#### **COURSE STRUCTURE**

For

**M.Sc. PHYSICS** 

#### Based on CBCS & OBE model



Department of Physics BIT Mesra, Ranchi 2021

# Course Structure for M.Sc.(Physics)

| el  |            |    | Code no.Name of the subjects |                                   | L | Т | Р     | С      |  |
|-----|------------|----|------------------------------|-----------------------------------|---|---|-------|--------|--|
| Lev |            |    |                              |                                   |   |   |       |        |  |
|     |            |    |                              |                                   |   |   |       |        |  |
|     |            |    |                              | THEORY                            |   |   |       |        |  |
|     |            | PC | PH 401                       | Mathematical Method in Physics    | 3 | 0 | 0     | 3      |  |
|     | H          |    | PH 402                       | Electrodynamics                   | 3 | 0 | 0     | 3      |  |
|     | -Te        |    | PH 403                       | Classical Mechanics               | 3 | 0 | 0     | 3      |  |
|     | ste        |    | PH 404                       | Quantum Mechanics                 | 2 | 1 | 0     | 3      |  |
| 1   | Je         |    | PH 405                       | Modern Computational Techniques & | 2 | 0 | 0     | 2      |  |
| -   | <b>n</b> e |    |                              | Programming                       |   |   |       |        |  |
|     | Š          | OE |                              | Open Elective II                  | 3 | 0 | 0     | 3      |  |
|     |            |    | LABORATORIES                 |                                   |   |   |       |        |  |
|     |            | PC | PH 406                       | Modern Computational Techniques & | 0 | 0 | 4     | 2      |  |
|     |            |    |                              | Programming Lab                   |   |   |       |        |  |
|     |            |    | PH 407                       | Modern Physics Lab                | 0 | 0 | 4     | 2      |  |
| 2   |            | MC | MT204                        | Constitution of India             | 2 | 0 | 0     | Non-   |  |
|     |            |    |                              |                                   |   |   |       | Credit |  |
|     |            |    |                              |                                   |   | 1 | Fotal | 21     |  |

|       |    |          | Code no. | Name of the subjects              | L | Т | Р     | С  |
|-------|----|----------|----------|-----------------------------------|---|---|-------|----|
| Level |    |          |          |                                   |   |   |       |    |
|       | II | Category |          | THEORY                            |   |   |       |    |
|       | Ĺ  | PC       | PH 408   | Statistical Physics               | 3 | 1 | 0     | 4  |
|       | te |          | PH 409   | Atomic and Molecular Spectroscopy | 3 | 1 | 0     | 4  |
|       | GS |          | PH 410   | Electronic Devices & Circuits     | 3 | 0 | 0     | 3  |
| 4     | Ŭ  |          | PH 411   | Condensed Matter Physics          | 3 | 0 | 0     | 3  |
|       | ē  | OE       |          | Open Elective III                 | 3 | 0 | 0     | 3  |
|       |    |          |          | SESSIONAL / LABORATOR             | Y |   |       |    |
|       |    | PC       | PH 412   | Electronics Lab                   | 0 | 0 | 4     | 2  |
|       |    |          | PH 413   | Condensed Matter Physics Lab      | 0 | 0 | 4     | 2  |
|       | ]  |          |          |                                   |   |   | Fotal | 21 |

|       |     | CategoryCode no.Name of the subjects |                  | L                                                                    | Т | Р | С     |    |
|-------|-----|--------------------------------------|------------------|----------------------------------------------------------------------|---|---|-------|----|
| Level |     |                                      |                  |                                                                      |   |   |       |    |
|       |     |                                      |                  | THEORY                                                               |   |   |       |    |
|       | Π   | PC                                   | PH 501           | Nuclear and Particle Physics                                         | 3 | 1 | 0     | 4  |
|       |     |                                      | PH 502           | Advanced Quantum Mechanics                                           | 3 | 1 | 0     | 4  |
|       | fel |                                      | PH 503           | Laser Physics and Applications31                                     |   | 1 | 0     | 4  |
|       | est | PE                                   | PH 504 to PH 512 | PE-V                                                                 | 4 | 0 | 0     | 4  |
| 5     | eme |                                      | (Annexure II)    | One paper from Either Group A or<br>B or C or D or E: Specialization |   |   |       |    |
|       |     | PE                                   | PH 500           | Project (Phase-I) from Either Group                                  |   |   |       | 4  |
|       |     |                                      | (Annexure II)    | A or B or C or D or E                                                |   |   |       |    |
|       |     |                                      |                  | LABORATORIES                                                         |   |   |       |    |
|       |     | PC                                   | PH 513           | Laser Physics Lab                                                    | 0 | 0 | 4     | 2  |
|       |     |                                      |                  | · · · ·                                                              |   |   | Total | 22 |

|       |          | Category | Code no.      | Name of the subjects                 |     | Т | Р | С |  |
|-------|----------|----------|---------------|--------------------------------------|-----|---|---|---|--|
| Level |          |          |               |                                      |     |   |   |   |  |
|       |          |          |               | THEORY                               |     |   |   |   |  |
|       | <b>H</b> | PE       | PH 513 to     | PE - VI: One paper from Either       | r 4 | 0 | 0 | 4 |  |
|       | er       |          | PH 530        | Group A or B or C or D or E          | :   |   |   |   |  |
|       | st       |          | (Annexure II) | Specialization                       |     |   |   |   |  |
| 5     | Je       |          |               | PE - VII: One paper from Either      | r 4 | 0 | 0 | 4 |  |
| 5     | <b>n</b> |          |               | Group A or B or C or D or E          | :   |   |   |   |  |
|       | Š        |          |               | Specialization                       |     |   |   |   |  |
|       |          |          | PH 550        | Project (Phase-II) from Either Group | 5   |   |   | 8 |  |
|       |          |          |               | A or B or C or D or E                |     |   |   |   |  |
|       |          |          |               |                                      |     |   |   |   |  |
|       |          |          |               | Total                                |     |   |   |   |  |

# Total Credits of M.Sc. Physics (I to IV Semesters) = 80

<u>Note:</u> The contents of laboratory papers are designed to meet the course objectives and outcomes of their respective theory papers.

# Annexure II

| PE    | <b>Pre-requisites</b> | Subjects                                                                                                        |                  |
|-------|-----------------------|-----------------------------------------------------------------------------------------------------------------|------------------|
| PE -V | One paper from        | Group A- Theoretical and Computational Physics:                                                                 |                  |
|       | <b>Either Group A</b> | Numerical Methods for Physicists                                                                                | PH 504           |
|       | or B or C or D or     | • Theory of Solids                                                                                              | PH 505           |
|       | Ε                     | Group B- Condensed Matter Physics:                                                                              |                  |
|       |                       | • Theory of Solids                                                                                              | PH 505           |
|       |                       | Functional Materials                                                                                            | PH 506           |
|       |                       | Group C – Photonics:                                                                                            |                  |
|       |                       | • Fiber and Integrated Optics                                                                                   | PH 507           |
|       |                       | Quantum & Nonlinear Optics                                                                                      | PH 508           |
|       |                       | Group D- Electronics                                                                                            |                  |
|       |                       | Instrumentation and Control                                                                                     | PH 509           |
|       |                       | Physics of Low dimensional Semiconductors Devices                                                               | PH 510           |
|       |                       | Group E- Plasma Sciences:                                                                                       |                  |
|       |                       | Introduction to Plasma Physics                                                                                  | PH 511           |
|       |                       | Plasma Processing of Materials                                                                                  | PH 512           |
| DE VI | Two nonous fuo        | Crown A. Theoretical and Computational Division                                                                 |                  |
| PE-VI | I wo papers from      | Group A- Theoretical and Computational Physics:                                                                 | DU 514           |
|       | (Papers shall be      | Theoretical and Computational Fluid Dynamics     Theoretical and Computational Condensed Matter Physics         | ГП 314<br>DU 515 |
|       | chosen from same      | <ul> <li>Incordical and Computational Condensed Matter Physics</li> <li>Neglineer Demonics and Chass</li> </ul> | PH 516           |
|       | group in IX and X     | Nonlinear Dynamics and Chaos                                                                                    | 111,510          |
|       | Semesters)            | Group B- Condensed Matter Physics:                                                                              |                  |
|       | ,                     | Nonconventional Energy Materials                                                                                | PH 517           |
|       |                       | Cryogenic Physics                                                                                               | PH 518           |
|       |                       | Physics of Thin Films                                                                                           | PH 519           |
|       |                       | Theory of Dielectrics and Ferroics                                                                              | PH 520           |
|       |                       | • Theoretical and Computational Condensed Matter Physics                                                        | PH 515           |
|       |                       | Crear C. Distanting                                                                                             |                  |
|       |                       | Group C- Photonics:                                                                                             | DH 521           |
|       |                       | Photomic and Optoelectronic Devices                                                                             | ГП 321<br>DH 522 |
|       |                       | <ul> <li>Holography and Applications</li> <li>Quantum photonics and applications</li> </ul>                     | PH 523           |
|       |                       | Quantum photonics and applications     Introduction to Nenerhotonics                                            | PH 524           |
|       |                       | Introduction to Nanophotonics                                                                                   | 111 524          |
|       |                       | Group D- Electronics:                                                                                           |                  |
|       |                       | Microprocessor and Microcontroller Applications                                                                 | PH 525           |
|       |                       | Integrated Electronics                                                                                          | PH 526           |
|       |                       | Microwave Electronics                                                                                           | PH 527           |
|       |                       |                                                                                                                 |                  |
|       |                       | Group E- Plasma Sciences:                                                                                       |                  |
|       |                       | • Theory of Plasmas                                                                                             | PH 528           |
|       |                       | Plasma Confinement                                                                                              | PH 529           |
|       |                       | • Waves and Instabilities in Plasma                                                                             | PH 530           |
|       |                       | Physics of Thin Films                                                                                           | PH 519           |

# M.Sc. Physics (I -IV Semester)

| Semester | Subjects                                         | Credit | Total           |
|----------|--------------------------------------------------|--------|-----------------|
| Ι        | Mathematical Method in Physics                   | 3      | 21              |
|          | Electrodynamics                                  | 3      |                 |
|          | Classical Mechanics                              | 3      |                 |
|          | Quantum Mechanics                                | 3      |                 |
|          | Modern Computational Techniques &                | 2      |                 |
|          | Programming                                      |        |                 |
|          | Open Elective I                                  | 3      |                 |
|          | Modern Computational Techniques &                | 2      |                 |
|          | Programming Lab                                  |        |                 |
|          | Lab-II (Modern Physics Lab)                      | 2      |                 |
|          |                                                  |        |                 |
| II       | Statistical Physics                              | 4      | 21              |
|          | Atomic and Molecular Spectroscopy                | 4      |                 |
|          | Electronics Devices & Circuits                   | 3      |                 |
|          | Condensed Matter Physics                         | 3      |                 |
|          | Open Elective II (Other Dept)                    | 3      |                 |
|          | Lab III (Electronics Lab)                        | 2      |                 |
|          | Labs IV (Condensed Matter Physics Lab)           | 2      |                 |
|          |                                                  |        |                 |
| III      | Nuclear and Particle Physics                     | 4      | 22              |
|          | Advanced Quantum Mechanics                       | 4      |                 |
|          | Laser Physics and Applications                   | 4      |                 |
|          | PE - V                                           | 4      | Papers shall be |
|          | One paper from Either Group A or B or C or D or  |        | chosen from     |
|          | E: Specialization                                |        | I.MSc. IX and X |
|          |                                                  |        | Semesters       |
|          | Project from Either Group A or B or C or D or E  | 4      |                 |
|          | Lab –V (Laser Physics Lab)                       | 2      |                 |
|          |                                                  |        |                 |
| IV       | PE - VI                                          | 4+4    | 16              |
|          | One paper from the same Group A or B or C or D   |        |                 |
|          | or E                                             |        |                 |
|          | PE - VII                                         |        |                 |
|          | One paper from the same Group A or B or C or D   |        |                 |
|          | or E                                             | -      |                 |
|          | Project (Phase-II) from Either Group A or B or C | 8      |                 |
|          | or D or E                                        |        |                 |
|          |                                                  |        |                 |
|          |                                                  | Total  | 80              |

