	4.3 Fuel Petrol and diesel, Knocking- fuel rating (octane and cetane				
	numbers),				
	4.4 Proximate and Ultimate Analysis of coal.				
	4.5 LPG, CNG, water gas, coal gas, producer gas and biogas				
	110 21 0, 0110, mater gas, coar gas, producer gas and brogas				

	4.6 Lubricant, Definition, classification with examples, and characteristic						
	properties of good lubricant, classification with examples						
	4.7 Lubrication – function, lubrication mechanism – hydrodynamic and						
	boundary lubrication, physical properties (viscosity and viscosity index,						
	oiliness, and chemical properties (coke number, total acid number						
	saponification value) of lubricants.						
	4.8 Flash and fire point, cloud and pour point.						
	Course Outcome: CO4 Teaching Hours: 10 hrs						
5	TITLE: Electrochemistry and Corrossion						
	5.1 Electronic concept of Oxidation, reduction and redox reactions.						
	Definition of terms Electrolyte, Non-Electrolyte with sutaible						
	examples, Faraday laws of electrolysis and simple numerical problems.						
	5.2 Electrometallurgy, Electroplating, and Electrolytic refining.						
	5.3 Application of Redox reactions in Electrochemical cells. Primary cells-						
	Dry cells, Secondary cells-commercially used Lead storage battery, Fuel and storage battery. Fuel and Solar cells						
	5.4 Definition, Types of Corrossion, Hydrogen libration and Oxygen						
	absorption mechanism of Electrochemical Corrossion, Factors affecting rate						
	of Corrossion.						
	5.5 Internal Corrossion preventive measures.						
	5.6 Purification, Alloying and heat treatment and external corrosion						
	preventive measure, (metal, anodic, cathodic), Coating, Organic Inhibitors.						
	Course Outcome: CO5 Teaching Hours: 10 hrs						

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Engineering Chemistry	Shashi Chawla, Dhanpat Rai & Co.3 rd edition, 2017	ASIN: B01MUBN7F2
2.	Engineering Chemistry	Jain & Jain, Dhanpat Rai, 17 th edition, 2018	9352165721
3.	Pradeep's New Course Chemistry for Class 11&12 (Vol. 1 & 2)	S.C. Kheterpal, S. N. Dhawan, Pradeep, 2020	9789391966355
4.	NCERT CHEMISTRY For Class XI & XII	NCERT, 2018	81-7450-648-9

E-REFERENCES:

- 1. https://ncert.nic.in/textbook.php?lech1=ps-9
- 2. http://www.tndte.gov.in/site/wp-content/uploads/2016/08/Engineering-Chemistry.pdf

APPLIED PHYSICS-I

PROGRAMME: DIPLOMA IN ENGINEERING (ALL BRANCHES)							
COURSE CODE: DBS 103 COURSE TITLE: Applied Physics-I							
COMPUL	COMPULSORY / OPTIONAL: COMPULSORY						
	Teaching Scheme and Credits EXAMINATION SCHEME						CHEME
L	T	P	HOURS/WEEK	HOURS/WEEK CREDIT		FINAL	TOTAL
2	1		3	3 3		50	100
	20, TA-						
			5, MID-				
					25		

COURSE OUTCOMES

This paper Applied Physics-I, enables the students to understand

ar & cal
cal
,
,
le
ion
dulus
ace
,
,
es of
y

Boyle's Law, Charles's law and Gay-Lussac's law, Avogadro's Number, Ideal
Gas equation, Zeroth law, First law of Thermodynamics,

MODULE	TOPICS/SUBTOPICS					
1	Measurement of Physical Quantities & Dimensions: Classification of Physical quantities (Fundamental & Derived with their Units), Scalar & Vector quantities, System of units (M.K.S., C.G.S., F.P.S. & SI), Dimensions of the physical quantities, Principle of homogeneity of dimensions, Order of magnitude, Significant figures, Error in measurement- Systematic error and Random Error, Estimation of errors- Absolute error, Relative error and Percentage error, Simple Problem, Differential & Integral calculus (Introduction only). Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)					
2	Force and Motion: Definitions of Distance, Displacement, Velocity, Speed and Acceleration, Momentum, Force, Torque, Moment of Inertia, Motion in straight line, Circular motion, Equations of Motion- $v = u + at$, $S = ut + \frac{1}{2}at^2$, $v^2 = u^2 + 2as$, Distance travelled by particle in n th second, Equations of motion for motion under gravity. Statements of Newton's laws of motion, Motion of lift,					
3	Projectile motion-Time of flight, Vertical height and Horizontal range, Simple problems. Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL Gravity and Planetary Motion: Newton's law of gravitation, Variation of acceleration due to gravity 'g' (On the Earth Surfacinside the earth and above the earth), Gravitational Potential Energy, Escape Velocity, Planet					
	and Satellites, Kepler's laws of Planetary motion, Simple Problem. Work, Energy and Power: Definitions of work, energy and power with their units and mathematical expressions, kinetic energy and potential energy, Related problems.					
4	Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL) Mechanical Properties of Matter: Elasticity: Stress, Strain, Hooke's law, Modulus of elasticity (Young's Modulus, Bulk's Modulus and Modulus of rigidity). Surface Tension: Surface Tension, Surface energy, Relation between Surface Tension and Surface energy, Angle of contact, Shape of Meniscus, Capillarity, Determination of surface tension by capillary rise method, Simple Problem. Fluids (At rest and motion): Density and Pressure, Fluid at rest (Pascal Principle, Archimedes's Principle), Bernoulli's Theorem (Without Proof) Viscosity: Newton's law of viscosity, Coefficient of viscosity, Streamline and turbulent flow, Critical velocity and Reynold's number, Stoke's law, Poiseiulle's formula for steady flow (Without proof), Simple Problem. Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)					
5	Heat and Thermodynamics: Three modes of transmission of heat (Conduction, Convection and Radiation), good and bad conductor with examples, expansion of solid –linear, aerial and cubical and relation between them. Boyle's Law, Charles's law and Gay-Lussac's law, Avogadro's Number, Ideal Gas equation, Isothermal, Isobaric, Isochoric and Adiabatic processes, Zeroth law of Thermodynamics, First law of Thermodynamics, Related Problem. Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)					

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	1.Physics Part-I Textbook for Class XI	National Council of Educational Research and Training (NCERT)	ISBN-81-7450-508-3
2.	2. Concepts of Physics by H C Verma Part-I	H.C Verma, Bharati Bhawan.	ISBN-13 978-8177091878
3.	Question Bank Physics For Class XI	Tata McGraw-Hill, publisher, McGraw-Hill Education (India) Pvt Limited.	ISBN, 0070221952
4.	Modern ABC of Physics - Class XI	Modern Publishers Satish K. Gupta	ISBN:9789388352383
5.	S. Chand's Principles of Physics For class XI	S. Chand & Company LTD., V.K. Mehta, Rohit Mehta,	ISBN:9788121919340
6.	ISC Physics Book - 1 for Class XI	S.Chand (G/L) & Company Ltd D.K. Benerjee P. Vivekanandan	ISBN 9788121918978 (ISBN10: 8121918979)

E-REFERENCES:

- 1. http://www.freebookcentre.net
- 2. http://www.msuniv.ac.in
- 3.
- 4. https://e-booksdirctory.com
- 5. https://www.infobooks.org
- 6. e-books/e-tools/ learning physics software/websites etc.

MATHEMATICS-I

PRO	PROGRAMME: DIPLOMA IN ENGINEERING						
COU	COURSE CODE: COURSE TITLE: MATHEMATICS-I						
	DBS 10)5					
CON	MPULS	ORY /	OPTIONAL: COM	PULSORY			
	Teaching Scheme and Credits EXAMINATION SCHEME				EME		
L T P HOURS/WEEK CR			CREDIT	PE	FINAL	TOTAL	
3	1	0	4	4	Q-20, TA-5,	50	100
					MID-25		

L= Lecture, T= Tutorial and P= Practical, Q= Quiz, TA= Teacher Assesment, MID= Mid Semester Exam

RATIONALE: Provide basic knowledge of Mathematics for understanding the concepts of engineering and technology.

COURSE OUTCOMES

CO1	Students will learn the fundamentals of Elementry Algebra, e.g., Complex Numbers,
	Solution of Quadratic Equations, Binomial Theorem, A.P., and G.P.
CO2	The students will get basic knowledge of 2-D Coordinate Geometry required for
	various fields of engineering and allied sciences.
CO3	The students will learn and understand the fundamental trigonometric identities and
	their applications.
CO4	The students will understand and apply the Algebra of Vectors and Vector Products
	knowledge.
CO5	The students get an intuitive knowledge of the basic concept of Limits and
	Derivatives.

COURSE CONTENT DETAILS:

MODULES WITH TOPICS

1. MODULE-I Basic Algebra

- 1.1. Definition and algebra of complex numbers, conjugate, modulus, and their properties.
- 1.2. Nature of roots of quadratic equations. Solution of quadratic equations with complex roots.
- 1.3. Definition of factorial notation, the formula of permutation and combinations. Binomial theorem for positive index. General terms and related problems.
- 1.4. Definition of A.P., G.P. Finding nth term and sum to n terms of A.P. and G.P.

