Head Talk Series An Overview of Department of Space Engineering and Rocketry (Program: Aerospace Engineering)

Birla Institute of Technology Mesra, Ranchi August 03rd, 2022

The Department Welcomes

Members of the BIT Community

Contents

• Background

- A Perspective
- Many Firsts...
- Vision and Mission

Departmental Information

- Courses We Offer
- Faculty and Staff
- Facilities
- Our New Initiatives
- Our Alumni

Background

A Perspective

- Established in 1964...
 - Initially offered post-graduate diploma
 - Two-year post-graduate degree program started in 1968
- Degree: M.Tech in Aerospace Engineering
 - Specializations: Aerodynamics and Rocket Propulsion

Department is supported by FIST and UGC-SAP

Many Firsts..

- First academic department in the country to flight test solid propellant rockets of different calibre
- **1969:** First institution to test solid-gas and solid-liquid hybrid engines in the country
- **1974:** Developed and flight tested rockets for weather modification and cloud seeding

Our Vision

 To effectively integrate teaching, research and innovation for significant contribution towards national aerospace programs and related activities

Our Mission

- To impart quality education and advanced research training leading to postgraduate and doctoral degree
- To generate modern infrastructure and conducive research atmosphere for carrying out innovative sponsored research projects
- To nurture spirit of excellence and professional leadership in students and faculty members through exposure to leading academic/research organizations and external experts
- To create attractive opportunities for sustained interaction and collaboration with academia and industry

Departmental Information

Courses We Offer

- Both programs are structured according to CBCS
 - First semester: Common to both programs
 - Courses specific to program are offered in subsequent semesters
- Upcoming modifications
 - Updated course structure: curriculum, new courses
 - Changes as per AICTE norms:
 - MTech in Aerospace Engineering with specialization in Aerodynamics or Rocket Propulsion

Visit our homepage for more information!

Faculty and Staff

• Faculty details (Sept. 2021 onwards)

Sl. No.	Name of Faculty	Designation	Specialization
1.	Dr. D. P. Mishra	Professor & In-	Heat Power Engineering, Fluid
		Charge HOD	Mechanics, CFD
2.	Dr. Sudip Das	Professor	Aerodynamics
3.	Dr. Priyank Kumar	Asst. Professor	Aerodynamics
4.	Dr. Partha Mondal	Asst. Professor	Computational Fluid Dynamics
5.	Dr. Rajiv Kumar	Asst. Professor	Rocket Propulsion
6.	Dr. Shelly Biswas	Asst. Professor	Combustion and Rocket Propulsion
7.	Dr. Swarup Y. Jejurkar	Asst. Professor	Micropropulsion

• Summary

- Total number of faculty: 6
- Assistant Professors: 5; Professors: 1 (1 : 0 : 5)
- All faculty members hold PhD degree
- Lab in-charge is rotated every 3 years
- Two Adjunct Professors: Prof. R. S. Pant and Padmashri R. M. Vasagam

Visit faculty homepages for more information!

We are supported by our technical and administrative staff

Faculty Contributions

R&D projects in the last five years

Project Title	Proposed	Funding	Project	Project
	Amount	Agency	Investigator	Period
	(Rs in			
	lakhs)			
Open Cavity studies at	24.46	RESPON	Dr. Sudip Das	2016-2019
Supersonic Speed		D ISRO	Dr. Priyank	
			Kumar	
Effect of protrusion on	31.196	ECR,	Dr. Rajiv Kumar	2016-2019
regression rate and		SERB,		
combustion instability at		DST		
varying L/D of hybrid rocket				
motor				
Steady and Unsteady Flow	26.832	ARDB,	Dr. Priyank	2018-2021
investigation on Slender		DRDO	Kumar Dr. Sudip	
body at High Angles of			Das	
Attack				

Faculty Contributions (Aerodynamics) Ongoing R&D Projects

Project Title	Proposed Amount (Rs in lakhs)	Funding Agency	Project Investigator	Project Period
Aerodynamic characterization of reusable launch vehicles at low speeds	22.39	RESPOND ISRO	Dr. Priyank Kumar Dr. Sudip Das	2020-23
Supersonic Flow Studies over spike blunt body with different nose bluntness ratio	22.3	ARDB	Dr. Sudip Das Dr. Priyank Kumar	2020-22
Establishment of AICTE – IDEA Lab at BIT Mesra	106.81	AICTE	Dr. Priyank Kumar	2021-23
Scheme for Promoting Interests, Creativity and Ethics among Students (SPICES)	2.00	AICTE	Dr. Priyank Kumar	2021-22