<u>Internship (In-house/External)</u> of at least 2 months should be done by the students (Non-credit)

## Course Assessment tools & Evaluation procedure for Theory Papers

| Direct Assessment         |                                     |  |  |  |  |  |
|---------------------------|-------------------------------------|--|--|--|--|--|
| Assessment Tool           | % Contribution during CO Assessment |  |  |  |  |  |
| Assignment                | 10                                  |  |  |  |  |  |
| Seminar before a commitee | 10                                  |  |  |  |  |  |
| Three Quizes              | 30 (10+10+10)                       |  |  |  |  |  |
| End Sem Examination Marks | 50                                  |  |  |  |  |  |

#### **Indirect Assessment**

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

## **Course Assessment tools & Evaluation procedure for Laboratory Papers**

| Assessment Tool        | % Contribution                                      |  |  |
|------------------------|-----------------------------------------------------|--|--|
| Progressive Evaluation | 60 (Day to day performance: 30, Quiz: 10, Viva: 20) |  |  |
| End Sem Examination    | 40 (Experiment Performance: 30, Quiz: 10)           |  |  |

# Semester I

## **COURSE INFORMATION SHEET**

| Course code: PH 401<br>Course title: Mathematical Methods in Physics<br>Pre-requisite(s): Mathematical Physics<br>Co- requisite(s):<br>Credits: 3 L: 3 T: 0 P: 0<br>Class schedule per week:<br>Class: M.Sc. |                    |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| Semester / Level: I                                                                                                                                                                                          |                    |                     |
| Branch: PHYSICS<br>Name of Teacher:                                                                                                                                                                          |                    |                     |
| Code: Title: Mathematical Methods in Physics                                                                                                                                                                 | L-T-P-C            |                     |
| PH 401                                                                                                                                                                                                       | [3-0-0-3]          |                     |
| Course Objectives: The objectives of the course are                                                                                                                                                          |                    |                     |
| 1. To train the students to solve problems related to complex variables which contain re                                                                                                                     | al and imaginary p | oarts.              |
| 2. To teach the use of different special functions in solving physical problems.                                                                                                                             |                    |                     |
| 3. To provide an understanding of Integral Transform and Probability.                                                                                                                                        |                    |                     |
| 4. To teach about an understanding of Tensors.                                                                                                                                                               |                    |                     |
| 5. To give the basic knowledge of Group theory.                                                                                                                                                              |                    |                     |
| <b>Course Outcomes:</b> After completion of the course students should be able to                                                                                                                            |                    |                     |
|                                                                                                                                                                                                              |                    |                     |
| 1. The students will be able to solve different physical problems which contain comp                                                                                                                         | plex variables.    |                     |
| 2. They will be familiarized with different special functions like Associated Legendre                                                                                                                       | e Polynomials,     |                     |
| Polynomials, etc. and their solutions in solving different physical problems.                                                                                                                                | ·                  |                     |
| 3. This module will be helpful to obtain knowledge of Fourier and Laplace Transform                                                                                                                          | ns in solving      |                     |
| different problems of Mechanics and Electronics etc. The module will also impart                                                                                                                             | some basic         |                     |
| knowledge of Probability.                                                                                                                                                                                    |                    |                     |
| 4. Students will be able to learn about the concept and uses of Tensors.                                                                                                                                     |                    |                     |
| 5. Useful to obtain the basic knowledge of Group theory and its applications.                                                                                                                                |                    |                     |
| Modula 1 Complex verifications                                                                                                                                                                               |                    | [4]                 |
| Analytic functions Cauchy-Riemann conditions Cauchy's Integral theore                                                                                                                                        | em and Integral    | נטן                 |
| formula, Laurent expansion. Singularities, Evaluation of residues, Residue the                                                                                                                               | orem.              |                     |
| Module-2 Special Functions                                                                                                                                                                                   |                    | [8]                 |
| Associated Legendre Polynomials, Recurrence relations, Rodrigue's formula,                                                                                                                                   | Orthogonality of   | <b>L</b> - <b>J</b> |
| Legendre Polynomials, Hermite Polynomials, Green's function.                                                                                                                                                 | C .                |                     |
| Module-3 Integral Transform                                                                                                                                                                                  |                    | [10]                |
| Laplace Transform, Inversion, Applications of Laplace Transform; Fou                                                                                                                                         | rier Transform,    |                     |
| Inversion, Fourier Sine and Cosine transform, Convolution Theorem, Fouri                                                                                                                                     | er transforms of   |                     |
| derivatives, Applications of Fourier Transform.                                                                                                                                                              |                    |                     |
| Flementary probability theory simple properties random variables binor                                                                                                                                       | nial and normal    |                     |
| distribution centre limit theorem                                                                                                                                                                            | inai and normai    |                     |
| Module-4 Tensors                                                                                                                                                                                             |                    | [8]                 |
| Covariant, Contravariant and Mixed tensors, Tensors of rank 2, Algebra or                                                                                                                                    | f tensors: Sum,    |                     |
| Difference & Product of Two Tensors, Contraction, Quotient Law of Tensors                                                                                                                                    | s, Pseudotensors,  |                     |
| dual tensors, Tensors in General Coordinates, Tensor derivative operators, Ja                                                                                                                                | cobians, Inverse   |                     |
| of Jacobians. Diad and Triad.                                                                                                                                                                                |                    |                     |
| Module-5 Introductory group theory                                                                                                                                                                           |                    | [8]                 |
| Review of sets, Mapping and Binary Operations, Relation, Types of Re                                                                                                                                         | a group Co gota    |                     |
| of a subgroup; SU(2). O(3).                                                                                                                                                                                  | a group, co-sets   |                     |

#### Text books:

T1: Hans J. Weber George B. Arfken, Mathematical Methods for Physicists, (2005), Academic Press.

T2: L. A. Pipes, Applied Mathematics for Engineering and Physics (1958) McGraw-Hill.

T3: Elements of Group Theory for Physicists by A. W. Joshi, 1997, John Wiley.

#### **Reference books:**

R1: Charlie Harper, Introduction to Mathematical Physics (2003), Prentice-Hall India.

R2: Erwin Kreyszig, Advanced Engineering Mathematics (1999), Wiley.

R3: N. P. Bali, A. Saxena and N.C. S. W. Iyengar, A Text Book of Engineering Mathematics (1996), Laxmi Publications (P) Ltd.

R4: Group Theory and its Applications to Physical Problems by Morton Hamermesh, 1989, Dover

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | Ν |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Υ |
| Simulation                                                  | Ν |

#### Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2          | CO3          | CO4 | CO5 |
|---------------------------|--------------|--------------|--------------|-----|-----|
| End Sem Examination Marks |              |              |              |     |     |
| Quiz 1                    | $\checkmark$ | $\checkmark$ |              |     |     |
| Quiz 2                    |              |              | $\checkmark$ |     |     |
| Quiz 3                    |              |              |              |     |     |

#### Indirect Assessment -

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

## **Mapping between Objectives and Outcomes**

#### **Mapping of Course Objectives onto Course Outcomes**

| Course Outcome # | Program Outcomes |   |   |   |   |
|------------------|------------------|---|---|---|---|
|                  | а                | b | с | d | e |
| 1                | Н                | L | L | L | L |
| 2                | L                | Н | L | L | L |
| 3                | L                | L | Η | L | L |
| 4                | L                | L | L | Η | L |
| 5                | L                | L | L | L | Н |

## Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # |   |   | Program ( | Outcomes |   |   |
|------------------|---|---|-----------|----------|---|---|
|                  | а | b | с         | d        | e | f |
| 1                | Н | Н | Н         | М        | Н | Н |
| 2                | Н | Н | Н         | М        | Н | Н |
| 3                | Н | Н | Н         | М        | Н | Н |
| 4                | Н | Н | Н         | М        | Н | Н |
| 5                | Н | Н | Н         | М        | Н | Н |

|     | Mapping Between COs and Course Delivery (CD) methods        |  |                   |                           |  |  |  |  |  |  |
|-----|-------------------------------------------------------------|--|-------------------|---------------------------|--|--|--|--|--|--|
| CD  | Course Delivery methods                                     |  | Course<br>Outcome | Course Delivery<br>Method |  |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      |  | CO1               | CD1 and CD2               |  |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       |  | CO2               | CD1 and CD2               |  |  |  |  |  |  |
| CD3 | Seminars                                                    |  | CO3               | CD1 and CD2               |  |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      |  | CO4               | CD1 and CD2               |  |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        |  | CO5               | CD1 and CD2               |  |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |  |                   |                           |  |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |  |                   |                           |  |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |  |                   |                           |  |  |  |  |  |  |
| CD9 | Simulation                                                  |  |                   |                           |  |  |  |  |  |  |

| Week | Lect. | Fentati | Ch. | Fopics to be covered                | Гext   | COs   | Actual  | Methodo | Remarks    |
|------|-------|---------|-----|-------------------------------------|--------|-------|---------|---------|------------|
| No.  | No.   | ve      | No. |                                     | Book / | mappe | Content | logy    | by         |
|      |       | Date    |     |                                     | Refere | d     | covered | used    | faculty if |
|      |       |         |     |                                     | nces   |       |         |         | any        |
| 1-2  | L1-L6 |         |     | Analytic functions, Cauchy-         | T1, R1 | 1     |         | PPT     |            |
|      |       |         |     | Riemann conditions, Cauchy's        |        |       |         | Digi    |            |
|      |       |         |     | Integral theorem and Integral       |        |       |         | Class/  |            |
|      |       |         |     | formula, Laurent expansion,         |        |       |         | Chock   |            |
|      |       |         |     | Singularities, Evaluation of        |        |       |         | -Board  |            |
|      |       |         |     | residues, Residue theorem.          |        |       |         | -Doard  |            |
| 3-5  | L7-   |         |     | Associated Legendre Polynomials,    | T1,    | 2     |         |         |            |
|      | L14   |         |     | Recurrence relations, Rodrigue's    | T2, R2 |       |         |         |            |
|      |       |         |     | formula, Orthogonality of Legendre  |        |       |         |         |            |
|      |       |         |     | Polynomials, Hermite Polynomials,   |        |       |         |         |            |
|      |       |         |     | Green's function.                   |        |       |         |         |            |
| 5-7  | L15-  |         |     | Laplace Transform, Inversion,       | T1,R3  | 3     |         |         |            |
|      | L20   |         |     | Applications of Laplace             |        |       |         |         |            |
|      |       |         |     | Transform; Fourier Transform,       |        |       |         |         |            |
|      |       |         |     | Inversion, Fourier Sine and Cosine  |        |       |         |         |            |
|      |       |         |     | transform, Convolution Theorem,     |        |       |         |         |            |
|      |       |         |     | Fourier transforms of derivatives,  |        |       |         |         |            |
|      |       |         |     | Applications of Fourier Transform.  |        |       |         |         |            |
| 7-8  | L21-  |         |     | Elementary probability theory,      | T2, R2 | 3     |         |         |            |
|      | L24   |         |     | simple properties, random           |        |       |         |         |            |
|      |       |         |     | variables, binomial and normal      |        |       |         |         |            |
|      |       |         |     | distribution, central limit theorem |        |       |         |         |            |