Course Outcome: CO1 Teaching Hours: 12 hrs

2. MODULE-II Coordinate Geometry:

- 2.1. Cartesian Coordinates, Distance formulae, section formulae, midpoint, centroid of triangle, area of a triangle.
- 2.2. General equation of a straight line and its standard forms. Length of perpendicular.
- 2.3. Equation of circle, circle through three points, the circle with a given diameter.
- 2.4. Standard equations and properties of ellipse, parabola, and hyperbola.

Course Outcome: CO2 Teaching Hours: 10 hrs

3. MODULE-III Trigonometry

0

Agenda for 115th Meeting of Academic Council dated 25th July 2024(Thursday); Page 7 of 12

- 3.1. Measurements of angles. Trigonometric or Circular functions. Formula and use of the identities $\sin(A \pm B)$, $\cos(A \pm B)$, $\tan(A \pm B)$, $\cot(A \pm B)$, $\cos\left(\frac{A \pm B}{2}\right)$, $\sin\left(\frac{A \pm B}{2}\right)$
- 3.2. Trigonometric ratios of multiple angles and related identities.
- 3.3. Trigonometric ratios sub-multiple angles with related identities.

Course Outcome: CO3 Teaching Hours: 12 hrs

4. MODULE-IV Vector Algebra

- 4.1. Definition of Vector, Position Vector, Algebra of vectors (Equality, addition, subtraction, and scalar multiplication).
- 4.2. Dot (Scalar) product with properties.
- 4.3. Vector (Cross) product with properties.

Course Outcome: CO4 Teaching Hours: 6 hrs

5. MODULE-V Elementary Calculus: Derivatives

- 5.1. The intuitive idea of functions and limits. Limits of polynomials and rational functions; trigonometric, exponential, and logarithmic functions.
- 5.2. The definition of derivative relates to the slope of the tangent of the curve, the derivative of the sum, difference, product, and quotient of functions.
- 5.3. Derivatives of polynomial and trigonometric functions.

Course Outcome: CO5 Teaching Hours: 8 hrs

TEXT AND REFERENCE BOOKS

S. N.	Title	Author, Publisher, Edition, and Year of publication	ISBN
5.	Senior Secondary School	R. S. Agarwal, Bharati Bhavan	ISBN-13:
	Mathematics for Class 11	Publishers & Distributors. 2020	978-9350271476
6.	Senior Secondary School	R. S. Agarwal, Bharati Bhavan	ISBN-13:
	Mathematics for Class 12	Publishers & Distributors. 2020	978-9350271247
7.	ISC Mathematics Book 1 XI	O.P. Malhotra & S. K. Gupta & Anubhuti Gangal, 2020	ASIN: B0B2W2DXGM

E-REFERENCES:

- 1. NCERT (Mathematics for Class-XI)
- 2. NCERT (Mathematics for Class-XII Part-1)
- 3. NCERT (Mathematics for Class-XII Part-2)
- 4. SWAYAM Lecture on Mathematics XI Part-I
- 5. SWAYAM Lecture on Mathematics XI Part-II
- 6. SWAYAM Lecture on Mathematics XII Part-I

Introduction to IT Systems

	PROGRAMME: DIPLOMA IN ENGINEERING							
COURSE CODE: DES 101 COURSE TITLE: Introduction to IT Systems					ns			
	COMPULSORY / OPTIONAL: COMPULSORY							
	Teaching Scheme a			and Credits		EXAMI	NATION S	СНЕМЕ
	L	T	P	HOURS/WEEK	CREDIT	PE	FINAL	TOTAL
	2	1		3	3	50	50	100

COURSE OUTCOMES

CO1	Students should learn about the working of the computer system and the role of
	software.
CO2	Students should understand how data is represented and processed within the computer.
CO3	Students should learn about the computer networks and the Internet, and various device involved in their setup, and also their advantages.
CO4	Students should be aware of various types of threats when connected online, and certain precautions they should take to prevent them.
CO5	Students should be familiar with various upcoming and evolving technologies.

MODULE	TOPICS/SUBTOPICS					
1	TITLE Introduction to Computer Hardware and Software					
	1.1 Data processing, Computer Hardware and Software,					
	1.2 Components of Computer, I/O Devices					
	1.3 Computer Memory					
	1.4 Types of Computer Software, Application Software, Operating System					
	1.5 Programming Languages, Translators.					
	Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)					
2	TITLE Computer Codes and Data Representation					
	1.1 Data Representation: Number Systems					
	1.2 Conversion from one base to another					
	1.3 Arithmetic Operations on Binary Data					
	1.4 Alphanumeric Representation					
	1.5 Floating Point Representation.					
	Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)					
3	TITLE Computer Network and Internet					
	1.1 Data Communication, Communication Devices					
	1.2 Computer Networks, Type of Network					
	1.3 Internet, Internet Services, Internet Protocols					
	1.4 URL & IP Addresses					
	1.5 World-wide Web, Web Browsers, Web Servers					
	Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)					
4	TITLE Information and Network Security					
	1.1 Information Security					
	1.2 Software Vulnerabilities					

	1.3 Network Security and	Authentication				
	1.4 Cyber Security, Comm	non Cyber Threats				
	1.5 Cyber Law					
	Course Outcome: CO4	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)			
5	TITLE Emerging Areas					
	1.1 Multimedia, E-comme	1.1 Multimedia, E-commerce				
	1.2 Geographical Information System					
	1.3 Virtual Reality (VR), Augmented Reality					
	1.4 Artificial Intelligence	1.4 Artificial Intelligence (AI), Machine Learning (ML)				
	1.5 Internet of Things (IoT), Robotics					
	1.6 Data Sciences, Block	1.6 Data Sciences, Block Chain				
	Course Outcome: CO5	Teaching Hours: 8 hrs	Marks: 20 (PE+FINAL)			

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	"Fundamental of Computers"	V. Rajaraman, PHI	
2.	"Fundamental of Computers"	E. Balagurusamy, Mc Graw Hill	9780070141605

E-REFERENCES:

3. Jaiswal. S., "Information Technology Today", Galgotia Publication.

APPLIED PHYSICS LAB

PROGRA	PROGRAMME: DIPLOMA IN ENGINEERING						
COURSE CODE: DBS 104 COURSE TITLE: APPLIED PHYSICS LAB				B			
COMPUL	COMPULSORY / OPTIONAL: COMPULSORY						
Teaching Scheme and			and Credits		EXAMI	NATION S	CHEME
L T P		HOURS/WEEK	CREDIT	PE	FINAL	TOTAL	
		2	2	1	60	40	100

COURSE OUTCOMES

To impart basic knowledge in the discipline of Physics including its phenomenology, theories, concepts, general principles and techniques.

- + To enable the students to have a thorough exposure to the different branches of Physics so as to gain a comprehensive knowledge in the subject of Basic Physics.
- 2. To understand the links of Physics to other disciplines and also to the societal issues.
- 3. To bridge the gap between the School and Diploma levels of Physics by providing a completer and more logical framework in important areas of basic Physics.
- 4. Objective of the paper is to provide a basic knowledge in Applied Physics for Diploma students who do not study physics as major/allied subject

OBJECTIVE: This paper Applied Physics Lab, enables the students to understand Vernier Calipers, Screw Gauge, Ohm's law, Ammeter, Galvanometer, Acceleration due to gravity, Colour code resistance, Prism, Force Constant, Modulus of rigidity etc..

- To be able to understand the concepts of Physics through different experiments.
- > To acquire the basic trouble shooting skills and appreciate Physics concepts through experiments
- ➤ Learners will acquire the basic knowledge of Physics
- ➤ Objective of the paper (Physics Lab) is to gain knowledge on Basic applications of **Physics**

LIST OF EXPERIMENTS

1. To find the diameter and volume of a given wire using a Screw Gauge.

- 2. To find the side and volume of a given wooden cube using a Vernier Caliper.
- 3. To find the length, diameter and volume of a given wooden cylinder using a Vernier Caliper.
- 4. To Verify Ohm's Law by using an Ammeter & Voltmeter.
- 5. To determine the value of 'g' (accelerator due to gravity) by using a simple Pendulum.
- 6. To determine the given carbon resistance using a Multimeter and to compare it with measured value with the written in Colour Code.
- 7. To find the angle of minimum deviation of a given glass prism.
- 8. To find the force constant of a helical spring by plotting a graph between load and extension.
- 9. To determine the value of modulus of rigidity for the material of rod by static method.
- 10. To convert a Weston type Galvanometer into an Ammeter of a given range.
- 11. To convert a Weston type galvanometer into a Voltmeter of given range.
- 12. To study the relation between frequency and length of a stretch string using a Sonometer.

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Physics, Practical & Lab Manuals, Science	JN.Jaiswal, Dr. Rajendra Singh, Laxmi Publications	9788131801413
2.	Laboratory Manual Physics Class- XI	Poonam Singh, Rohan Srivastava, S. Singal, Avichal Publishing Company	978-81-7855-601-7
3.	Physics Manual	University Polytechnic	
4.	Nootan Isc Practical Physics Class 11	PublisherNageen Prakashan Pvt.Ltd	ISBN- 139789382319702
5.	COMPREHENSIVE PRACTICAL PHYSICS XI & XII	J. N. Jaiswal (Author), <u>Dr.</u> Rajendra Singh (Author) Laxmi Publications Pvt Ltd	ISBN:9788131801413, 8131801411 ISBN:9788131803844, 8131803848

COMMUNICATION SKILLS

PRO	PROGRAMME: DIPLOMA IN ENGINEERING						
COURSE CODE: COURSE TITL				E TITLE: C	COMMUNICATION	SKILLS	
	DHS 10)3					
CON	MPULS	ORY /	OPTIONAL: COM	PULSORY			
Teaching Scheme and Credits			S	EXAMINAT	ION SCHE	EME	
L T P HOURS/WEEK C			HOURS/WEEK	CREDIT	PE	FINAL	TOTAL
3	0 0 3		3	Q-20, TA-5,	50	100	
					MID-25		

COURSE OBJECTIVES

This course enables the students:

1.	1. To make the students confident of speaking in English impeccably and with utmost
	enthusiasm.
2.	2. To familiarize the students with different styles of communication.
3.	3. To enlighten the students with the seven concepts of communication.
4.	4. To make the students understand the nuances of communication.
5.	5. To train the students and make them comprehend various aspects of Interview skills.