Faculty Contributions (Rocket Propulsion)

Ongoing R&D Projects

Project Title	Proposed Amount	Funding Agency	Project Investigator	Project Period
	(Rs. In lakhs)		U	
Development of catalyst system for stable combustion of HAN green propellants	30.207	ARDB, DRDO	Dr. Shelly Biswas Dr. Rajiv Kumar	2021- Ongoing
Use of multi-location swirl injection as a performance enhancer for the hybrid rocket system	39.7786	CRG, SERB, DST	Dr. Rajiv Kumar Dr. Shelly Biswas	2021- Ongoing

Faculty Contributions

• Faculty Research Publications

Sr. No.	Name	Publications		
		Journal	Conf.	Books / Chapters
1	D. P. Mishra	31	12	3 / 4
2	Sudip Das	20	71	0
3	Priyank Kumar	18	54	0
4	Rajiv Kumar	18	31	0 / 1
5	Partha Mondal	5	17	0
6	Shelly Biswas	13	7	0 / 1
7	Swarup Y. Jejurkar	15	7	0

Visit faculty homepages for more information!

Faculty Contributions

• Guidance for PhD (For entire tenure)

Name of Faculty	Designation	Guidance on PhD
Dr. D. P. Mishra	Professor & In-charge HOD	3 + 2 (ongoing)
Dr. Sudip Das	Professor	3 (Ongoing)
Dr. Priyank Kumar	Assistant Professor	1+2 (Ongoing)
Dr. Partha Mondal	Assistant Professor	1 (Ongoing)
Dr. Rajiv Kumar	Assistant Professor	2
Dr. Shelly Biswas	Assistant Professor	1 (Ongoing)
Dr. Swarup Y. Jejurkar	Assistant Professor	1 (Ongoing)

No. of PhD Thesis Awarded in 2021: 1 No. of PhD Thesis Submitted in 2021: 1 No. of PhD Students: 5

Facilities

Visit our homepage for more

Educational Facilities

٠

- Classrooms: 2
 - Sitting capacity: 20 + 20
 - Equipped with dedicated ICT facilities
- Seminar Halls: 2
 - Sitting capacity: 45 + 45
 - Equipped with dedicated projection facilities
 - Seminar Hall I is air-conditioned
 - Seminar Hall II Facility for Aerospace Society

- **Departmental Library**
 - Thesis repository
 - 3 Terminals for online access to subscribed library resources
 - Furniture: Tables and chairs
- Study Room: 1
 - Sitting capacity: 6
 - Furniture: study tables and chairs
 - High-speed internet connections: 5
- Faculty Rooms: 7
 - Furniture: office table + chairs + storage cabinet
 - Dedicated personal computers
- Amenities
 - Washrooms: 3 (M), 1 (F)
 - High-speed internet + Wi-Fi connections
 - Uninterrupted power supply

Thrust Areas for Research

Name of Laboratory	Equipment
	Supersonic wind tunnel
	Subsonic wind tunnel
	Smoke cum wind tunnel
	Digital oscilloscope
	Schlieren system
Aarodynamics	High-speed data acquisition system
Aerouynamics	2-channel hot wire anemometer
	Pressure transducers
(Faculty In-charge:	Unsteady KULITE pressure
Dr. Priyank Kumar)	Transducers with necessary hardware
	1/3/5 and 6-component strain gage balance
	Pressure scanner
	Signal conditioner

Name of Laboratory	Equipment
	Air dryer
	Single channel CTA system
	Smoke generator
Aerodynamics	Dead weight calibrator
Laboratory	Reciprocating air compressor
(Faculty In charge: Dr	Air reservoir
(Faculty III-charge. DI.	Digital SLR camera
Priyank Kumar)	Honeywell pressure sensor 24 PVEF6D
	Data acquisition system 6036E
	Basler cameras for schlieren

Recently installed Shock tube and hypersonic tunnel

Name of Laboratory	Facilities	
CFD Laboratory	10 PCs (Software: ANSYS 17.0 and	
(Faculty In-charge:	MATLAB)	
Dr. Partha Mondal)		