| 9-11  | L25- |  | Covariant, Contravariant and        | T1, T2 | 4 |  |  |
|-------|------|--|-------------------------------------|--------|---|--|--|
|       | L32  |  | Mixed tensors, Tensors of rank 2,   |        |   |  |  |
|       |      |  | Algebra of tensors: Sum,            |        |   |  |  |
|       |      |  | Difference & Product of Two         |        |   |  |  |
|       |      |  | Tensors, Contraction, Quotient      |        |   |  |  |
|       |      |  | Law of Tensors, Pseudo tensors,     |        |   |  |  |
|       |      |  | dual tensors, Tensors in General    |        |   |  |  |
|       |      |  | Coordinates, Tensor derivative      |        |   |  |  |
|       |      |  | operators, Jacobians, Inverse of    |        |   |  |  |
|       |      |  | Jacobians. Diad and Triad.          |        |   |  |  |
| 11-14 |      |  | Review of sets, Mapping and         | T3, R4 | 5 |  |  |
|       |      |  | Binary Operations, Relation, Types  |        |   |  |  |
|       |      |  | of Relations, Groups: Elementary    |        |   |  |  |
|       |      |  | properties of groups, uniqueness of |        |   |  |  |
|       |      |  | solution, Subgroup, Centre of a     |        |   |  |  |
|       |      |  | group, Co-sets of a subgroup:       |        |   |  |  |
|       |      |  | SU(2), O(3).                        |        |   |  |  |

Course code: PH 402 Course title: Electrodynamics Pre-requisite(s): Electricity and Magnetism Co- requisite(s): Credits: 3 L: 3 T: 0 P: 0 Class schedule per week: Class: M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

| Code:<br>PH 402                                           | Title: Electrodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L-T-P-C<br>[3-0-0-3]       |  |  |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|
| Cou                                                       | a course onebles the students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |  |
|                                                           | Introducing the mathematical tools used in electrodynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                          |  |  |  |  |
| B                                                         | Review of electrostatics and magnetostatics in matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |  |  |  |  |
| <u> </u>                                                  | Providing easy headway into the covariant formulation of Maxwell's equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |  |  |
| D                                                         | Teaching basic principles of waveguides and transmission lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |  |  |  |  |
| E.                                                        | E. Rendering insights into fields generated by oscillating sources, and their applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |  |  |  |  |
| Cou<br>Aft                                                | arse Outcomes<br>er the completion of this course, students will be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |  |  |  |  |
| 1.                                                        | Ability to use basic mathematical tools to solve problems in electrodynamics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |  |  |  |
| 2.                                                        | Gaining proficiency in electrostatics and magnetostatics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |  |  |  |  |
| 3. Obtaining command on four-vector and tensor notations. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |  |  |  |  |
| 4.                                                        | 4. Learning about TM, TE and TEM modes in waveguides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |  |  |  |  |
| 5.                                                        | 5. Understanding radiations by moving charges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |  |  |  |  |
| Module-1<br>Module-<br>2                                  | Module-1The concept of a scalar potential. Poisson's and Laplace's equations for scalar potential. G<br>theorem, Electrostatic field energy density. Solutions of Laplace's equation in rectangular, sph<br>and cylindrical coordinates using the method of separation of variables, Method of in<br>Multipole expansion of potential due to a localized charge distribution.Module-<br>2Electrostatics in matter; Polarization and electric displacement vector. Electric field at the bou<br>of an interface, Linear dielectrics. Magnetostatics, Biot-Savart Law, Ampere's Law, Scalar<br>Vector potentials, Magnetic moment of a current distribution. |                            |  |  |  |  |
| Module-<br>3                                              | Electromagnetic induction, Faraday's Law, Maxwell's equations, Maxwell's equations in ma<br>Conservation of charge, Poynting's theorem, Solutions of Maxwell's Equations, Cova<br>formulation of electrodynamics. Inhomogeneous wave equations and their solutions.                                                                                                                                                                                                                                                                                                                                                                                        | atter, [8]<br>iriant       |  |  |  |  |
| Module-<br>4                                              | Electromagnetic waves in matter, Reflection and refraction at a plane interface between dielect<br>Fresnel's equations. Phase velocity and group velocity, spreading of a pulse propagating<br>dispersive medium, propagation in a conductor, skin depth. Transmission lines and v<br>guides; Dynamics of charged particles in static and uniform electromagnetic fields.                                                                                                                                                                                                                                                                                  | trics, [8]<br>in a<br>wave |  |  |  |  |
| Module-<br>5                                              | EM Field of a localized oscillating source. Fields and radiation in dipole and quadru approximations. Antenna; Radiation by moving charges, Lienard-Wiechert potentials, total per radiated by an accelerated charge, Lorentz formula.                                                                                                                                                                                                                                                                                                                                                                                                                     | ipole [8]<br>ower          |  |  |  |  |
| Reference1. Introdu2. Classic3. Lecture                   | res:<br>action to Electrodynamics by D. J. Griffiths<br>eal Electrodynamics by J. D. Jackson<br>es on Electromagnetism by A. Das                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |  |  |  |  |

## <u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> <u>Direct Assessment</u>

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

#### Indirect Assessment -

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

| Assessment Compoents      | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination Marks |     |     |     |     |     |
| End Sem Examination Marks |     |     |     |     |     |
| Quiz I                    |     |     |     |     |     |
| Quiz II                   |     |     |     |     |     |

Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | <u>5</u> |
|-------------------|---|---|---|---|----------|
| А                 | Н | М | - | М | L        |
| В                 | Н | Н | - | L | -        |
| С                 | Н | М | Н | Н | М        |
| D                 | Н | L | - | Н | L        |
| E                 | Н | L | М | М | Н        |

Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # | Program Outcomes |   |   |   |   |   |  |  |
|------------------|------------------|---|---|---|---|---|--|--|
|                  | a                | b | c | d | e | f |  |  |
| 1                | Н                | Н | Н | Н | Н | Н |  |  |
| 2                | Н                | Н | Н | Н | Н | Η |  |  |
| 3                | Н                | Н | Η | Η | Н | Η |  |  |
| 4                | H                | Н | Н | Η | Н | Η |  |  |
| 5                | Н                | Н | Н | Н | Н | Н |  |  |

| Week | Lect.No. | Fentati | Ch. | Fopics to be covered                  | Гext       | COsma | Actual  | Metho  | Remar   |
|------|----------|---------|-----|---------------------------------------|------------|-------|---------|--------|---------|
| No.  |          | ve      | No. |                                       | Book /     | pped  | Content | dology | ks by   |
|      |          | Date    |     |                                       | References |       | covered | used   | faculty |
|      |          |         |     |                                       |            |       |         |        | f any   |
| 1    | L1-L4    |         |     | The concept of a scalar potential.    | T1,T3      | 1     |         |        |         |
|      |          |         |     | Poisson's and Laplace's equations for |            |       |         |        |         |
|      |          |         |     | scalar potential. Green's theorem,    |            |       |         |        |         |
|      |          |         |     | Electrostatic field energy density.   |            |       |         |        |         |
|      |          |         |     | Solutions of Laplace's equation in    |            |       |         |        |         |
|      |          |         |     | rectangular coordinates               |            |       |         |        |         |

| 2  | 1510        | I autoria a succession in autorial and     | T1 T2 | 1 |   |   |   |
|----|-------------|--------------------------------------------|-------|---|---|---|---|
| 2  | L3-L8       | Laplace's equation in spherical and        | 11,13 | 1 |   |   |   |
|    |             | cylindrical coordinates using the          |       |   |   |   |   |
|    |             | method of separation of variables,         |       |   |   |   |   |
|    |             | Method of images, Multipole expansion      |       |   |   |   |   |
|    |             | of potential due to a localized charge     |       |   |   |   |   |
|    |             | distribution.                              |       |   |   |   |   |
| 3  | L9-         | Electrostatics in matter; Polarization and | T1,T3 | 2 |   |   |   |
|    | L12         | electric displacement vector. Electric     |       |   |   |   |   |
|    |             | field at the boundary of an interface,     |       |   |   |   |   |
|    |             | Linear dielectrics. Magnetostatics, Biot-  |       |   |   |   |   |
|    |             | Savart Law, Ampere's Law,                  |       |   |   |   |   |
| 4  | L13-        | Scalar and Vector potentials,              | T1,T3 | 2 |   |   |   |
|    | L16         | Magnetic moment of a current               |       |   |   |   |   |
|    |             | distribution. Macroscopic                  |       |   |   |   |   |
|    |             | magnetostatics, Magnetization. M and       |       |   |   |   |   |
|    |             | H vectors, Boundary conditions.            |       |   |   |   |   |
| 5  | L17-        | Electromagnetic induction, Faraday's       | T1,T3 | 3 |   |   |   |
|    | L20         | Law. Maxwell's equations. Maxwell's        |       |   |   |   |   |
|    |             | equations in matter. Conservation of       |       |   |   |   |   |
|    |             | charge Poynting's theorem                  |       |   |   |   |   |
| 6  | I 21-       | <br>Solutions of Maxwell's Equations       | Т1 Т3 | 3 |   |   |   |
| 0  | L21<br>L 24 | Covariant formulation of                   | 11,15 | 5 |   |   |   |
|    | 1.24        | electrodynamics. Inhomogeneous wave        |       |   |   |   |   |
|    |             | equations and their solutions              |       |   |   |   |   |
| 7  | 1.25        | Electrometric controls.                    | T1 T2 | 4 |   |   |   |
| /  | L25-        | Electromagnetic waves in matter,           | 11,13 | 4 |   |   |   |
|    | L28         | Reflection and refraction at a plane       |       |   |   |   |   |
|    |             | interface between dielectrics, Fresnel's   |       |   |   |   |   |
|    |             | equations. Phase velocity and group        |       |   |   |   |   |
|    |             | velocity, spreading of a pulse             |       |   |   |   |   |
|    |             | propagating in a dispersive medium,        |       |   |   |   |   |
| 8  | L29-32      | propagation in a conductor, skin           | T1,T3 | 4 |   |   |   |
|    |             | depth. Transmission lines and wave         |       |   |   |   |   |
|    |             | guides; Dynamics of charged particles      |       |   |   |   |   |
|    |             | in static and uniform electromagnetic      |       |   |   |   |   |
|    |             | fields.                                    |       |   |   |   |   |
| 9  | L33-        | EM Field of a localized oscillating        | T1,T3 | 5 |   |   |   |
|    | L36         | source. Fields and radiation in dipole     |       |   |   |   |   |
|    |             | and quadrupole approximations.             |       |   |   |   |   |
| 10 | L37-        | Antenna; Radiation by moving charges.      | T1,T3 | 5 |   |   |   |
|    | L40         | Lienard-Wiechert potentials, total         | ,     |   |   |   |   |
|    |             | power radiated by an accelerated           |       |   |   |   |   |
|    |             | charge Lorentz formula                     |       |   |   |   |   |
|    | 1           |                                            | 1     | 1 | 1 | 1 | 1 |