COURSE OUTCOMES

After the completion of this course, students will be able to:

1.	Develop knowledge, skills, and judgment around human communication that facilitate
	their ability to work collaboratively with others.
2.	Understand and practice different techniques of communication.
3.	Practice and adhere to the 7Cs of Communication.
4.	Familiarize with different types of Communication.
5.	Understand and practice Interview Etiquette.

MODULE	TOPICS/SUBTOPICS				
1	Communication: An Introduction				
	1.1 Definition, Nature, and Scope of Communication				
	1.2 Importance and Purpose of Communication, 7 C's of Communication.				
	1.3 Process of Communication				
	1.4 Types & flow of Communication				
	Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 31 (PE+FINAL)				
2	Understanding and Applying Vocabulary				
	2.1 Words Often Confused-Pairs of words.				
	2.2 One Word Substitutes				
	2.3 Synonyms and Antonyms				
	2.4 Word Formation: Prefixes, Bases, and Suffixes.				
	Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 21 (PE+FINAL)				
3	Effective Writing Skills				
	2 Summarizing				

	3 Précis Writing					
	4 Paragraph Writing					
	5 Letter Writing (formal and informal)					
	Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 16 (PE+FINAL)					
4	English Grammar and Usage					
	2 Articles					
	3 Parts of Speech					
	4 Tenses					
	5 Error Analysis (Correction of Errors in a given sentence)					
	Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 21 (PE+FINAL)					
5	Presentation Skills					
	Preparing a PowerPoint Presentation					
	Presenting a Paper					
	Group Discussions					
	Extempore/Debates					
	Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 11 (PE+FINAL)					

Text Books:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	Communication Skills	Sanjay Kumar & Pushp Lata, Oxford University	9780199457069
		Press 2 nd edition	
2.	Communication for Business	Shirley Taylor, V.Chandra, Pearson	9788131727652
3.	Communication Skills I	Archana Sharma, Dr. Gyaneshwar Pratap Singh, Dr.Ombir Singh. Asian Publications	978-93-5502-019-2
4.	Common Mistakes in English	Fitikidies, T.J – Orient Longman, 1984	978-0582344587
5.	English Grammar, Composition and Usage	NK Aggarwal and FT Wood; Published by Macmillan Publishers India Ltd; New Delhi.	978-8183896160

SPORTS AND YOGA

PROGRAMME: DIPLOMA IN ENGINEERING							
COURSE CODE: DHS102 COURSE TITLE: SPORT & YOGA							
COMPUL	COMPULSORY / OPTIONAL: COMPULSORY						
Teaching Schen			ne and Credits		EXAMI	NATION S	CHEME
L	T	P	HOURS/WEEK	CREDIT	PE	FINAL	TOTAL
		2	2	1	60	40	100

Course Objectives:

- 1. To make the students understand the importance of sound health and fitness principles as they relate to better health.
- 2. To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.
- 3. To create a safe, progressive, methodical and efficient activity- based plan to enhance improvement and minimize risk of injury.
- 4. To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Practice Physical activities and Hatha Yoga focusing on yoga for strength, flexibility, and relaxation.
- 2. Learn techniques for increasing concentration and decreasing anxiety which leads to stronger academic performance.
- 3. Learn breathing exercises and healthy fitness activities
- 4. Understand basic skills associated with yoga and physical activities including strength and flexibility, balance and coordination.
- 5. Perform yoga movements in various combination and forms.
- 6. Assess current personal fitness levels.
- 7. Identify opportunities for participation in yoga and sports activities.
- 8. Develop understanding of health-related fitness components: cardiorespiratory endurance, flexibility and body composition etc.
- 9. Improve personal fitness through participation in sports and yogic activities.
- 10. Develop understanding of psychological problems associated with the age and lifestyle

Course Content:

I. Introduction to Physical Education

- i. Meaning & definition of Physical Education
- ii. Aims & Objectives of Physical Education
- iii. Changing trends in Physical Education

II. Olympic Movement

i. Ancient & Modern Olympics (Summer & Winter)

Agenda for 115th Meeting of Academic Council dated 25th July 2024(Thursday); Page 7 of 12

- Olympic Symbols, ii.
- iii. Ideals, Objectives & Values
- Awards and Honours in the field of Sports in India (Dronacharya Award, Arjuna Award, iv. Dhayanchand Award, Rajiv Gandhi Khel Ratna Award etc.)

III. Physical Fitness, Wellness & Lifestyle

- Meaning & Importance of Physical Fitness & Wellness, i.
- ii. Components of Physical fitness,
- Components of Health-related fitness, iii.
- Components of wellness, iv.
- v. Preventing Health Threats through Lifestyle Change,
- Concept of Positive Lifestyle vi.

IV. Fundamentals of Anatomy & Physiology in Physical Education, Sports and Yoga

- Define Anatomy, Physiology i.
- ii. Its Importance
- iii. Effect of exercise on the functioning of Various Body Systems. (Circulatory System, Respiratory System, Neuro-Muscular System etc.)

V. Kinesiology, Biomechanics & Sports

- i. Meaning & Importance of Kinesiology & Biomechanics in Physical Edu. & Sports
- ii. Newton's Law of Motion & its application in sports.
- Friction and its effects in Sports. iii.

VI. Postures

- i. Meaning and Concept of Postures.
- Causes of Bad Posture. ii.
- Advantages & disadvantages of weight training. iii.
- Concept & advantages of Correct Posture. iv.
- Common Postural Deformities Knock Knee; Flat Foot; Round Shoulders; Lordosis, v. Kyphosis, Bow Legs and Scoliosis.
- Corrective Measures for Postural Deformities vi.

VII. Sports Activity

References:

- 1. Modern Trends and Physical Education by Prof. Ajmer Singh.
- 2. Light On Yoga By B.K.S. Iyengar.
- 3. Health and Physical Education NCERT (11th and 12th Classes)

Engineering Graphics

PROGRA	PROGRAMME: DIPLOMA IN ENGINEERING						
COURSE CODE: DES 102			COUI	RSE TITLE:	Engineerin	g Graphics	
COMPUL	COMPULSORY / OPTIONAL: COMPULSORY						
Teaching Scheme			and Credits		EXAMI	NATION SO	CHEME
L	T	P	HOURS/WEEK	CREDIT	PE	FINAL	TOTAL
		3	3	1.5	60	40	100

RATIONALE: Engineers effective language is an engineering graphics. It provides the basis knowledge, which strengthens the engineering & technological structure. Moreover, it is the Basic tools for cultivating ideas and understanding.

COURSE OUTCOMES

CO1	Learn to use the drawing instruments, understand graphics standards,
	dimensioning, limits, fits, tolerances, symbol use in technical drawing and
	drawing scales, in technical drawing development.
CO2	To develop skill to visualise engineering objects and able to draw different
	engineering curves and know their applications.
CO3	Understand and able to draw the projections of objects in different planes and
	learn displaying techniques for graphical representation.
CO4	Visualise three dimensional objects and able to draw orthographic and isometric
	projections.
CO5	Able to visualise and draw sectional views of solid objects & develop
	understanding to examine industrial engineering drawing.

MODULE	TOPICS/SUBTOPICS					
1	TITLE: Basic Elementary graphics					
	1.1 Convention of the line and their application					
	1.2 Dimensioning technique as per SP-46					
	1.3 Concept limit, fits and Tolerance symbols					
	1.4 Scale (reduced, enlarged & full scale					
	1.5 Geometrical Construction					
	Course Outcome: CO1 Teaching & practical Hours: 8 hrs Marks: 20					
	(PE+FINAL)					
2	TITLE: Engineering curves and Loci of Points					
	2.1 To draw an ellipse by: Directrix and focus method, Rectangle method.					
	2.2 To draw a hyperbola and parabola by: Directrix and focus method, passing					
	through given points.					
	2.3 to draw involutes of circle & polygon.					
	2.4 to draw cycloid, epicycloid, hypocycloid.					
	2.5 to draw helix & spiral.					
	Course Outcome: CO1 Teaching & practical Hours: 8 hrs Marks: 20					
	(PE+FINAL)					
3	TITLE: Introduction of projection					
	3.1 Projection of point					
	3.2 Projection of lines					
	3.3 Projection of Plane					
	3.4 Projection of simple Plane of circular, square, rectangular object					

	3.5 Projection of Solid Course Outcome: CO3 (PE+FINAL) Teaching & practical Hours: 8 hrs Marks: 20
4	TITLE Orthographic and Isometric Projection
	4.1 introduction to orthographic projections
	4.2 Conversion of pictorial view into orthographic Views
	4.3 Isometric scale
	4.4 Conversion of isometric view into orthographic view
	4.5 draw missing view from the given orthographic view
	Course Outcome: CO4 Teaching & practical Hours: 8 hrs Marks: 20
	(PE+FINAL)
5	TITLE: Section of solids
	5.1 Section of solids of pyramid, Cone and tetrahedron resting on the base.
	5.2 Section of solid of prism and cylinder
	5.3 Section of prism and cylinder axis parallel to both the refrence planes
	5.4 section of prism and cylinder resting on their base
	Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)