Name of Laboratory	Equipment	
	Double Planetary Mixer	
	High Speed Dispenser	
	Sigma Blade Mixer	
	Sieve Shakers	
	Vacuum Casting Unit	
Dropollant Technology	Ovens (normal and vacuum)	
Fropenant recimology	Muffle Furnace	
Laboratory	Sensitivity Tester	
(Faculty In-charge:	Pulverizer	
Dr. Shelly Biswas)	Igniter Testing Unit	
	Dehumidifier	
	Electronic analytical semi microbalance	
	Environmental chamber	
	Double distillation plant	
	Rotary Evaporator	

Name of Laboratory	Equipment
	Static rocket motor test facility
	Auto-console firing unit
Solid Rocket Propulsion	Pressure transducers
Laboratory (Faculty In-charge:	Computer aided data acquisition system
	Pressure gages, thrust gages, etc.
Dr. Doijy Kumor)	Data acquisition and analysis system
DI. Kajiv Kuillai)	For solid rocket tests
	Digital SLR camera

	Flame propagation and stability tester
	Stereo-microscope
Combustion	High-pressure Crawford bomb setup
Laboratory	Sub-atmospheric burning rate set up
(Faculty In-charge:	Strand burner setup
Dr Rajiy Kumar)	Flammability tester
DI. Kajiv Kullar)	Optical pyrometer
	Nozzle Testing Setup

Liquid Rocket Test	Static rocket motor test facility	
Facility	Pressure Transducer	
(Faculty In-charge:	Electro-pneumatic actuators	
Dr Swarup Y Jeiurkar)	Fuel tank with piping connections	
Di. Swarup i Sejuikar)	Oxidizer Tank with piping connection	
	Data acquisition system	

Hybrid Rocket Test	Static rocket motor test facility
Facility	Signal conditioner
(Faculty In-charge:	Electro-pneumatic actuators
Dr Raijy Kumar)	Load Cell
Di. Rujiv Kullur)	Pressure transducers
	Data acquisition system

	Simultaneous thermal analyzer (DSC + TGA +DTG)	
	UV-Vis spectrophotometer	
Instrument	Bomb calorimeter	
Laboratory	Brookfield viscometer Electronic analytical semi microbalances	
(Faculty In-charge:		
Dr Shelly Biswas)	Dedicated acquisition terminals	
	10 kVA UPS system, battery rack	
Instrument Laboratory (Faculty In-charge: Dr. Shelly Biswas)	Bomb calorimeterBrookfield viscometerElectronic analytical semi microbalancesDedicated acquisition terminals10 kVA UPS system, battery rack	

Aerodynamics Laboratory

Reservoir

Subsonic Wind Tunnels (600mm x 600mm, 30 m/sec) (150mm x 300mm, 10 m/sec)

Also useful for building aerodynamics!

Aerodynamics Laboratory

Supersonic Wind Tunnel (100mm x 150mm, Mach 1.5 to 3.5)

Anechoic Jet Facility

Supersonic Wind Tunnel (50mm x 100mm, Mach 1.2 to 2.5)

Research Facilities Aerodynamics Laboratory

Supersonic Wind Tunnel

Jet Facility

Calibration Rig Facility (Faculty In-charge: Dr. Priyank Kumar) 30

Research Facilities Aerodynamics Laboratory

Subsonic Facility

Hypersonic Facility (Facu

Aerodynamics Laboratory

Schlieren Set up

Aerodynamics Laboratory

Water Table for Flow Visualization

Propellant Technology and Processing Laboratory

Igniter Ignition Delay Testing Unit

(Faculty In-charge: Dr. Shelly Biswas) 34

Propellant Processing Facility

High Speed Dispenser

Sigma Blade Mixer

Double Planetary Mixer

(Faculty In-charge: Dr. Shelly Biswas)₃₅

• Rocket Propulsion (Liquid Rocket Test Facility)

Control and Data Acquisition Station

Pressure-fed Fuel Tank

Liquid Rocket Static Fire Test Set up

Pressurefed oxidizer Tank

Rocket Motors

(Faculty In-charge: Dr. Swarup Y Jejurka)

Research Facilities Solid and Hybrid Test Facility

Control Room and Data Acquisition Facility

Exhaust from a Static Fire Test of Solid Propellant

Hybrid Rocket Static Fire Test Stand(Faculty In-charge: Dr. Rajiv Kumar)37

Research Facilities Instrument Laboratory

Simultaneous Thermal Analyzer

Propellant characterization using STA, Parr Bomb calorimeter, Brookfield viscometer