Course code: PH 403 **Course title: Classical Mechanics** Pre-requisite(s): ): Classical Dynamics (or similar papers) Or Mechanics and Electricity & Magnetism at UG level **Co- requisite(s):** Credits: P: 0 **3** L: 3 T: 0 **Class schedule per week:** Class: M.Sc. Semester / Level: I **Branch: PHYSICS** Name of Teacher: Code: **Title: Classical Mechanics** L-T-P-C PH 403 [3-0-0-3] **Course Objectives** 

This course enables the students:

|    | chaolos die stadents.                                                            |  |
|----|----------------------------------------------------------------------------------|--|
| A. | To define the concepts of Langrangian Mechanics.                                 |  |
| В. | To interpret the concepts of Hamiltonian Mechanics.                              |  |
| C. | To explain generating function, canonical transformation & Poisson brackets.     |  |
| D. | To illustrate the dynamics of a rigid body and non-inertial frames of reference. |  |
| E. | To formulate the concepts of coupled oscillators.                                |  |

#### **Course Outcomes**

After the completion of this course students will be able to:

| Alter |      | inpletion of this course, students will be able to.                                               |      |
|-------|------|---------------------------------------------------------------------------------------------------|------|
|       | 1.   | Formulate the Lagrangian mechanics concepts and solve the problems with the help of               |      |
|       |      | Lagrangian mechanics.                                                                             |      |
|       | 2.   | Compare the formulation of Hamiltonian Lagrangian mechanics and solve the problems                |      |
|       |      | of classical and relativistic mechanics                                                           |      |
|       | 3.   | Solve the problems of generating function, canonical transformation & Poisson brackets.           |      |
|       | 4.   | Formulate the equations of rigid body dynamics and demonstrate the examples of non-               |      |
|       |      | inertial frames of reference.                                                                     |      |
|       | 5.   | Solve the equations of coupled oscillator and to examine the two coupled pendulums, and           |      |
|       |      | double pendulum related problems.                                                                 |      |
|       |      |                                                                                                   |      |
| Modu  | le-1 | Constraints, classification of constraints, generalized coordinates, principal of virtual work, D | [10] |
|       |      | Alembert's principal, Langrange's equations of motion, properties of kinetic energy function,     |      |
|       |      | theorem on total energy, generalized momenta, cyclic-coordinates, integrals of motion, Jacobi     |      |
|       |      | integrals and energy conservation, concept of symmetry, invariance under Galilean                 |      |
|       |      | transformation, velocity dependent potential.                                                     |      |
|       |      | Two body central force problem: reduction of two body problem to equivalent one body              |      |
|       |      | problem, equation of motion under central force and first integrals, differential equation for an |      |
|       |      | orbit, Kepler's law, stability of orbits, virial theorem, scattering in a central force field.    |      |
| Modu  | le-2 | Hamilton's function and Hamilton's equation of motion, configuration space, phase space and       | [7]  |
|       |      | state space, Lagrangian and Hamiltonian of relativistic particles, Relativistic Lagrangian and    |      |
|       |      | Hamiltonian of a charged particle in an electromagnetic field.                                    |      |
| Modu  | le-3 | Generating function, Conditions for canonical transformation and problem. Poisson Brackets,       | [5]  |
|       |      | its definitions, identities, Poisson theorem, Jacobi-Poisson theorem, Jacobi identity, invariance |      |
|       |      | of PB under canonical transformation. Lagrange bracket.                                           |      |
| Modu  | le-4 | Dynamics of a Rigid Body: Rigid body and space reference system, Euler's angles, angular          | [10] |
|       |      | momentum and inertia tensor, principal moment of inertia, rotational kinetic energy of rigid      |      |
|       |      | body, symmetric bodies, moments of inertia for different body system, Euler's equation of         |      |
|       |      | motion for a rigid body by Newtonian method and Lagrange's method                                 |      |
|       |      | Non-inertial frames of reference, fictitious force, uniformly rotating frames, coriolis force,    |      |
|       |      | Foucault's pendulum, Larmor precession, effects of Coriolis force on: river flow on the surface   |      |
|       |      | of the earth, air flow on the surface of the earth, projectile motion                             |      |
| Modu  | le-5 | Coupled Oscillator: Potential energy and equilibrium of one dimensional oscillator,               | [8]  |
|       |      | differential equations for coupled oscillator, kinetic and potential energies of the coupled      |      |
|       |      | oscillators, theory of small oscillations, examples of coupled oscillator: two coupled            |      |
|       |      | pendulums, double pendulum                                                                        |      |
|       |      |                                                                                                   |      |

#### **Reference books:**

- 1. Classical Mechanics by H. Goldstein, Pearson Education Asia.
- 2. Classical Dynamics of Particles and Systems by Marion and Thomtron, Third Edition, Horoloma Book Jovanovich College Publisher.
- 3. Classical Mechanics by P. V. Panat, Narosa Publishing Home,, New Delhi.
- 4. Classical Mechanics by N. C. Rana and P. S. Joag, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
- 5. Introduction to Classical Mechanics by R. G. Takwale and P. S. Puranik, Tata Mc-Graw Hill Publishing Company Limited, New Delhi.
- 6. Landau and Lifsitz

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | N |
| Mini projects/Projects                                      | N |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | N |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

### <u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> <u>Direct Assessment</u>

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents | CO1          | CO2          | CO3 | CO4          | CO5 |
|----------------------|--------------|--------------|-----|--------------|-----|
| Mid Sem Examination  | $\checkmark$ | $\checkmark$ |     |              |     |
| End Sem Examination  | $\checkmark$ | $\checkmark$ |     | $\checkmark$ |     |
| Quiz I               | $\checkmark$ | $\checkmark$ |     |              |     |
| Quiz II              |              |              |     | $\checkmark$ |     |

#### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome
- **3.** Teacher's assessment

## Mapping between Objectives and Outcomes

#### Mapping between Course Objectives and Course Outcomes

|                   |   | Course Outcomes |   |   |          |  |  |
|-------------------|---|-----------------|---|---|----------|--|--|
| Course Objectives | 1 | 2               | 3 | 4 | <u>5</u> |  |  |
| Α                 | Н | Μ               | Μ | L | L        |  |  |
| В                 | Н | Н               | Μ | L | L        |  |  |
| С                 | М | Μ               | Η | L | L        |  |  |
| D                 | L | L               | L | Η | L        |  |  |
| Е                 | L | L               | L | L | Н        |  |  |

| Mapping of Course Outcomes onto Program Outcomes |                  |   |   |   |   |   |  |  |
|--------------------------------------------------|------------------|---|---|---|---|---|--|--|
| Course                                           | Program Outcomes |   |   |   |   |   |  |  |
| Outcome #                                        | а                | b | с | d | e | f |  |  |
| 1                                                | Н                | Н | Н | Н | Н | Н |  |  |
| 2                                                | Н                | Н | Н | Н | Н | Н |  |  |
| 3                                                | Н                | М | М | Н | Н | М |  |  |
| 4                                                | Н                | L | L | М | Н | М |  |  |
| 5                                                | Н                | М | Н | М | Н | М |  |  |

#### Mapping of Course Outcomes onto Program Outcomes

|     | Mapping Between COs and Course Delivery (CD) methods        |                   |                           |  |  |  |  |  |
|-----|-------------------------------------------------------------|-------------------|---------------------------|--|--|--|--|--|
| CD  | Course Delivery methods                                     | Course<br>Outcome | Course Delivery<br>Method |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1 and CD2               |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       | CO2               | CD1 and CD2               |  |  |  |  |  |
| CD3 | Seminars                                                    | CO3               | CD1 and CD2               |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      | CO4               | CD1 and CD2               |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        | CO5               | CD1 and CD2               |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   | -                 | -                         |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         | -                 | -                         |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets | -                 | -                         |  |  |  |  |  |
| CD9 | Simulation                                                  | -                 | -                         |  |  |  |  |  |

| Week | Lect. | Tentative | Ch. | Topics to be covered         | Text   | COs  | Actual  | Methodol | Remarks |
|------|-------|-----------|-----|------------------------------|--------|------|---------|----------|---------|
| No.  | No.   | Date      | No. |                              | Book / | mapp | Content | ogy      | by      |
|      |       |           |     |                              | Refere | ed   | covered | used     | faculty |
|      |       |           |     |                              | nces   |      |         |          | if any  |
|      | L1-L3 |           |     | Constraints, classification  | T1     |      |         |          |         |
|      |       |           |     | of constraints, generalized  | T2     |      |         |          |         |
|      |       |           |     | coordinates, principal of    |        |      |         |          |         |
|      |       |           |     | virtual work, D Alembert's   |        |      |         |          |         |
|      |       |           |     | principal, Langrange's       |        |      |         |          |         |
|      |       |           |     | equations of motion          |        |      |         |          |         |
|      | L4-   |           |     | properties of kinetic energy | T1     |      |         |          |         |
|      | L6    |           |     | function, theorem on total   | T2     |      |         |          |         |
|      |       |           |     | energy, generalized          |        |      |         |          |         |
|      |       |           |     | momenta, cyclic-             |        |      |         |          |         |
|      |       |           |     | coordinates, integrals of    |        |      |         |          |         |
|      |       |           |     | motion, Jacobi integrals     |        |      |         |          |         |
|      |       |           |     | and energy conservation,     |        |      |         |          |         |
|      |       |           |     | concept of symmetry          |        |      |         |          |         |
|      | L7-   |           |     | invariance under Galilean    | T1     |      |         |          |         |
|      | L10   |           |     | transformation, velocity     | T2     |      |         |          |         |
|      |       |           |     | dependent potential.         |        |      |         |          |         |
|      |       |           |     | Two body central force       |        |      |         |          |         |
|      |       |           |     | problem: reduction of two    |        |      |         |          |         |
|      |       |           |     | body problem to equivalent   |        |      |         |          |         |
|      |       |           |     | one body problem,            |        |      |         |          |         |
|      |       |           |     | equation of motion under     |        |      |         |          |         |
|      |       |           |     | central force and first      |        |      |         |          |         |
|      |       |           |     | integrals, differential      |        |      |         |          |         |

|              | equation for an orbi<br>Kepler's law, stability c | t,<br>f          |  |  |
|--------------|---------------------------------------------------|------------------|--|--|
|              | orbits, virial theorem                            | l,               |  |  |
|              | field                                             | e                |  |  |
| L11-         | Hamilton's function an                            | d T1             |  |  |
| L13          | Hamilton's equation of                            | f T2             |  |  |
| <b>I</b> 14  | motion                                            | - TT1            |  |  |
| L14          | space and state space                             |                  |  |  |
| I 15-        | Lagrangian an                                     | 12<br>d T1       |  |  |
| L13          | Hamiltonian of relativisti                        | c T2             |  |  |
|              | particles, Relativisti                            | c                |  |  |
|              | Lagrangian an                                     | d                |  |  |
|              | Hamiltonian of a charge                           | d                |  |  |
|              | particle in a                                     | n                |  |  |
| I 10         | electromagnetic field.                            | <u>т</u> 1       |  |  |
| L18,<br>1 19 | Conditions for canonica                           | 1, 11<br>$1 T^2$ |  |  |
|              | transformation an                                 | d 12             |  |  |
|              | problem.                                          |                  |  |  |
| L20-         | Poisson Brackets, it                              | s T1             |  |  |
| L22          | definitions, identities                           | s, T2            |  |  |
|              | Poisson theorem, Jacobi                           | -                |  |  |
|              | Poisson theorem, Jacob                            | 1                |  |  |
|              | under canonica                                    | 5                |  |  |
|              | transformation. Lagrang                           | e                |  |  |
|              | bracket.                                          | -                |  |  |
| L23-         | Dynamics of a Rigid Body                          | r: T1            |  |  |
| L27          | Rigid body and spac                               | e T2             |  |  |
|              | reference system, Euler                           | S                |  |  |
|              | angles, angular momentur                          | n<br>1           |  |  |
|              | moment of inertia                                 |                  |  |  |
|              | rotational kinetic energy of                      | .,<br>f          |  |  |
|              | rigid body, symmetri                              | c                |  |  |
|              | bodies, moments of inerti                         | a                |  |  |
|              | for different body system                         | l,               |  |  |
|              | Euler's equation of motio                         | n                |  |  |
|              | Ior a rigid body b<br>Newtonian method an         | y<br>d           |  |  |
|              | Lagrange's method                                 | u                |  |  |
| L28-         | Non-inertial frames of                            | f T1             |  |  |
| L32          | reference, fictitious force                       | e, T2            |  |  |
|              | uniformly rotating frames                         | s,               |  |  |
|              | coriolis force, Foucault'                         | S                |  |  |
|              | pendulum, Larmo                                   | r                |  |  |
|              | Coriolis force on rive                            | I<br>r           |  |  |
|              | flow on the surface of th                         | e                |  |  |
|              | earth, air flow on th                             | e                |  |  |
|              | surface of the earth                              | l,               |  |  |
|              | projectile motion.                                |                  |  |  |