S. N.	Title	Author, Publisher,	ISBN
		Edition and Year of	
		publication	
1	Bureau of Indian Standards.	BIS. Government of India,	ISBN: 81-7061-091-2.
	Engineering Drawing Practice for	Third Reprint, October	
	Schools and Colleges IS: Sp-46	1998	
2	Engineering Drawing	Bhatt, N. D : Charotar	ISBN: 978-93-80358-
		Publishing House, Anand,	17-8
		Gujrat 2010	
3	Engineering Graphics & Design	Jain &Gautam Khanna	ISBN: 978- 93-86173-
		Publishing House, New	478
		Delhi	

E-REFERENCES:

- 1. https://www.youtube.com/watch?v=TJ4jGyDWCw
- 2. https://www.youtube.com/watch?v=dmt6 n7Sgcg
- 3. https://www.youtube.com/watch?v= MQScnLXL0M
- 4. https://www.youtube.com/watch?v=3WXPanCq9LI
- 5. https://www.youtube.com/watch?v=fvjk7PlxAuo
- 6. http://www.me.umn.edu/coursesme2011/handouts/engg%20graphics.pdf
- 7. https://www.machinedesignonline.com

Engineering Workshop Practice

PROGRAMME: DIPLOMA IN ENGINEERING							
COURS	SE CODE: D	DES 104	COURSE	TITLE: Engi	ineering Wo	rkshop Prac	etice
COMPUL	COMPULSORY / OPTIONAL: COMPULSORY						
Teaching Scheme			and Credits		EXAMI	NATION S	CHEME
L	T	P	HOURS/WEEK	CREDIT	PE	FINAL	TOTAL
		3	3	1.5	60	40	100

RATIONALE: On successful completion of the course, the students will be able to perform industry-oriented manufacturing practice with full competency: Able to transform drawing to model with the specific use of materials and tools.

COURSE OUT COMES:

CO 1	Learn to identify and specify hand tools and machinery used in different shops according to job.
CO 2	Understand job drawing and selection of raw materials related to different manufacturing processes.
CO 3	Able to complete jobs as per specifications given in the drawing in the allotted time.
CO 4	Learn to operate and control different machines and equipment's with all safety precautions.
CO 5	Inspect the job for the desired quality and dimensions.

COURSE CONTENT:

Sl. No.	Details of Practical Content
1.	Title : Carpentry:
	1.1 Demonstration of different types of wood.
	1.2 Wood working tools/machines.
	1.3 Demonstration of different wood working processes like plaining, marking, grooving
	etc.
	1.4 One simple job using different tools of carpentry shop.
2.	Title:Fitting:
	2.1 Demonstration of different fitting tools and drilling machines.
	2.2 Demonstration of different fitting operations like chipping, filing, drilling, tapping etc.
	2.3 One simple fitting job involving practice of fitting operations.
3.	Title: Welding:
	3.1 Identification of different welding tool and machines
	3.2 Demonstration of different welding methods
	3.3 One simple job involving butt and lap joint.
4.	Title: Sheet Metal:
	4.1 Demonstration of different sheet metal tools/ machines.
	4.2 Demonstration of different sheet metal operations like cutting, bending, soldering
	,brazing etc.
	4.3 one simple job involving sheet metal operations, soldering and riveting.

References:

- 1. S.K. Hajara Chaudhary, Workshop Technology, Media Promoters and Publishers, New Delhi, 2015
- 2. B.S. Raghuwanshi, Workshop Technology, Dhanpat Rai and sons, New Delhi 2014
- 3. K. Venkat Reddy, Workshop Practice Manual, BS Publications, Hyderabad 2014
- 4. Kents Mechanical Engineering Hand book, John Wiley and Sons, New York

2ND SEMESTER **DIPLOMA IN ENGINEERING**

APPLIED PHYSICS-II

PROGRAMME: DIPLOMA IN ENGINEERING							
COURS	SE CODE: D	DBS 201	COURS	SE TITLE: A	APPLIED P	HYSICS - II	[
COMPUL	SORY / OP	ΓΙΟΝΑL: C	OMPULSORY				
	Teach	ning Scheme	e and Credits		EXAMI	NATION SO	CHEME
L	T	P	HOURS/WEEK	CREDIT	PE	FINAL	TOTAL
2	1		3	3	QUIZ-	50	100
					20, TA-		
				5, MID-			
					25		

COURSE OUTCOMES

This paper Applied Physics-II enables the students to understand

CO1	Waves and Sound
	In this Module to be able to understand the Types of waves, Terminology,
	Speed of sound in a gaseous medium-Newton's Formula and Laplace's
	correction (Derivation), Definition of Doppler Effect, Acoustics of Buildings,
	Reverberation, Pitch, Echoes, Loudness, Beats.
	Reverocration, 1 iten, Lenoes, Loudness, Beats.
CO2	Light
	In this Module helps us study the Reflection & Refraction of light, Derivation of
	prism formula, To understand the concepts of Dispersion of Light, interference,
	Photometry, To study the Speed of light in vacuum and media.
CO3	Current Electricity
	To introduce the knowledge on Conductor, Semiconductor, Insulator, Electric
	charge, current, Resistance, e.m.f., To understand the Ohm's Law,
	Galvanometer, Ammeter, Voltmeter, Joule's law, Wheatstone bridge, Definition
	of Electric power and energy.
	To study <i>Electrostatics</i> - Coulomb's Law, Electric field and Potential difference.
CO4	This Module enable the students to understand the <i>Magnetism and</i>
	Electromagnetic induction - Magnet and their properties, Biot-Savart's law,
	Magnetic field due to infinitely long straight conductor, Solenoid, Earth's
	magnetic field and its three parameters, Faraday laws of Electromagnetic
	induction.
CO5	In this Module To be able to understand the concepts of Modern Physics-
	Plank's hypothesis, properties of photons, Photoelectric effect, X-rays,
	Radioactivity, Laser. Related Problem of All Module
	Related I footeni of All Wodule
L	1

COURSE CONTENT DETAILS:

MODULE	TOPICS/SUBTOPICS
1	Waves and Sound
	Types of waves-Electromagnetic waves & Mechanical wave, transverse waves and longitudinal waves, Terminology-Amplitude, Wave Length, Time period, frequency, crest and trough, relation between frequency & Wave length, Superposition of waves, Speed of sound in a gaseous medium-Newton's Formula and Laplace's correction (Derivation), Definition of Doppler Effect, Acoustics of Buildings, Reverberation, Pitch, Echoes, Loudness, Beats, Related problems. Course Outcome: CO1 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)
2	Light Reflection & Refraction of light, Laws of reflection and refraction, critical angle, Total Internal Reflection, Derivation of prism formula, Dispersion with a prism, Interference of light-Path difference, Expression for fringe width in Young's double slit experiment, Photometry (Intensity of illumination, Luminous Flux, Inverse square law), Speed of light in vacuum and media, Related Problem. Course Outcome: CO2 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)
3	Current Electricity Definitions of Conductor, Semiconductor, Insulator, Electric charge, current, Resistance, e.m.f., Ohm's Law, Resistances connected in series and parallel, Galvanometer, Ammeter, Voltmeter, Conversion (galvanometer to ammeter and galvanometer to voltmeter), Heating effect of current (Joule's law of heating), Wheatstone bridge, Electric power and energy, Related Simple Problem. Electrostatics Coulomb's Law, Electric field and Potential difference, Electrical field due to a point charge and a line charge, Electric dipole and Electric dipole moment, Simple Problem. Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)
4	Magnetism and Electromagnetic induction Magnet and their properties, Magnetic moment, Magnetic field and lines of force, Magnetic force on a current carrying wire, Biot-Savart's law, Magnetic field due to infinitely long straight conductor, Magnetic field due to a circular current-carrying coil and solenoid, Earth's magnetic field and its three parameters, Faraday laws of Electromagnetic induction, Related Simple Problem. Course Outcome: CO4 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)
5	Modern Physics Plank's hypothesis, properties of photons, Photoelectric effect, X-rays (Production and applications), Radioactivity (Alpha, Beta and Gamma rays), Laser (Introduction, Characteristics and Applications). Related Problem. Course Outcome: CO5 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)

REFERENCE BOOKS:

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	1.Physics Part-II Textbook for Class XI	National Council of Educational Research and Training (NCERT)	ISBN-97881745056719

2.	2. Concepts of Physics by H C Verma Part-II	H.C Verma, Bharati Bhawan.	ISBN-10 : 8177092324 ISBN-13 :978-8177092325
3.	Question Bank Physics For Class XII	Tata McGraw-Hill, publisher, McGraw-Hill Education(India) Pvt Limited.	ISBN-
4.	Modern ABC of Physics - Class XII	Modern Publishers Satish K. Gupta	ISBN-13 :978812450015
5.	S. Chand's Principles of Physics - XII	S. Chand & Company LTD., V.K. Mehta, Rohit Mehta,	ISBN:8121917697,978811917698

E-REFERENCES:

- 1. https://e-booksdirctory.com
- 2. http://www.freebookcentre.net
- 3. e-books/e-tools/ learning physics software/websites etc.
- 4. https://www.infobooks.org

MATHEMATICS-II

PRC	PROGRAMME: DIPLOMA IN ENGINEERING								
COURSE CODE: COURSE TITLE: MATHEMATICS-II									
	DBS 20)3							
CON	MPULS	ORY /	OPTIONAL: COM	PULSORY					
	Te	eaching	Scheme and Credits	S	EXAMINAT	ION SCHE	EME		
L	L T P HOURS/WEEK CREDIT PE FINAL TOTAL								
3	1	0	4	4	Q-20, TA-5,	50	100		
					MID-25				

L= Lecture, T= Tutorial and P= Practical, Q= Quiz, TA= Teacher Assessment, MID= Mid Semester Exam

RATIONALE: Provide basic mathematics knowledge for understanding engineering and technology concepts.