(Faculty In-charge: Dr. Shelly Biswas) 38

PVC-AP Composite Solid Propellant (Thrust = 750 N at 60 bar)

Launchers

Wax-Gaseous Oxygen Hybrid Propellant (Thrust = 50 N at 7 bar)

Kerosene-Gaseous Oxygen (Thrust = 100 N)

Our New Initiatives

Initiatives for Continuous Improvement

Facility	Improvement	Remarks
	Experimentation under supersonic	
Experimental	flow conditions	
Aerodynamics		
Laboratory	Hypersonic facility is being	
	developed	
	Hands-on experience of flow in a	Available both for PG students, PhD
Water tunnel	water tunnel	students and faculty members for
experiments		research
	Software for	
	Optimization, system analysis,	
Computing	and signal processing	
	(MatLab, LabVIEW, ANSYS, in-	
	house CFD code development)	

Initiatives for Continuous Improvement

Facility	Improvement	Remarks
Experimental Aerodynamics Laboratory	Supersonic free jet facility	Available PG students, PhD students and faculty for research

Facility	Improvement	Remarks
Experimental Aerodynamics Laboratory	Acoustics characterization	Available PG students, PhD students and faculty for research

• Flow Visualization Facility

• Flow Visualization and Instrumentation

Schlieren Set up

Motorized Traverse

• Supersonic Free Jet Facility

False color schlieren of an expandingsupersonic free jet45

• Acoustics

Acoustic Jet

Anechoic chamber instrumented to investigate acoustics of free jet

Upcoming facility!

- Hypersonic wind tunnel facility
 - Wind tunnel for aerodynamic characterization at hypersonic speeds

Shock Tube

Hypersonic Tunnel

Facility	Improvement	Remarks
High pressure oxidizer	Modernization of the	
line, Thrust Chamber	solid-liquid and solid-gas	
assembly	hybrid system	
Pressure transducers,	Modernization of the	
digital pressure gauges	solid-liquid and solid-gas	
and thermal sensor for	hybrid system	Available both for PG
pressure line and		students, PhD students and
combustion chamber		faculty members for research
Impact IS-12 IR	Modernization of	
pyrometer for	combustion laboratory	
temperature profiling of		
flames		

Facility	Improvement	Remarks
Rotary evaporator	For development of	
	green propellants	
Open cup drop test setup	For testing of catalyst	
	system for green	
	propellants	
Establishment of N2O	Modernization hybrid to	Available both for PG
and H2O2 based hybrid	carter the needs of	students, PhD students and
rocket motors	advanced systems	faculty members for research
Nozzle Test Setup	Characterization of	
	nozzle and study of flow	
	fields	
Establishment of Tribrid	Modernization hybrid to	
Rockets	carter the needs of	
	advanced systems	

Facility Creation	Improvement	Remarks
	For acquiring data for	
	temperature, pressure and	
Data Acquisition System	thrust from the test firing	
	of the hybrid, liquid and	
	solid rocket system	Available both for PG
	Software for	students, PhD students and
Computing	optimization, system	faculty members for
	analysis, and signal	research
	processing	
	(MatLab, LabVIEW,	
	ANSYS)	

Initiatives for Continuous Improvement

• Modernization of Solid and Hybrid Test Facility

Control Room and Data Acquisition Facility

• Work on Green propellants

Rotary Evaporator

Concentration of Hydrogen peroxide using Rotary Evaporator

Notable Alumni

Shri E V S Namboodiry Chairman, Cryogenic Project Deputy Director, Liquid Propulsion Systems Centre ISRO (1999)

Padma Shri M. C. Dathan Former Director, Satish Dhawan Space Centre (2008) Former Director, Vikram Sarabhai Space Centre (2014)

Dr. D. Narayan Scientist 'G' Group Director Aeronautical Development Agency (ADA)

Shri Rajeev Sharma Chief Solutions Officer, Ness Digital Engineering N Y, USA (2017) Former Dy. Project Director 'AGNI', DRDL

Shri A. K. Chakrabarty Director Defence Research & Development Laboratory (2012)

Shri Sibnath Some Director Defence Research and Development Laboratory (2014)

Prof. Ujjwal K. Saha Professor, Department of Mechanical Engineering Indian Institute of Technology Guwahati

Shri S.L.N. Desikan Scientist 'F', EAD, Aero Vikram Sarabhai Space Centre (VSSC)