| L32, | Coupled Oscillator:           | T1 |
|------|-------------------------------|----|
| L33  | Potential energy and          | T2 |
|      | equilibrium of one            |    |
|      | dimensional oscillator,       |    |
| L34- | differential equations for    | T1 |
| L38  | coupled oscillator, kinetic   | T2 |
|      | and potential energies of     |    |
|      | the coupled oscillators,      |    |
|      | theory of small oscillations, |    |
| L39, | examples of coupled           | T1 |
| L40  | oscillator: two coupled       | T2 |
|      | pendulums, double             |    |
|      | pendulum.                     |    |

Course code: PH 404 Course title: Quantum Mechanics Pre-requisite(s): Previous papers of Quantum Mechanics Co- requisite(s): Credits: 3L: 2 T:1 P: 0 Class schedule per week: Class: M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Name of Teacher: Code: **Title: Quantum Mechanics** L-T-P-C PH 404 [2-1-0-3] **Course Objectives** This course enables the students to: A. define Heisenberg & Dirac formulation of quantum mechanics and explain their importance.-Outline the basics of crystallography and define various types of imperfections in crystals. B. demonstrate the linear harmonic oscillator and hydrogen-like atom using Dirac formulation-Explain elastic and plastic deformation in solids and summarize the strain hardening mechanisms. C. explain the angular momentum operators associated with spherical and symmetrical systems-Define ceramics and explain its types and applications. D. illustrate scattering theory and determine the scattering parameters.-Define polymers and composites and categorize them on the basis of their applications. E. formulate the approximation methods to solve real problems which are insolvable analytically-Define Nanotechnology and outline the various properties of nano materials and their fabrication techniques. **Course Outcomes** After the completion of this course, students will be able to: 1. formulate the Heisenberg & Dirac formulation of quantum mechanics-explain various types of imperfections in crystals. 2. solve the linear harmonic oscillator and hydrogen-like atom problems using Dirac formulation-analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques. 3. demonstrate angular momentum operators associated with spherical and symmetrical systems.-summarize ceramics and its types and relate their applications with properties. 4. explain scattering theory, formulate and solve scattering equation-classify polymers and composites based on their properties and applications. apply the Variational principle and WKB Approximation to solve the real problems-Classify nanomaterials, 5. their fabrication techniques and co relate the effects of confinement to nanoscale on their properties. Module-1 **Introduction to Dirac and Heisenberg Formulation:** [10] Linear vector space, Dirac Bra-Ket notations. Determination of eigen-values and eigen-functions using matrix representations. Coordinate and momentum representation. Uncertainty principle. Module-2 Harmonic Oscillator and Hydrogen atom problem: [10] Linear harmonic oscillator, Heisenberg and quantum mechanical treatments. Asymptotic behaviour, energy levels, correspondence with classical theory. Spherically symmetric potential in three dimensions, hydrogen atom, wave functions, eigenvalues, degeneracy, etc. Module-3 Angular momentum and its addition: [10] Theory of angular momentum, symmetry, invariance and conservation laws, relation between rotation and angular momentum. Commutation rules, eigenvalues and eigen

functions of the angular momentum. Stern-Gerlach experiment, spin, spin operators, Pauli's spin matrices. Spin states of two spin-1/2 particles. Addition of angular momenta, Clebsch-Gordon coefficients. Principle of indistinguishablity of identical

|                                                                                    | particles, Pauli's exclusion principle.                                                |     |  |  |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|--|--|--|
| Module-4                                                                           | Scattering theory: Scattering Theory, differential and total scattering cross-section  | [5] |  |  |  |
|                                                                                    | laws, partial wave analysis and application to simple cases; Integral form of          |     |  |  |  |
|                                                                                    | scattering equation, Born approximation validity and simple applications.              |     |  |  |  |
| Module-5 Approximation Methods: Variational Principle, WKB approximation, solution |                                                                                        |     |  |  |  |
|                                                                                    | near a turning point, connection formula, tunnelling through barrier. boundary         |     |  |  |  |
|                                                                                    | conditions in the quasi classical case.                                                |     |  |  |  |
| Text b                                                                             | ooks:                                                                                  |     |  |  |  |
|                                                                                    |                                                                                        |     |  |  |  |
| 1. J.J                                                                             | . Sakurai, Modern Quantum Mechanics , Addison-Wesley Publishing Company, 1994.         |     |  |  |  |
| 2. No                                                                              | uredine Zettili, Ounatum Mechanics: Concepts and Application, Wiley Publications 2016. |     |  |  |  |
| 3. R.                                                                              | Shankar, Principles of Quantum Mechanics, Plenum Press, 1994.                          |     |  |  |  |
|                                                                                    |                                                                                        |     |  |  |  |
| Refere                                                                             | nce books:                                                                             |     |  |  |  |
| increa c                                                                           |                                                                                        |     |  |  |  |
| 1. L.]                                                                             | . Schiff, Quantum Mechanics, Tata McGraw Hill, New Delhi                               |     |  |  |  |
| 2 L                                                                                | D Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, Berlin                       |     |  |  |  |
| 2. L.I                                                                             | Dendad and E. M. Ensintz, Quantum Moonanies, Pergamon, Dermi.                          |     |  |  |  |
|                                                                                    |                                                                                        |     |  |  |  |

| Course Delivery methods                           |     |
|---------------------------------------------------|-----|
| Lecture by use of boards/LCD projectors/OHP       | Yes |
| projectors                                        |     |
| Tutorials/Assignments                             | Yes |
| Seminars                                          | No  |
| Mini projects/Projects                            | No  |
| Laboratory experiments/teaching aids              | No  |
| Industrial/guest lectures                         | No  |
| Industrial visits/in-plant training               | No  |
| Self- learning such as use of NPTEL materials and | Yes |
| internets                                         |     |
| Simulation                                        | No  |

## <u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> <u>Direct Assessment</u>

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| AssessmentCompoents       | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination Marks | Yes | Yes | Yes | No  | No  |
| End Sem Examination Marks | Yes | Yes | Yes | Yes | Yes |
| Assignment                | Yes | Yes | Yes | Yes | Yes |

#### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

## **Mapping between Objectives and Outcomes**

| Course    |   | Program Outcomes |   |   |   |   |  |
|-----------|---|------------------|---|---|---|---|--|
| Outcome # | a | b                | с | d | e | f |  |
| 1         | Н | Н                | Н | L | М | L |  |
| 2         | Н | Н                | М | L | L | L |  |
| 3         | Н | М                | М | L | L | L |  |
| 4         | Н | М                | М | L | L | L |  |
| 5         | Н | Н                | Н | L | Н | L |  |

#### Mapping of Course Outcomes onto Program Outcomes

| Course    | Course Objectives |   |   |   |   |  |
|-----------|-------------------|---|---|---|---|--|
| Outcome # | a                 | b | с | d | e |  |
| 1         | Н                 | М | М | М | L |  |
| 2         | М                 | Н | М | М | L |  |
| 3         | М                 | М | Н | L | L |  |
| 4         | М                 | М | Н | L | L |  |
| 5         | М                 | М | L | L | Н |  |

|     | Mapping Between COs and Course Delivery (CD) methods        |   |         |          |           |  |  |
|-----|-------------------------------------------------------------|---|---------|----------|-----------|--|--|
|     |                                                             | ( | Course  | Course   | Delivery  |  |  |
| CD  | Course Delivery methods                                     |   | Outcome | Method   |           |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | ( | CO1     | CD1, CD2 | 2 and CD8 |  |  |
| CD2 | Tutorials/Assignments                                       | ( | CO2     | CD1, CD2 | 2 and CD8 |  |  |
| CD3 | Seminars                                                    | ( | 203     | CD1, CD2 | 2 and CD8 |  |  |
| CD4 | Mini projects/Projects                                      | ( | CO4     | CD1, CD2 | 2 and CD8 |  |  |
| CD5 | Laboratory experiments/teaching aids                        | ( | 205     | CD1, CD2 | 2 and CD8 |  |  |
| CD6 | Industrial/guest lectures                                   |   |         | ·        |           |  |  |
| CD7 | Industrial visits/in-plant training                         |   |         |          |           |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |   |         |          |           |  |  |
| CD9 | Simulation                                                  |   |         |          |           |  |  |

| Week<br>No. | Lect.<br>No. | Tent<br>ative<br>Date | Modul<br>e<br>No. | Topics to be covered                                                     | Text<br>Book /<br>Refere<br>nces | Cos<br>mapped | Actual<br>Content<br>covered | Methodolog<br>yused               | Remarks<br>by<br>faculty if<br>any |
|-------------|--------------|-----------------------|-------------------|--------------------------------------------------------------------------|----------------------------------|---------------|------------------------------|-----------------------------------|------------------------------------|
| 1           | L1           |                       | Ι                 | Linear vector space                                                      | T2                               | CO-1          |                              | PPT Digi<br>Class/Chal<br>k Board |                                    |
|             | L2-L3        |                       |                   | Dirac Bra-Ket notations                                                  | T2                               | CO-1          |                              | PPT Digi<br>Class/Chal<br>k-Board |                                    |
| 2           | L4-6         |                       |                   | Determinationofeigen-valuesandeigen-functionsusingmatrix epresentations. | T1                               | CO-1          |                              | PPT Digi<br>Class/Chal<br>k-Board |                                    |
| 3           | L7-8         |                       |                   | Coordinate and                                                           | T1                               | CO-1          |                              | PPT Digi<br>Class/Chal            |                                    |