COURSE OUTCOMES

CO1	Students are going to learn the fundamentals of Inverse Trigonometric and Complex
	Functions.
CO2	
	various functions required for various fields of engineering and allied sciences.
CO3	The students will learn and understand the essential Indefinite Integral and how to integrate
	various functions.
CO4	The students are going to learn and understand the essential Definite Integral and how to
	integrate various functions and find the area under a curve
CO5	The students get a basic knowledge of First Order Ordinary Differential Equations (ODE)
	and their application.

COURSE CONTENT DETAILS:

MODULES WITH TOPICS

1. MODULE-I Trigonometric and Complex Functions

- 1.1. Definition and Identities of Inverse Trigonometric Functions.
- 1.2. Polar from of Complex Numbers, De-Moivre's theorem, and related problems.
- 1.3. Exponential and Circular functions of Complex variables, and Euler's Theorem.

Teaching Hours: 8 hrs Course Outcome: CO1

2. MODULE-II Continuity and Differentiability with Applications

- 2.1. Continuity and differentiability, the derivative of composite functions, chain rule.
- 2.2. Derivatives of inverse trigonometric functions.
- 2.3. Derivative of implicit, logarithmic, and exponential functions.
- 2.4. Logarithmic differentiation, derivative of functions expressed in parametric forms.
- 2.5. Second-order derivatives.
- 2.6. Rate of change of bodies, increasing/decreasing functions, maxima, and minima (first derivative test motivated geometrically and second derivative test)

Teaching Hours: 14 hrs Course Outcome: CO2

3. MODULE-III Indefinite Integral

- 3.1.Integration as inverse of differentiation. Integration of algebraic and trigonometric functions.
- 3.2.Integration by substitution,

3.3.Integration by Partial Fractions.

3.2. Integration by Parts.

3.3. Integrals of the following special type:

$$\int \frac{dx}{(x^2 \pm a^2)}; \int \frac{dx}{\sqrt{(x^2 \pm a^2)}}; \int \frac{dx}{\sqrt{(a^2 - x^2)}}; \int \frac{dx}{(ax^2 + bx + c)}; \int \frac{dx}{\sqrt{(ax^2 + bx + c)}}; \int \frac{(px+q)dx}{(ax^2 + bx + c)}; \int \frac{(px+q)dx}{\sqrt{(ax^2 + bx + c)}}; etc$$
Course Outcome: CO3

Teaching Hours: 12 hrs

4. MODULE-IV Definite Integral

- 4.1. Fundamental theorem of calculus (without proof), basic properties of definite integral, and evaluation.
- 4.2. Application of finding the area of simple curves.

Course Outcome: CO4 Teaching Hours: 6 hrs

5. MODULE-V Differential Equations

- 5.1. Definition of a differential equation's order, degree, general and particular solutions. Formation of a differential equation whose general solution is given.
- 5.2. Solution of differential equations by the method of separation of variables, homogeneous differential equations of the first order and first degree.
- 5.3. Solutions of linear differential equation

Course Outcome: CO5 Teaching Hours: 8 hrs

TEXT AND REFERENCE BOOKS

S. N.	Title	Author, Publisher, Edition, and Year of publication	ISBN
1.	Senior Secondary School Mathematics for Class 11	R. S. Agarwal, Bharati Bhavan Publishers & Distributors. 2020	ISBN-13: 978-9350271476
2.	Senior Secondary School Mathematics for Class 12	R. S. Agarwal, Bharati Bhavan Publishers & Distributors. 2020	ISBN-13: 978-9350271247
3.	ISC Mathematics Book 1 XI	O.P. Malhotra & S. K. Gupta & Anubhuti Gangal, S Chand Publishing, 2020	ASIN: B0B2W2DXGM
4.	ISC Mathematics Book 2 XII	O.P. Malhotra & S. K. Gupta & Anubhuti Gangal, S Chand Publishing, 2020	ISBN-10: 9352532422

E-REFERENCES:

- 1. NCERT (Mathematics for Class-XI)
- 2. NCERT (Mathematics for Class-XII Part-1)
- 3. NCERT (Mathematics for Class-XII Part-2)
- 4. SWAYAM Lecture on Mathematics XI Part-I
- 5. SWAYAM Lecture on Mathematics XI Part-II
- 6. SWAYAM Lecture on Mathematics XII Part-I

FUNDAMENTALS OF ELECTRICAL & ELECTRONICS ENGINEERING

	PROGRAMME: DIPLOMA IN ENGINEERING										
	COU	JRS	E	COURS	E TITLE: F	FUNDA	MENT.	ALS OF I	ELECTRICAL &	ELETRO	ONICS
C	ODI	E: D	ES				ENC	SINEERIN	NG		
	2	05									
CC	COMPULSORY / OPTIONAL: COMPULSORY										
	Te	achi	ng So	cheme and Credits EXAMINATION SCHEME							
L	T	P	НО	URS/WEE	CREDI	QUI	MI	QUIZI	ASSESSMEN	FINA	TOTA
				K	T	ΖI	D	I	T	L	L
3				3	3	10	25	10	05	50	100

COURSE OUTCOMES

CO1	Solve electrical circuits using Kirchhoff's laws and apply concepts of in
	electrical systems.
CO2	Analyse A.C. electrical circuits having dependent and independent sources for
	computation of responses such as voltage, current, power.
CO3	Evaluate the advantages of 3 phase system in electrical industrial applications.
CO4	Assess the applicability and characteristics of semiconductors, PN junction,
	Diode, and Zener diode and BJTs
CO5	Analyse logic of Basic Gates, Universal Gates & Special Gates and its truth
	tables

MODULE	TOPICS/SUBTOPICS						
1	INTRODUCTION TO DC CIRCUITS						
	1.1 Electrical elements,						
	1.2 properties and their classification,						
	1.3 Ideal, Real, Independent and Dependent Sources, Source Conversion,						
	1.4 Star-Delta conversion.						
	1.5 KCL and KVL,						
	1.6 Loop current and Nodal voltage method for D.C circuit						
	Course Outcome: CO1 Teaching Hours: 7 hrs Marks:31(PE + FINAL)						
2	CIRCUIT THEOREMS						
	2.1 Superposition theorem,						
	2.2 Thevenin's Theorem,						
	2.3 Norton's Theorem,						
	2.4 Maximum Power Transfer theorem for Independent and Dependent Sources						
	for DC circuits.						
	Course Outcome: CO2 Teaching Hours: 7 hrs Marks:21(PE + FINAL)						
3	Single-phase and Three-phase AC Circuits						
	3.1 AC single phase circuit: Common signals & their wave form.						

	3.2 Basic electrical quantities and their definitions: RMS & Average value, form factor,			
	phasor quantities, impedance, power, power factor, active, reactive and apparent			
	power.			
	3.3 AC three phase system-Introduction.			
	3.4 Line and Phase relation for Star and Delta Connection.			
	3.5 Comparison between single phase and three phase with specific emphasis to			
	applications.			
	Course Outcome: CO3 Teaching Hours: 6 hrs Marks: 16(PE + FINAL)			
4	INTRODUCTION TO SEMICONDUCTOR MATERIALS & COMPONENTS			
	4.1 Classification of materials: Energy bands, Forbidden band, Conductor,			
	Semiconductor, Insulator, Intrinsic & Extrinsic semiconductors.			
	4.2 Diode: PN junction, Diode characteristics. DC load line, AC load line.			
	4.3 Zener Diode: V-I characteristics, Applications of Zener diode.			
	4.4 Introduction to BJT: Concept of transistors as two junctions, three terminal devices			
	with two current carriers.			
	4.5 Types and working of BJT: PNP and NPN transistors, their symbols and			
	mechanism of current flow;			
	4.6 Explanation of fundamental current relation.			
	Course Outcome: CO4 Teaching Hours: 10 hrs Marks: 21(PE + FINAL)			
5	INTRODUCTION TO DIGITAL ELECTRONICS			
	5.1 Concept of positive logic and negative logic.			
	5.2 Basic Gates: Definition, Symbol and Truth Table.			
	5.3 Universal Gates: Definition, Symbol and Truth Table.			
	5.4 Special Gates: Definition, Symbol and Truth Table.			
	5.5 Construction of basic gates using universal gates.			
	Course Outcome: CO5 Teaching Hours: 10 hrs Marks: 11(PE + FINAL)			

S.	Title	Author, Publisher, Edition and Year of	ISBN
N.		publication	
1	Basics of Electrical, Electronics	K.A.NAVAS & T.A.Suhail , Rajath	978-8192189475
	and Communication Engineering	Publishers, Kochi.	
2	Fundamental Electrical and	Christopher R Robertson, Newnes,	978-0750687379
	Electronic Principles (Third	Elsevier	
	Edition)		
3	Basic Electronics & Linear	N.N.Bhargava, D.C. Kulashreshtha, S.C.	978-1259006463
	Circuits	Gupta- TTTI Chandigharh, TMH.	
4	Electronic Devices & Components	Allen Mottershead, PHI	978-8120301245

E-REFERENCES:

- 4. www.circuitglobe.com
- 5. www.courses.lumenlearning.com
- 6. www.allaboutcircuits.com

ENGINEERING MECHANICS

PRC	PROGRAMME: DIPLOMA IN ENGINEERING							
COURSE CODE: COURSE TITLE: Engineering Mechanics								
DES 203								
CON	COMPULSORY / OPTIONAL: COMPULSORY							
	Teaching Scheme and Credits			S	EXAMINAT	ION SCHE	EME	
L	T	P	HOURS/WEEK	CREDIT	PE	FINAL	TOTAL	
2	1		3	3	Q-20, TA-5,	50	100	
			MID-25					

L= Lecture, T= Tutorial and P= Practical, Q= Quiz, TA= Teacher Assessment, MID= Mid Semester Exam

RATIONALE: Provide basic concept and knowledge of Engineering Mechanics and its application in real world application of engineering and technology.