|     |            |     | momentum                                                                             |               |      | k-Board                           |  |
|-----|------------|-----|--------------------------------------------------------------------------------------|---------------|------|-----------------------------------|--|
|     |            |     | representation                                                                       |               |      |                                   |  |
| 3-4 | L9-<br>L10 |     | Uncertainty principle                                                                | Т3            | CO-1 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 4   | L11        | II  | Linear harmonic oscillator                                                           | Т3            | CO-2 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 4-5 | L12-<br>13 |     | Heisenberg and<br>quantum mechanical<br>treatments.                                  | Т3            | CO-2 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 5   | L14        |     | Asymptotic behaviour,<br>energy levels,                                              | T1            | CO-2 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 5   | L15        |     | correspondence with classical theory.                                                | T1            | CO-2 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 6   | L16-<br>17 |     | Spherically symmetric<br>potential in three<br>dimensions,                           |               | CO-2 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 6-7 | L18-<br>19 |     | hydrogen atom, wave<br>functions,<br>eigenvalues,<br>degeneracy, etc.                | T1,<br>T2, T3 | CO-2 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 7   | L20-<br>21 | III | Theory of angular<br>momentum,<br>symmetry, invariance<br>and conservation laws,     | T2            | CO-3 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 8   | L22-<br>23 |     | relation between<br>rotation and angular<br>momentum.                                | T2            | CO-3 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 8-9 | L24-<br>25 |     | Commutation rules,<br>eigenvalues and eigen<br>functions of the<br>angular momentum. | T1            | CO-3 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 9   | L26-<br>27 |     | Stern-Gerlach<br>experiment, spin, spin<br>operators                                 | T1            | CO-3 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 10  | L28        |     | Pauli's spin matrices.<br>Spin states of two<br>spin-1/2 particles.                  | T1,<br>T2, T3 | CO-3 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 10  | L29        |     | Addition of angular<br>momenta, Clebsch-<br>Gordon coefficients.                     | T1,<br>T2, T3 | CO-3 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 10  | L30        |     | Principleofindistinguishablityofidentical particles,                                 | T1,<br>T2, T3 | CO-3 | PPT Digi<br>Class/Chal<br>k-Board |  |
| 11  | L31        |     | Pauli's exclusion<br>principle                                                       | T3            | CO-3 | PPT Digi<br>Class/Chal            |  |

|    | -          | 1 | 1  |                                                                                   | 1  |      |                                   |
|----|------------|---|----|-----------------------------------------------------------------------------------|----|------|-----------------------------------|
|    |            |   |    |                                                                                   |    |      | k-Board                           |
| 11 | L29        |   | IV | Scattering Theory,<br>differential and total<br>scattering cross-<br>section laws | T2 | CO-4 | PPT Digi<br>Class/Chal<br>k-Board |
| 11 | L30        |   |    | partialwaveanalysisandapplicationtocases                                          | T2 | CO-4 | PPT Digi<br>Class/Chal<br>k-Board |
| 12 | L31        |   |    | Integral form of scattering equation                                              | T1 | CO-4 | PPT Digi<br>Class/Chal<br>k-Board |
| 12 | L32-<br>33 |   |    | Born<br>approximation validity<br>and simple<br>applications                      | T2 | CO-4 | PPT Digi<br>Class/Chal<br>k-Board |
| 13 | L34        |   | V  | Variational<br>Principle, WKB<br>approximation                                    | T2 | CO-5 | PPT Digi<br>Class/Chal<br>k-Board |
| 13 | L35        |   |    | solution near a turning point                                                     | T2 | CO-5 | PPT Digi<br>Class/Chal<br>k-Board |
| 13 | L36        |   |    | connectionformula,tunnellingthroughbarrier                                        | T2 | CO-5 | PPT Digi<br>Class/Chal<br>k-Board |
| 14 | L37        |   |    | boundary conditions<br>in the quasi classical<br>case                             | T2 | CO-5 | PPT Digi<br>Class/Chal<br>k-Board |

Course code: PH 405 Course title: Modern Computational Techniques & Programming Pre-requisite(s): Mathematical Physics Co- requisite(s): Credits: 2 L: 2 T: 0 P: 0 Class schedule per week: Class: M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

| Code:<br>PH405 | Title: Modern Computational Techniques & Programming         I                                                                                                                                                                                                                                    |             |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Course (       | Diectives:                                                                                                                                                                                                                                                                                        | [= • • =]   |  |  |  |  |  |
| The idea       | behind the course is to teach students to solve problem in physics using MAPLE and MATLAB. In                                                                                                                                                                                                     | this regard |  |  |  |  |  |
| the object     | tives are to                                                                                                                                                                                                                                                                                      | -           |  |  |  |  |  |
| 1. T           | each to calculate various errors which arise while solving different equations.                                                                                                                                                                                                                   |             |  |  |  |  |  |
| 2. T           | rain them to solve systems of linear equations.                                                                                                                                                                                                                                                   |             |  |  |  |  |  |
| 3. T           | each them the concept of interpolation.                                                                                                                                                                                                                                                           |             |  |  |  |  |  |
| 4. li<br>5. T  | rain them to calculate integrals and differentials using different numerical methods.                                                                                                                                                                                                             |             |  |  |  |  |  |
| Program        | <b>Program Outcomes:</b> After completion of the course, students should be able to                                                                                                                                                                                                               |             |  |  |  |  |  |
| 2. E           | ffectively use methods like matrix inversion, Gauss elimination and LU decomposition to solve line quations.                                                                                                                                                                                      | ar          |  |  |  |  |  |
| 3. E           | Chrich a given set of data points using interpolation methods like cubic spline, Newton's divided diff                                                                                                                                                                                            | erence,     |  |  |  |  |  |
| 4. N           | Jumerically differentiate and integrate expressions.                                                                                                                                                                                                                                              |             |  |  |  |  |  |
| 5. S           | olve equations from physics like heat equation, diffusion equation, etc. numerically.                                                                                                                                                                                                             |             |  |  |  |  |  |
| Module-1       | Approximation Methods Errors and Roots of Equations Accuracy and precision Truncation                                                                                                                                                                                                             | [8]         |  |  |  |  |  |
| inicaule 1     | and round-off errors, Bracketing Methods (false position, bisection), Iteration Methods (Newton-Raphson and secant).                                                                                                                                                                              | [0]         |  |  |  |  |  |
| Module-2       | Systems of linear algebraic equations Gauss elimination, matrix inversion and LU decomposition methods.                                                                                                                                                                                           | [4]         |  |  |  |  |  |
| Module-3       | Curve fitting and Interpolation Least squares regression, Linear, multiple linear and nonlinear regressions, Cubic spline. Newton's divided difference and Lagrange interpolating polynomials.                                                                                                    | [6]         |  |  |  |  |  |
| Module-4       | Numerical differentiation and integration, Divided difference method for differentiation,<br>Newton-Cotes formula, Trapezoidal and Simpson's rules, Romberg and Gauss quadrature<br>methods.                                                                                                      | [5]         |  |  |  |  |  |
| Module-5       | Ordinary and Partial differential equations, Euler's method and its modifications, Runge-Kutta methods, Boundary value and Eigen value problems. Finite difference equations, Elliptic equations, Laplace's equation and solutions, Parabolic equations, Solution of the heat conduction equation | [12]        |  |  |  |  |  |
| Text bo        | bks:                                                                                                                                                                                                                                                                                              |             |  |  |  |  |  |
| T1: Ir         | troductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India (1983)                                                                                                                                                                                                              |             |  |  |  |  |  |
| Referen        | ce books:                                                                                                                                                                                                                                                                                         |             |  |  |  |  |  |
| R1: N          | lumerical Analysis, V. Rajaraman                                                                                                                                                                                                                                                                  |             |  |  |  |  |  |
| R2: N          | lumerical Methods for Engineering, S.C. Chopra and R.C. Canale, McGraw-Hill (1989).                                                                                                                                                                                                               |             |  |  |  |  |  |
| R3: 1          | Numerical Methods for Scientists and Engineers, Prentice Hall of India (1988).                                                                                                                                                                                                                    |             |  |  |  |  |  |

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Υ |
| Tutorials/Assignments                                       | Υ |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | Ν |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Υ |
| Simulation                                                  | Υ |

## <u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> <u>Direct Assessment</u>

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1 | CO2 | CO3 | CO4 | C05 |
|---------------------------|-----|-----|-----|-----|-----|
| End Sem Examination Marks |     |     |     |     |     |
| Quiz 1                    |     |     |     |     |     |
| Quiz 2                    |     |     |     |     |     |
| Quiz 3                    |     |     |     |     |     |

#### Indirect Assessment -

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

## **Mapping between Objectives and Outcomes**

#### Mapping of Course Objectives onto Course Outcomes

| Course Outcome # | Program Outcomes |   |   |   |   |
|------------------|------------------|---|---|---|---|
|                  | a                | b | с | d | e |
| 1                | Н                | L | L | L | L |
| 2                | L                | Н | L | L | L |
| 3                | L                | L | Н | L | L |
| 4                | L                | L | L | Н | L |
| 5                | L                | L | L | L | Н |

## Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # | Program Outcomes |   |   |   |   |   |
|------------------|------------------|---|---|---|---|---|
|                  | а                | b | с | d | e | f |
| 1                | Н                | Н | Н | М | Н | Н |
| 2                | Н                | Н | Н | М | Н | Н |
| 3                | Н                | Н | Н | М | Н | Η |
| 4                | Н                | Н | Н | М | Н | Н |
| 5                | Н                | Н | Н | М | Н | Н |

| Mapping Between COs and Course Delivery (CD) methods |                                                             |                   |                           |  |  |
|------------------------------------------------------|-------------------------------------------------------------|-------------------|---------------------------|--|--|
| CD                                                   | Course Delivery methods                                     | Course<br>Outcome | Course Delivery<br>Method |  |  |
| CD1                                                  | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1, CD2 and CD9          |  |  |
| CD2                                                  | Tutorials/Assignments                                       | CO2               | CD1, CD2and CD9           |  |  |
| CD3                                                  | Seminars                                                    | CO3               | CD1, CD2 and CD9          |  |  |
| CD4                                                  | Mini projects/Projects                                      | CO4               | CD1, CD2 and CD9          |  |  |
| CD5                                                  | Laboratory experiments/teaching aids                        | CO5               | CD1, CD2 and CD9          |  |  |
| CD6                                                  | Industrial/guest lectures                                   |                   |                           |  |  |
| CD7                                                  | Industrial visits/in-plant training                         |                   |                           |  |  |
| CD8                                                  | Self- learning such as use of NPTEL materials and internets |                   |                           |  |  |
| CD9                                                  | Simulation                                                  |                   |                           |  |  |

| Week | Lect.        | Tent  | Ch  | Topics to be covered                                                                                                                                                                                             | Text   | COs | Actual  | Methodol                              | Remarks    |
|------|--------------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|---------|---------------------------------------|------------|
| No.  | No.          | ative | •   |                                                                                                                                                                                                                  | Book / | map | Content | ogy                                   | by         |
|      |              | Date  | No. |                                                                                                                                                                                                                  | Refere | ped | covered | used                                  | faculty if |
|      |              |       |     |                                                                                                                                                                                                                  | nces   |     |         |                                       | any        |
| 1-3  | L1-<br>L12   |       |     | Approximation Methods, Errors<br>and Roots of Equations, Accuracy<br>and precision, Truncation and<br>round-off errors, Bracketing<br>Methods (false position, bisection),                                       | T1, R1 | 1   |         | PPT Digi<br>Class/Cho<br>ck<br>-Board |            |
|      |              |       |     | Iteration Methods (Newton-<br>Raphson and secant).                                                                                                                                                               |        |     |         |                                       |            |
| 3-5  | L13-<br>L24  |       |     | Systems of linear algebraic<br>equations Gauss elimination,<br>matrix inversion and LU<br>decomposition methods.                                                                                                 | T1     | 2   |         |                                       |            |
| 5-8  | L25-<br>LL36 |       |     | Curve fitting and Interpolation<br>Least squares regression, Linear,<br>multiple linear and nonlinear<br>regressions, Cubic spline.<br>Newton's divided difference and<br>Lagrange interpolating<br>polynomials. | T1, R2 | 3   |         |                                       |            |
| 8-10 | L37-<br>L48  |       |     | Numerical differentiation and<br>integration, Divided difference<br>method for differentiation,<br>Newton-Cotes formula,                                                                                         | T1, R1 | 4   |         |                                       |            |

|       |             | Trapezoidal and Simpson's rules<br>Romberg and Gauss quadrature<br>methods.                                                                                                                                                                                                                                                 |        |   |  |  |
|-------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--|--|
| 10-14 | L49-<br>L60 | Ordinary and Partial differential<br>equations, Euler's method and its<br>modifications, Runge-Kutta<br>methods, Boundary value and<br>Eigen value problems. Finite<br>difference equations, Elliptic<br>equations, Laplace's equation and<br>solutions, Parabolic equations<br>Solution of the heat conduction<br>equation | T1, R3 | 5 |  |  |