COURSE OUTCOMES

CO1	Able to understand and analyse the condition of equilibrium of a particle.
CO2	Able to analyse the condition of equilibrium of rigid bodies.
CO3	Able to apply the concepts of friction in real world applications.
CO4	Able to calculate centroid and moment of inertia of a given plane area
CO5	Able to analyse the dynamic equilibrium conditions of a body

MODULE	TOPICS/SUBTOPICS			
1	TITLE: - BASICS & STATICS OF PARTICLES			
	Introduction - Units and Dimensions - Laws of Mechanics – Vectors -			
	Vectorial representation of forces and moments - Vector operations, Coplanar			
	Forces, triangular, Parallelogram and Polygonal Law of forces, Resolution			
	and Composition of forces, Equilibrium of a particle, Lame's theorem, Forces			
	in space - Equilibrium of a particle in space - Equivalent systems of forces -			
	Principle of transmissibility - Single equivalent force.			
	Course Outcome: CO1 Teaching Hours: 8 hrs			
2	TITLE: - EQUILIBRIUM OF RIGID BODIES			
	Free body diagram - Types of supports and their reactions - Requirements of			
	stable equilibrium, Static determinacy - Moments and Couples - Moment of a			
	force about a point and about an axis, Vectorial representation of moments			
	and couples - Scalar components of a moment - Varignon's theorem -			
	Equilibrium of Rigid bodies in two dimensions - Equilibrium of Rigid bodies			
	in three dimensions. Suggested Reading: Equilibrium of Rigid bodies in three			
	dimensions			
	Course Outcome: CO2 Teaching Hours: 8 hrs			
3	TITLE: FRICTION			
	Frictional force - Laws of Coulomb friction - Simple contact friction - Belt			
	friction - Transmission of power through belts - Wedge Friction - Screw Jack.			
	Suggested Reading: Rolling resistance and rolling friction			
	Course Outcome: CO3 Teaching Hours: 8 hrs			
4	TITLE: - CENTROID AND MOMENT OF INERTIA			

	Determination of centroid of areas, first moment of area, Centroid of regular sections and composite sections, Second and product moments of plane area, solids. Parallel axis theorem and perpendicular axis theorem - Polar moment of inertia - Product moment of inertia			
	Course Outcome: CO4 Teaching Hours: 8 hrs			
5	TITLE: - DYNAMICS OF PARTICLES			
	Displacements, Velocity and acceleration, their relationship - Relative motion			
	- Rectilinear motion, Curvilinear motion, Newton's law of motion - Work			
	Energy Principle - Impulse and Momentum - Impact of elastic bodies			
	Course Outcome: CO5 Teaching Hours: 8 hrs			

S. N.	Title	Author, Publisher, Edition	ISBN
		and Year of publication	
8.	Hibbeller, R.C., Engineering	Vol. 1 Statics, Vol. 2	0134082443
	Mechanics, Vol. 1 Statics,	Dynamics, Pearson	
	Vol. 2 Dynamics, Pearson	Education Asia Pvt. Ltd.,	
	Education Asia Pvt. Ltd.,	2010.	
	2010.		
9.	Beer, F.P and Johnson Jr.	Vol. 1 Statics and vol. 2	978-0073380315
	E.R, Vector Mechanics for	Dynamics, McGraw-Hill	
	Engineers	International Edition, 2012	
10	Irving H. Shames,	IV Edition - Pearson	0133569241
	Engineering Mechanics -	Education Asia Pvt. Ltd.,	
	Statics and Dynamics,	2013	
11	11 Engineering Mechanics R.K Bansal, Lax		978-8131806531
		Publications	
12	A Textbook of Applied	R. K. RAJPUT,Laxmi	8131809056,
	Mechanics	Publications,	9788131809051
13	Applied	I.B. Prasad, KHANNA	8174090681
	Mechanics Dynamics and	PUBLISHERS	
	Statics		

E-REFERENCES:

- 2. E BOOKS 1
 - https://drive.google.com/open?id=0B9bpsTYXP4ceTnBneXhzRV96dWs
- 3. https://drive.google.com/open?id=0B9bpsTYXP4ceSUZLaEYyNDRGMWs
- 4. https://drive.google.com/open?id=0B9bpsTYXP4ceRjBJQjd1UTVmNHM

ENVIRONMENTAL SCIENCES

PROGRA	PROGRAMME: DIPLOMA IN ENGINEERING						
COURSE CODE: DAU 201			COUR	SE TITLE: 1	Environmen	tal Sciences	
COMPUL	SORY / OP	ΓΙΟΝΑL: C	OMPULSORY				
	Teaching Scheme and Credits				EXAMI	NATION SO	CHEME
L	T	P	HOURS/WEEK	HOURS/WEEK CREDIT			TOTAL
2	-	- 2 2			Q-20,	50	100
			TA-5,				
					MID-25		

L= Lecture, T= Tutorial and P= Practical, Q= Quiz, TA= Teacher Assessment, MID= Mid Semester Exam

RATIONALE: The main aim of environmental education at the diploma level course is to succeed in making individuals and communities understand the complex nature of the natural and the built environments. Further, to acquire the knowledge, values, attitudes, and practical skills to participate in a responsible and effective way in anticipating and solving social problems, and in the management of the quality of the environment.

COURSE OUTCOMES: Students will be able to understand about

CO1	Lucation of anticomposite acides and concept of colors bioscockenical
CO1	Importance of environmental science and concept of ecology, biogeochemical
	cycle, and food chain
CO2	Water pollution, sources and types of pollutants, their toxic effect and water
	treatment process
CO3	Classification, toxic effects and control measures of air pollutants
CO4	brief introduction to Noise Pollution, Soil Pollution, and radiation pollution
CO5	To recognize relevant energy sources required for domestic and industrial
	applications. Solve local solid and e-waste problems.

MODULE	TOPICS/SUBTOPICS			
1	TITLE: Multidisciplinary nature of environmental Science and Ecology			
	1.1 Definition, scope, importance and need for public awareness.			
	1.2 Ecosystem, basic structure of an ecosystem (abiotic and biotic components),			
	1.3 Biogeochemical cycles (carbon cycle, oxygen cycle, nitrogen cycle and			
	hydrological cycle),			
	1.4 Food chain, food web,			
	1.5 Ecological pyramid.			
	Course Outcome: CO1 Teaching Hours: 4 hrs			
2	TITLE: Water Pollution and waste water treatment			
	2.1 Water resources,			
	2.2 Sources of water pollution, various pollutants, their toxic effect			
	2.3 Potability of water (Indian standard of drinking water),			
	2.4 primary and secondary waste water treatment			
	2.5 Trickling filter & Activated sludge process			
	Course Outcome: CO2 Teaching Hours: 4 hrs			
3	TITLE: Air Pollution			
	3.1 Introduction, classification of air pollutants,			
	3.2 Toxic effects of air pollutants, sources and their control measure			
	3.3 ESP, catalytic converter, and bag house filter,			
	3.4 Greenhouse effect, Global warming,			

	3.5 Ozone depletion.			
	Course Outcome: CO3 Teaching Hours: 4 hrs			
4	TITLE: A brief introduction to Noise Pollution, Soil Pollution, and radiation			
	pollution			
	4.1 Noise Pollution (Introduction & sources)			
	4.2 Effects and control measures of noise pollution			
	4.3 Soil Pollution (Introduction & sources)			
	4.4 Effects and control measures of soil pollution			
	4.5 Radiation pollution			
	Course Outcome: CO4 Teaching Hours: 4 hrs			
5	TITLE: Renewable sources of Energy & Solid Waste Management			
	5.1 Solar Energy: Basics of Solar energy. Flat plate collector			
	5.2 Current status and prospects of wind energy. Wind energy in India.			
	Environmental benefits and problem of wind energy.			
	5.3 Solid waste generation- Sources and characteristics of : Municipal solid waste,			
	5.4 E-waste and biomedical waste			
	5.5 Collection and disposal: MSW (3R, principles, energy recovery, sanitary			
	landfill), Hazardous wasteCourse			
	Outcome: CO5 Teaching Hours: 4 hrs			