Course code: PH 406 Course title: Modern Computational Techniques & Programming Lab Pre-requisite(s): Mathematical Physics Co- requisite(s): Credits: 2L: 0 T: 0 P: 4 Class schedule per week: Class: M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

Name of Teacher: **Title: Modern Computational Techniques & Programming Lab** L-T-P-C [0-0-4-2] 1. Evaluate f(0.8) using Taylor's series for f(x), where  $f(x) = 5x^4 - 2x^2 + 3x - 2$ 2. Find the truncation error by comparing the following functions with their values calculated using zeroth, first,...,seventh order Taylor's expansion: a)  $sin(\pi/3)$ b)  $\frac{1}{1-0.1}$ 3. Let  $u = \frac{5xy^3}{z^2}$ . If  $\Delta x = \Delta y = \Delta z = 0.01$  and x = y = z = 2, calculate the maximum relative and absolute errors. 4. Find the roots of the function  $10\sin(x) = 2x^2 + 1.$ Maple is not able to find an exact (symbolic) solution of the equation. There are two general approaches to obtaining an approximate solution that you might consider in a case like this; graphical and numerical. 5. Solve the following set of linear equation by (i) Gauss elimination (ii) Matrix inversion and (iii) LU decomposition methods.

x + 3y - 2z = 103x + 5y + 6z = 72x + 4y + 3z = 8

6. Fit the given set of data points to a gaussian function of the form  $a_0 * exp^{-(x^2-a_1)}$ :

(-3, 0.0188), (-2.68, 0.1112), (-2.37, 0.5468), (-2.05, 2.2223), (-1.74, 7.3486), (-1.42, 19.8502), (-1.11, 43.9048), (-0.79, 79.6264), (-0.47, 118.49122), (-0.16, 144.6785), (0.16, 144.6785), (0.4737, 118.4912), (0.7895, 79.6264), (1.11, 43.9048), (1.42, 19.8502), (1.74 7.3486), (2.05, 2.2223), (2.37, 0.5468), (2.68, 0.1112), (3, 0.01877)

Find the values of  $a_0$  and  $a_1$ .

7. Using the table below, find f(x) as a polynomial in x for data points provided below: (-1,5), (2,-6), (5,4), (6, 9), (7,10), (9,13), (11, 16), (13,18)

8. Using the values of x and y provided in the table below, obtain dy/dx and  $d^2x/d^2y$  for x = 1.2.

| ×   | Y       |
|-----|---------|
| 1.0 | 2.7188  |
| 1.2 | 3.3289  |
| 1.4 | 4.0068  |
| 1.6 | 4.9538  |
| 1.8 | 6.0489  |
| 2.0 | 7.4567  |
| 2.2 | 9.2258  |
| 2.4 | 11.8976 |

9. Evaluate the integral  $\int_0^1 \frac{x^3}{e^x - 1}$  using trapezoidal and Simpson's rules correct to five decimal places. Which method gives the most accurate result?

10. A solid of revolution is formed by rotating about the x-axis the area between the x-axis, the lines x = 0 and x = 1, and a curve through the points with the following coordinates:

| ×    | Y      |
|------|--------|
| 0.00 | 1.0000 |
| 0.25 | 0.9900 |
| 0.50 | 9600   |
| 0.75 | 0.9100 |
| 1.00 | 0.8400 |

11. Solve the following differential equation (overdamped Langevin equation):

 $\gamma \frac{dx}{dt} = -kx + \sqrt{2k_BT} \,\xi(t),$ 

where , *T* and *k* are constants, and  $\xi(t)$  is a random variable sampled from a normal distribution. Take  $k_B = 1$ . Start with the initial condition x(t = 0) = 0.

12. Solve Laplace equation in Cartesian coordinates, in a region defined by a parallelepiped of dimensions  $L_1$ ,  $L_2$  and  $L_3$ . The equation is

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0.$$

The potential vanishes on 5 faces of the parallelepiped. On the 6<sup>th</sup> face at  $z = L_3$ , the potential is a known function f(x, y).

13. Solve the heat equation  $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ 

Subject to the initial conditions:  $u = sin(\pi x)$  at t = 0 for  $0 \le x \le 1$  and u = 0 at x = 0 and x = 1 for t > 0.

14. Consider a system of 100 identical particles interacting via a Lennard-Jones potential:

$$U_{LJ}(r) = 4\epsilon \left[ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right] ,$$

which is terminated and shifted at  $r = r_{cut} = 2.5\sigma$ , so that the truncated potential  $\bar{U}_{LJ}$  is defined as,

$$\bar{U}_{LJ}(r) = \begin{cases} U_{LJ}(r) - U_{LJ}(r_{\text{cut}}) & \text{if } r < r_{\text{cut}} \\ 0 & \text{if } r > r_{\text{cut}} \end{cases}$$

All the quantities are defined in terms of reduced Lennard-Jones units with mass m, interaction parameter  $\epsilon$  and length scale  $\sigma$  having unit values. Using NVT simulations, plot the equilibrium energy of the system against temperature.

#### **References:**

- 1. Numerical Mathematical Analysis, J.B. Scarborough, John Hopkins (1966).
- 2. Introductory Methods of Numerical Analysis, S.S. Sastry, Prentice Hall of India (1983)
- 3. Numerical Methods for Engineering, S.C. Chopra and R.C. Canale, McGraw-Hill (1989).
- 4. Numerical Methods for Scientists and Engineers, Prentice Hall of India (1988).
- Electromagnetics and Calculation of Fields, Nathan P-Ida and J.P.A. Bastos, Springer-Verlag (1992).

#### **Course Assessment tools & Evaluation procedure**

| Assessment Tool        | % Contribution                                      |
|------------------------|-----------------------------------------------------|
| Progressive Evaluation | 60 (Day to day performance: 30, Quiz: 10, Viva: 20) |
| End Sem Examination    | 40 (Experiment Performance: 30, Quiz: 10)           |

Course code: PH 407 Course title: Modern Physics Lab Pre-requisite(s): Co- requisite(s): Credits: 2L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: VII / I Branch: PHYSICS Name of Teacher:

#### **Modern Physics Lab**

## L-T-P-C [0-0-4-2]

#### Name of the Experiment

- 1. To determine specific charge of electron by Thomson's method/circular trajectory method. (Thomson's experiment)
- 2. To Verify the inverse Square law using Planck's constant measuring instrument.(Inverse square law)
- 3. Determination of Planck's constant using Light Emitting Diode (LEDs) (Planck's constant)
- 4. Verification of energy quantisation by Franck-Hertz Experiment. (Franck-Hertz Experiment)
- 5. Study of the voltage and current of the solar cells in series and parallel combinations. (Characteristic of Solar cell)
- 6. To measure the charge of electron and show that it is quantised with the smallest value of 1.6× 10-19 coulombs (Millikan's oil drop experiment)
- 7. To study the variation of count rate with applied voltage and thereby determine the plateau, the operating voltage and slope of plateau (G M Counter)
- 8. To observe the dielectric constant by comparison of electrical conductivity of different materials to that of a metal.(Dielectric constant)

#### Course Assessment tools & Evaluation procedure

| Assessment Tool        | % Contribution                                      |
|------------------------|-----------------------------------------------------|
| Progressive Evaluation | 60 (Day to day performance: 30, Quiz: 10, Viva: 20) |
| End Sem Examination    | 40 (Experiment Performance: 30, Quiz: 10)           |

# **Semester II**

## **COURSE INFORMATION SHEET**

| C         |                                                                                                      |            |
|-----------|------------------------------------------------------------------------------------------------------|------------|
| Course    | code: PH 408                                                                                         |            |
| Course    | title: Statistical Physics                                                                           |            |
| Pre-ree   | uisite(s): Mathematical Physics                                                                      |            |
| Co- rec   | uisite(s): Quantum Physics                                                                           |            |
| Credits   | <b>4</b> L: 3 T: 1 P: 0                                                                              |            |
| Class s   | chedule per week:                                                                                    |            |
| Class:    | I.M.Sc.                                                                                              |            |
| Semest    | er / Level: II                                                                                       |            |
| Branch    | : PHYSICS                                                                                            |            |
| Name o    | f Teacher:                                                                                           |            |
| Code:     | Title: Statistical Physics                                                                           | L-T-P-C    |
| PH 408    |                                                                                                      | [3-1-0-4]  |
| Course    | Objectives                                                                                           |            |
| 1         | To understand the dependence of equilibrium properties of various systems on their microscopic cons  | stituents  |
| 1.        | and compute thermodynamic parameters by using classical statistics.                                  | , indentis |
| 2.        | To learn to use methods of quantum statistics to obtain properties of systems made of microscopic pa | rticles    |
|           | which either obey Fermi-Dirac statistics or Bose-Einstein statistics.                                |            |
| 3.        | To grasp the concepts of first order and second order phase transitions and critical phenomena.      |            |
| 4.        | To understand phase transition arising in Ising model.                                               |            |
| 5.        | To learn to obtain the properties of out-of-equilibrium systems using concepts from equilibrium phys | ics.       |
| Course    | <b>Outcomes:</b> Students should be able to                                                          |            |
| 1         | Use various ensemble theories to calculate the thermodynamic properties of different systems         |            |
| 2         | Compute properties of systems behaving as ideal Fermi gas or ideal Bose gas                          |            |
| 2.        | Compute properties of systems behaving as facal rethin gas of facal bose gas.                        |            |
| 5.        | Classify transitions as first order or second order.                                                 |            |
| 4.        | The student should be able to reproduce the exact solution of Ising model in one dimension and solve | it using   |
|           | mean field theory.                                                                                   |            |
| 5.        | Understand the approach required to predict the evolution of non-equilibrium systems.                |            |
| Module    | -1 Formalism of Equilibrium Statistical Mechanics                                                    | [8]        |
|           | Concept of phase space, Liouville's theorem, basic postulates of statistical mechanics,              |            |
|           | ensembles: microcanonical, canonical, grand canonical and their partition functions,                 |            |
|           | connection to thermodynamics, fluctuations, applications of various ensembles, equation of           |            |
|           | state for a non-ideal gas. Van der Waals' equation of state. Meyer cluster expansion, virial         |            |
|           | coefficients.                                                                                        |            |
| Module    | -2 Quantum Statistics                                                                                | [8]        |
| 1110 4410 | Formalism of Fermi-Dirac and Bose-Einstein statistics Applications of the formalism to: (a)          | [0]        |
|           | Ideal Bose gas Debye theory of specific heat properties of black-body radiation Bose-                |            |
|           | Einstein condensation degeneracy BEC in a harmonic potential (b) Ideal Fermi gas                     |            |
|           | properties of simple metals. Pauli paramagnetism electronic specific heat                            |            |
| Module    | <ul> <li>Phose Transitions and Critical Phonomena</li> </ul>                                         | [9]        |
| wiodule   | First and Second order Phase transitions Diamagnetism paramagnetism and                              | [0]        |
|           | farromagnetism Landau theory critical phenomena. Critical exponents, scaling hypothesis              |            |
| Madula    | 4 Joing Model : Joing Model mean field theory, event solution in one dimension                       | [6]        |
| Madala    | -4 Ising Model: Ising Model, mean-field theory, exact solution in one dimension.                     | [0]        |
| Module    | -5 Nonequilibrium Systems: Correlation of space-time dependent fluctuations, fluctuations and        | [10]       |
|           | transport pnenomena, Diffusion equation, Random walk and Brownian motion, Langevin                   |            |
|           | theory, fluctuation dissipation theorem, Fokker-Planck equation.                                     |            |
| Text b    | boks:                                                                                                |            |
| T1: Sta   | tistical Physics, Landau and Lifshitz, Pergamon Press                                                |            |
| Refere    | nce books:                                                                                           |            |
| R1: Stat  | istical Physics, R. K. Patharia, Pergamon Press                                                      |            |