S. N.	Title	Author, Publisher, Edition and Year of publication
1.	Environmental chemistry	A. K. Dey
2.	A basic course in Environmental studies	Deswal & Deswal
3.	Environmental pollution and control	- C. S. Rao
4.	Essentials of ecology & environmental Sciences	S.V.S. Rana

E-REFERENCES:

1. Website: http://cgwb.gov.in/Documents/WQ-standards.pdf

APPLIED CHEMISTRY LAB

PROGRA	PROGRAMME: DIPLOMA IN ENGINEERING							
COUR	COURSE CODE: DBS 202 COURSE TITLE: APPLIED CHEMISTRY LAB							
COMPUL	COMPULSORY / OPTIONAL: COMPULSORY							
	Teaching Scheme and Credits EXAMINATION SCHEME							
L T P HOURS/WEEK CREDIT PE FINAL								
		2	2	1	60	40	100	

COURSE OUTCOMES

CO1	To acquire skills in quantitative pathological parameters ,handling of apparatus
	frequently used in Acidimetry-alkalimetry & Redox Titrations,
CO2	To understand the quality and importance of water for health & hygiene of
	humans and animals (Biotic sector)
CO3	To learn about Characteristic of oil (viscocity.) and determination of pH of
	Buffer solution
CO ₄	To understand about the weight related reactions (Gravimetry) and calculations,
	used in pathological laboratories.
CO ₅	To acquire the skills for purification of compounds by crystallization method
	and qualitative analysis (anions &cations) of salt

MODULE	TOPICS/SUBTOPICS						
1	TITLE Quantitative Analysis						
	1.1 To find the volume of one drop of water.						
	1.2 Preparation of standard solution of Oxalic acid.						
	1.3 Preparation of standard solution of Sodium Carbonate.						
	1.4 Standardisation of Sodium Hydroxide with the help of Oxalic acid						
	1.5 Determination of strength of a given solution of Hydrochloric acid by titrating i against standard Sodium Carbonate solution.						
2	Teaching Hours: 8 hrs						
2	TITLE Water Analysis.						
	2.1 To determine the Carbonate Hardness of a given sample of water.						
	2.2 To determine the Non Carbonate Hardness of a given sample of water2.3 To determine the Total Hardness of a given sample of water by EDTA method.						
	2.4 To determine the PH of given solution by the colourimetry method.						
	2.5 To determine the Carbonate Hardness of a given sample of water.						
	2.6 To determine the hydroxyl, carbonate, and bicarbonate alkalinity separately of						
	the given sample of water.						
	the given sumple of water.						
	Teaching Hours: 8 hrs						
3	TITAL Titration related to Redox Reaction, characteristic of oil (viscocity) and						
	Analysis of Coal.						
	3.1 Estimation of Mohr's salt using standard KMnO ₄ .						

	 3.2 To determine the strength of a given Potassium dichromate solution with N/20 sodium thiosulphate (Hypo) solution. 3.3 To determine the viscosity of heavy oil with the help of Redwood Viscometer. 3.4 To determine moisture, V.C.M, Ash, and Fixed Carbon content in given sample of coal.
4	Teaching Hours: 6 hrs
4	TITLE Gravimeric Practical
	4.1.To determine the strength of silver ions in a given solution of AgNO ₃ using
	chloride ion.
	4.2. Estimation of Barium as Barium Sulphate.
	Teaching Hours: 4 hrs
5	TITLE Qualitative Analysis.
	5.1 Crystallisation of impure sample of any one of the following:
	Alum,Copper Sulphate,Benzoic acid.
	5.2 Determination of one anion and one cation in a given salt.
	Cation- Pb ²⁺ , Cu ²⁺ , Al ³⁺ , Fe ³⁺ , Mn ²⁺ , Ni ²⁺ , Zn ²⁺ , Co ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Mg ²⁺ , NH ₄ ⁺
	Anion- (CO ₃) ² -, S ² -, NO ₂ -, SO ₃ ² -, SO ₄ ² -, NO ₃ -, Cl ⁻ , Br ⁻ , I, PO ₄ ³ -, C ₂ O ₄ ² -, CH ₃ COO ⁻ .
	Teaching Hours: 4 hrs

6

REFERENCE BOOKS:

S. N.	Title	Author, Publisher, Edition and Year of publication
1.	Laboratory Manual on Engineering Chemistry	S.K Bhasin, Sudha Rani(Author) Dhanpat Rai Publishing Company.(New Edition)
2.	The Language of Chemistry or Chemical Equation	G.D Tuli & P.L.Soni

FUNDAMENTALS OF ELECTRICAL & ELECTRONICS ENGINEERING LAB

	PROGRAMME: DIPLOMA IN ENGINEERING									
	COURSE TITLE: Fundamentals of Electrical & Electronics Engineering									
C	CODI	E: D	E: DES Lab							
	202									
CC	COMPULSORY / OPTIONAL: COMPULSORY									
		Te	eaching Scheme and	l Credits	EXAMINA	TION SCHEME	Ξ			
L	T	P	END	TOTAL						
		2	2	1	60	40	100			

RATIONALE: Electrical and electronic engineering work forms the forefront of practical technology, improving the devices and systems we use every day. Hence this lab. course serves as a foundation course to the budding diploma engineers.

COURSE OUTCOMES

CO1 Develop the essential skills for understanding and interpreting DC circuits					
CO2	Learn and analyse AC circuits.				
CO3	Learn and appreciate the operation and applications of electrical safety systems.				
CO4	Acquire necessary ability to distinguish between various semiconductor materials and devices.				
CO5	Learn and apply logic gates to realize simple digital operations.				

EXPERIMENT	TOPICS								
1	To verify KCL & KVL for a given electrical circuit								
	Course Outcome: CO1,CO3 Teaching Hours: 2 hrs Marks: 10(PE+ FINAL)								
2	To verify Thevenin's & Norton's Theorem for a given electrical circuit								
	Course Outcome: CO1,CO3 Teaching Hours: 2 hrs Marks: 10(PE+ FINAL)								
3	(a) To obtain the current and voltage distribution in AC R-L-C Series circuit.								
	(b) To draw the phasor diagram.								
	Course Outcome: CO2,CO3 Teaching Hours: 2 hrs Marks: 06 (PE+ FINAL)								
4	(a) To find the condition of resonance in an AC RLC parallel circuit								
	(b) Draw the different phasor diagrams.								
	Course Outcome: CO2,CO3 Teaching Hours: 2 hrs Marks: 06(PE+ FINAL)								
5	(a) To obtain the relation between line and phase quantity in 3-phase star								
	connection.								
	(b) To obtain the phasor diagram.								

	Course Outcome: CO2,CO3 Teaching Hours: 2 hrs Marks: 08(PE+ FINAL)							
6	(a) To obtain the relation between line and phase quantity in 3-phase de							
	connection.							
	(b) To obtain the phasor diagram.							
	Course Outcome: CO1,CO3 Teaching Hours: 2 hrs Marks: 10(PE+ FINAL)							
7	Forward & Reverse characteristics of diode							
	Course Outcome: CO4 Teaching Hours: 2 hrs Marks: 10(PE+ FINAL)							
8	Forward & Reverse characteristics of Zener diode.							
	Course Outcome: CO4 Teaching Hours: 2 hrs Marks: 10(PE+ FINAL)							
9	Zener Diode as a Voltage Regulator.							
	Course Outcomes COA Tooching House 2 has Market OC/DE FINAL)							
10	Course Outcome: CO4 Teaching Hours: 2 hrs Marks: 06(PE+ FINAL)							
10	Identification of Transistors.							
	Course Outcome: CO4 Teaching Hours: 2 hrs Marks: 06(PE+ FINAL)							
11	Study of transistors using data sheets.							
	Course Outcome: CO1,CO3 Teaching Hours: 2 hrs Marks: 08(PE+ FINAL)							
12	Verification of Logic gates.							
	Course Outcome: CO1,CO3 Teaching Hours: 2 hrs Marks: 10(PE+ FINAL)							

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1	Basics of Electrical, Electronics and Communication Engineering	K.A.NAVAS & T.A.Suhail , Rajath Publishers, Kochi.	
2	Fundamental Electrical and Electronic Principles (Third Edition)	Christopher R Robertson, Newnes, Elsevier	
3	Basic Electronics & Linear Circuits	N.N.Bhargava, D.C. Kulashreshtha, S.C. Gupta- TTTI Chandigharh, TMH.	
4	Electronic Devices & Components	Allen Mottershead, PHI	

E-REFERENCES:

- 1. www.circuitglobe.com
- 2. www.courses.lumenlearning.com
- 3. www.allaboutcircuits.com

ENGINEERING MECHANICS LAB

PROGRAMME: DIPLOMA IN ENGINEERING								
COURSE CODE: DES 204 COURSE TITLE: Engineering Mechanics Lab							₄ab	
COMPUL	COMPULSORY / OPTIONAL: COMPULSORY							
	Teaching Scheme and Credits EXAMINATION SCHEME							
L T P HOURS/WEEK CREDIT PE FINAL TOTA								
0	0	2	2	1	60	40	100	

COURSE OBJECTIVES

Experimental verification of principles of Engineering Mechanics and analytical solutions.

COURSE OUTCOMES

CO1: Simplify mechanics problems using free body diagrams and explain the concept of equilibrium to the force for rigid bodies 2 dimensional systems.

CO2: Apply the concept of bending moment and shear force diagrams for design of beam and to analyze simple statically determinate structures such as beams, uniform distributed load and frames subject to various loading and support.

CO3: Determine the centroid and moment of inertia for design of components.

CO4: Apply the knowledge of kinetics and kinematics in solving the real time problems.

CO5: Estimate and design structural members subjected to tension, compression, torsion, bending and combined stresses using the fundamental concepts of stress, strain and elastic behavior of materials.

The term work shall consist of

- 1. Graphical solutions for the following problems
- a. Resultant of Coplanar Non-Concurrent force system:
- i. At least one problem with resultant as a force
- ii. At least one problem with resultant as a couple
- b. Equilibrium of Coplanar Non-Concurrent force system: At least one Problem
- c. Friction: At least one Problem
- 2. Following experiments shall be conducted.
- a. Polygon law of forces
- b. Law of moments
- c. Jib crane
- d. Beam Reaction

- e. Friction
- f. Screw Jack
- g. Fly wheel
- 3. Tutorial Problem
- a. At least three problem each on unit of the theory course.
- b. The tutorial problem needs to be solved by the student during the practical hours only.

Introduction to IT Systems Lab

]	PROGRAMME: DIPLOMA IN ENGINEERING								
COURSE CODE: DES 206 COURSE TITLE: Introduction to IT Systems Lab							Lab		
(COMPULSORY / OPTIONAL: COMPULSORY								
Teaching Scheme and Credits EXAMINATION SCHEME							СНЕМЕ		
L T P HOURS/WEEK CREDIT PE FINAL TOT.								TOTAL	
	0	0	2	2	1	60	40	100	

COURSE OUTCOMES

CO1	Student should be acquainted with the Windows GUI, and some simple
	Windows-based applications.
CO2	Students should be able to work with Microsoft Word and be able to create and
	edit any document as per requirement.
CO3	Students should be able to work with Microsoft Excel and use its mathematical
	functions to create a spreadsheet.
CO4	Students should be able to create presentations using Microsoft PowerPoint.
CO5	Students should be familiar with some common DOS commands and their
	syntax.

MODULE	TOPICS/SUBTOPICS							
1	TITLE							
	Demo of Computer Start-up and Shutdown operations. Demo of Graphical and							
	Command-based user interfaces. Acquaintance with Windows Desktop items.							
	Windows folder hierarchy- Desktop, My Computer, My Documents, Recycle Bin, My Network Places, Windows Accessories- Notepad, Word pad, Paint, Calculator. Content creation and editing. Creating files in any of these applications and Saving it in the desired folder.							
	Windows Explorer- Various file and folder operations- Copying, Moving, Renaming, Delating. Restoring files and folders from Recycle Bin.							
	Course Outcome: CO1 Teaching Hours: 4 hrs Marks: 20 (PE+FINAL)							
2	TITLE							
	Microsoft Word- Typing and Editing, Formatting text, Format Painter, Inserting							
	Shapes, Graphics, Text, Equations to Word Document.							
	Document Layout- Page Setup (Margins, Orientation, Page Size), Paragraph Formatting options (Text Alignment, Line Spacing, spacing between paragraphs, Tabs and Indents, Columns), Page breaks, Printing Documents, Converting to PDF. Creating table, Row, Column and Cell operations, Mail Merge.							
	Course Outcome: CO2 Teaching Hours: 4 hrs Marks: 20 (PE+FINAL)							
3	TITLE							
	Microsoft Excel- Table and Cell Formatting, Format Painter, Document Layout,							
	Page Breaks, Printing Documents and Converting to PDF.							

	Referencing Cells- Relative, Absolute, Local, 3-D, Remote, Working with Arithmetic Operators and Formula (Mathematical, Text and Date functions). Logical Function AND(), OR(), NOT(), IF () and nested IF() Sorting and Filtering. Creating Charts- Column or Bar Chart, Pie Chart, Line Chart.						
	Course Outcome: CO3 Teaching Hours: 8 hrs Marks: 20 (PE+FINAL)						
4	TITLE						
	Microsoft PowerPoint- Creating a slide with text, graphics, animation, and other						
	objects. Adding slides to a presentation, Using Animation Effects, Using Slide						
	Transition.						
	Course Outcome: CO4 Teaching Hours: 4 hrs Marks: 20 (PE+FINAL)						
5	TITLE						
	MS DOS Commands- General Commands- CLS, DATE, TIME, PATH, Directory						
	Management commands- DIR, CD, MD, RD, File Management Commands- COPY						
	CON, TYPE, COPY, MOVE, REN, DEL, EDIT						
	Course Outcome: CO5 Teaching Hours: 4 hrs Marks: 20 (PE+FINAL)						

S. N.	Title	Author, Publisher, Edition and Year of publication	ISBN
1.	"Fundamental of Computers"	V. Rajaraman, PHI	
2.	"Fundamental of Computers"	E. Balagurusamy, Mc Graw Hill	9780070141605

E-REFERENCES:

1. Jaiswal. S., "Information Technology Today", Galgotia Publication.

SPORTS AND YOGA

PROGRAMME: DIPLOMA IN ENGINEERING									
COURSE CODE: DHS202 COU				RSE TITLE	: SPORT &	YOGA			
COMPULSORY / OPTIONAL: COMPULSORY									
Teaching Scheme and Credits				EXAMINATION SCHEME					
L	T	P	HOURS/WEEK	CREDIT	PE	FINAL	TOTAL		
		2	2	1	60	40	100		

Course Objectives:

- 1. To make the students understand the importance of sound health and fitness principles as they relate to better health.
- 2. To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.
- 3. To create a safe, progressive, methodical and efficient activity- based plan to enhance improvement and minimize risk of injury.
- 4. To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Practice Physical activities and Hatha Yoga focusing on yoga for strength, flexibility, and relaxation.
- 2. Learn techniques for increasing concentration and decreasing anxiety which leads to stronger academic performance.
- 3. Learn breathing exercises and healthy fitness activities
- 4. Understand basic skills associated with yoga and physical activities including strength and flexibility, balance and coordination.
- 5. Perform yoga movements in various combination and forms.
- 6. Assess current personal fitness levels.
- 7. Identify opportunities for participation in yoga and sports activities.
- 8. Develop understanding of health-related fitness components: cardiorespiratory endurance, flexibility and body composition etc.
- 9. Improve personal fitness through participation in sports and yogic activities.
- 10. Develop understanding of psychological problems associated with the age and lifestyle

Course Content:

I. Yoga

- Meaning & Importance of Yoga i.
- ii. Elements of Yoga
- iii. Introduction Asanas, Pranayama
- iv. Meditation & Yogic Kriyas,
- Yoga for concentration & related Asanas (Sukhasana; Tadasana; Padmasana & Shashankasana),
- Relaxation Techniques for improving concentration Yog-nidra

II. Yoga & Lifestyle Asanas as preventive measures.

- Hypertension: Tadasana, Vajrasana, Pavan Muktasana, Ardha Chakrasana, Bhujangasana, i. Sharasana.
- ii. Obesity: Procedure, Benefits & contraindications for Vajrasana, Hastasana, Trikonasana, Ardh Matsyendrasana.
- iii. Back Pain: Tadasana, Ardh Matsyendrasana, Vakrasana, Shalabhasana, Bhujangasana.
- iv. Diabetes: Procedure, Benefits & contraindications for Bhujangasana, Paschimottasana, Pavan Muktasana, Ardh Matsyendrasana.
- Asthma: Procedure, Benefits & contraindications for Sukhasana, Chakrasana, v. Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana, Matsyasana.

III. Training and Planning in Sports

- i. Meaning of Training,
- ii. Warming up and limbering down,
- iii. Skill, Technique & Style,
- Meaning and Objectives of Planning. iv.
- Tournament Knock-Out, League/Round Robin & Combination. v.

IV. Psychology & Sports

- Definition & Importance of Psychology in Physical Edu. & Sports i.
- ii. Define & Differentiate Between Growth & Development
- iii. Adolescent Problems & Their Management
- Emotion: Concept, Type & Controlling of emotions iv.
- Meaning, Concept & Types of Aggressions in Sports. v.
- Psychological benefits of exercise. vi.
- Anxiety & Fear and its effects on Sports Performance. vii.
- viii. Motivation, its type & techniques.
 - Understanding Stress & Coping Strategies. ix.

V. Doping

- i. Meaning and Concept of Doping,
- ii. Prohibited Substances & Methods.
- iii. Side Effects of Prohibited Substances

VI. Sports Medicine

- First Aid Definition, Aims & Objectives. i.
- ii. Sports injuries: Classification, Causes & Prevention.
- iii. Management of Injuries: Soft Tissue Injuries and Bone & Joint Injuries

VII. Sports / Games

Following sub topics related to any one Game/Sport of choice of student out of: Athletics, Badminton, Basketball, Chess, Cricket, Kabaddi, Lawn Tennis, Swimming, Table Tennis, Volleyball, Yoga etc.

- i. History of the Game/Sport.
- ii. Latest General Rules of the Game/Sport.
- Specifications of Play Fields and Related Sports Equipment. iii.
- Important Tournaments and Venues. iv.
- Sports Personalities. v.
- vi. Proper Sports Gear and its Importance.

VIII. Sports Activity

References:

- 1. Modern Trends and Physical Education by Prof. Ajmer Singh.
- 2. Light On Yoga By B.K.S. Iyengar.
- 3. Health and Physical Education NCERT (11th and 12th Classes)