#### R2: Statistical Physics, Kerson Huang, John Wiley and Sons R3: Statistical Physics, S. K. Ma, World Scientific Publishing, Singapore

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | Ν |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

## Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1 | CO2 | CO3 | CO4 | C05 |
|---------------------------|-----|-----|-----|-----|-----|
| End Sem Examination Marks |     |     |     |     |     |
| Quiz 1                    |     |     |     |     |     |
| Quiz 2                    |     |     |     |     |     |
| Quiz 3                    |     |     |     |     |     |

#### Indirect Assessment -

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

## **Mapping between Objectives and Outcomes**

#### Mapping of Course Objectives onto Course Outcomes

| Course Outcome # |   | Program Outcomes |   |   |   |  |  |
|------------------|---|------------------|---|---|---|--|--|
|                  | а | b                | с | d | e |  |  |
| 1                | Н | L                | L | L | L |  |  |
| 2                | L | Н                | L | L | L |  |  |
| 3                | L | L                | Н | L | L |  |  |
| 4                | L | L                | L | Н | L |  |  |
| 5                | L | L                | L | L | Н |  |  |

Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # |   |   | Program O | outcomes |   |   |
|------------------|---|---|-----------|----------|---|---|
|                  | а | b | с         | d        | e | f |
| 1                | Н | Н | Н         | М        | Н | Н |
| 2                | Н | Н | Н         | М        | Н | Н |

| 3 | Н | Н | Н | М | Н | Н |
|---|---|---|---|---|---|---|
| 4 | Н | Н | Н | М | Н | Н |
| 5 | Н | Н | Н | М | Н | Н |

|     | Mapping Between COs and Course Delivery (CD) methods        |                |                           |  |  |  |  |  |
|-----|-------------------------------------------------------------|----------------|---------------------------|--|--|--|--|--|
| CD  | Course Delivery methods                                     | Course Outcome | Course Delivery<br>Method |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1            | CD1 and CD2               |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       | CO2            | CD1 andCD2                |  |  |  |  |  |
| CD3 | Seminars                                                    | CO3            | CD1 and CD2               |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      | CO4            | CD1 and CD2               |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        | CO5            | CD1 and CD2               |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |                |                           |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |                |                           |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |                |                           |  |  |  |  |  |
| CD9 | Simulation                                                  |                |                           |  |  |  |  |  |

| Week | Lect. | Tent  | Ch. | Topics to be covered            | Text   | COs   | Actual  | Methodology | Remar   |
|------|-------|-------|-----|---------------------------------|--------|-------|---------|-------------|---------|
| No.  | No.   | ative | No. |                                 | Book / | mappe | Content | used        | ks by   |
|      |       | Date  |     |                                 | Refere | d     | covered |             | faculty |
|      |       |       |     |                                 | nces   |       |         |             | if any  |
| 1-3  | L1-   |       |     | Concept of phase space,         | T1     | 1     |         | PPT Digi    |         |
|      | L8    |       |     | Liouville's theorem, basic      |        |       |         | Class/Chock |         |
|      |       |       |     | postulates of statistical       |        |       |         | -Board      |         |
|      |       |       |     | mechanics, ensembles:           |        |       |         |             |         |
|      |       |       |     | microcanonical, canonical,      |        |       |         |             |         |
|      |       |       |     | grand canonical and their       |        |       |         |             |         |
|      |       |       |     | to thermodynamics               |        |       |         |             |         |
|      |       |       |     | fluctuations applications of    |        |       |         |             |         |
|      |       |       |     | various ensembles, equation of  |        |       |         |             |         |
|      |       |       |     | state for a non-ideal gas. Van  |        |       |         |             |         |
|      |       |       |     | der Waals' equation of state,   |        |       |         |             |         |
|      |       |       |     | Meyer cluster expansion, virial |        |       |         |             |         |
|      |       |       |     | coefficients.                   |        |       |         |             |         |
| 3-6  | L9-   |       |     | Formalism of Fermi-Dirac and    | T1,    | 2     |         |             |         |
|      | L16   |       |     | Bose-Einstein statistics.       | R1, R2 |       |         |             |         |
|      |       |       |     | Applications of the formalism   |        |       |         |             |         |
|      |       |       |     | to: (a) Ideal Bose gas, Debye   |        |       |         |             |         |
|      |       |       |     | theory of specific heat,        |        |       |         |             |         |
|      |       |       |     | radiation Rosa Einstein         |        |       |         |             |         |
|      |       |       |     | condensation degeneracy BEC     |        |       |         |             |         |
|      |       |       |     | in a harmonic potential (b)     |        |       |         |             |         |
|      |       |       |     | Ideal Fermi gas, properties of  |        |       |         |             |         |
|      |       |       |     | simple metals, Pauli            |        |       |         |             |         |
|      |       |       |     | paramagnetism, electronic       |        |       |         |             |         |
|      |       |       |     | specific heat                   |        |       |         |             |         |
| 6-8  | L17-  |       |     | First and Second order Phase    | T1,R2  | 3     |         |             |         |
|      | L24   |       |     | transitions, Diamagnetism,      | 3      |       |         |             |         |

|       |      | paramagnetism, and<br>ferromagnetism, Landau theory,<br>critical phenomena, Critical<br>exponents, scaling hypothesis. |        |   |  |  |
|-------|------|------------------------------------------------------------------------------------------------------------------------|--------|---|--|--|
| 8-10  | L25- | Ising Model, mean-field theory,                                                                                        | T1, R3 | 4 |  |  |
|       | L30  | exact solution in one dimension.                                                                                       |        |   |  |  |
| 11-14 | L31- | Correlation of space-time                                                                                              | T1, R3 | 5 |  |  |
|       | L40  | dependent fluctuations,                                                                                                |        |   |  |  |
|       |      | fluctuations and transport                                                                                             |        |   |  |  |
|       |      | phenomena, Diffusion equation,                                                                                         |        |   |  |  |
|       |      | Random walk and Brownian                                                                                               |        |   |  |  |
|       |      | motion, Langevin theory,                                                                                               |        |   |  |  |
|       |      | fluctuation dissipation theorem,                                                                                       |        |   |  |  |
|       |      | Fokker-Planck equation.                                                                                                |        |   |  |  |

Course code: PH 409 **Course title: Atomic and Molecular Spectroscopy Pre-requisite(s): Modern Physics** Co- requisite(s): Credits: P: 0 **4**L: 3 T: 1 **Class schedule per week:** Class: I.M.Sc. Semester / Level: VIII / II **Branch: PHYSICS** Name of Teacher:

|   |   |   | -  | -  | - |  |
|---|---|---|----|----|---|--|
| 1 | ۲ |   | 1. |    |   |  |
| L |   | ( | )a | e: |   |  |

| Code:<br>PH 409 | Title: Atomic and Molecular Spectroscopy                                         | L-T-P-C<br>[3-1-0-4] |
|-----------------|----------------------------------------------------------------------------------|----------------------|
| Course          | e Objectives                                                                     |                      |
| This c          | ourse enables the students:                                                      |                      |
| А.              | To learn about the intricacies of spectra of Hydrogen-like atoms                 |                      |
| В.              | To understand the details of rotational, vibrational and Raman spectra of molecu | les.                 |
| C.              | To know about the different regions of spectra, and the corresponding instrumen  | tations.             |
| D.              | To learn about NMR spectra and its application                                   |                      |
| E.              | To get a feeling of the principles of mass spectroscopy and ionization methods.  |                      |

#### **Course Outcomes**

| Aft    | er the completion of this course, students will be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1.     | Able to deal with problems related to Hydrogen-like atomic spectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 2.     | Having knowledge about the rotational, vibrational and Raman spectroscopy of molecu                                                                                                                                                                                                                                                                                                                                                                                                                                                      | les   |
| 3.     | Able to comprehend the instrumentation techniques that are used in different region spectra                                                                                                                                                                                                                                                                                                                                                                                                                                              | is of |
| 4.     | Understanding NMR spectra and visualize the physical phenomenon                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| 5.     | Learning about mass spectroscopy and its usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| Module | -1 Atomic Physics: Quantum states of an electron in an atom; Electron spin; Stern-Gerlach experiment; Spectrum of Hydrogen, helium and alkali atoms; Relativistic corrections for energy levels of hydrogen; Hyperfine structure and isotopic shift; Spectral terms, L-S and J-J coupling schemes, Singlet-Triplet separation for interaction energy of L-S coupling. Lande Interval rule, Zeeman, Paschen Back & Stark effect; width of spectral lines                                                                                  | [10   |
| Module | -2 Molecular Spectroscopy: Types of molecular spectroscopy, applications, Rotational, vibrational and electronic spectra of diatomic and polyatomic molecules; Born Oppenheimer approximation, Frank – Condon principle and selection rules. Molecular hydrogen, Fluorescence and Phosphorescence, Instrumentations of IR and Microwave Spectroscopy and Applications. Raman Effect, Rotational Raman spectra. Vibrational Raman spectra. Stokes and anti-Stokes lines and their Intensity difference, Instrumentation and applications. | [12]  |
| Module | -3 Characterization of electromagnetic radiation, regions of spectrums, spectra representation, basic elements if practical spectroscopy, resolving power, width and intensity of spectral transition, Fourier transform spectroscopy, concept of stimulated emission.                                                                                                                                                                                                                                                                   | [10]  |
| Module | -4 NMR Spectroscopy: Nuclear spin, nuclear resonance, saturation, spin-spin and spin-lattice relaxations, chemical shift, de shielding, coupling constant, instrumentation and applications.                                                                                                                                                                                                                                                                                                                                             | [8]   |
#### **Text books:**

- 1. Introduction to Atomic Spectra", H.E. White, McGraw-Hill.
- 2. Fundamentals of Molecular Spectroscopy" C. N. Banwell, Tata McGraw-Hill
- 3. Atomic Physics", G. P. Harnwell & W.E. Stephens, McGraw-Hills Book Company, Inc.
- 4. Modern Spectroscopy", J. M. Hollas, John Wiley

#### **Reference books:**

- 1. "Physics of Atoms and Molecules" by Bransden & Joachain, Pearson
- 2. "Introduction to Spectroscopy" by Pavia et. al., Cengage Learning India Pvt. Ltd.

#### Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents | CO1 | CO2 | CO3 | CO4 | CO5 |
|----------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination  |     |     |     |     |     |
| Marks                |     |     |     |     |     |
| End Sem Examination  |     |     |     |     |     |
| Marks                |     |     |     |     |     |
| Quiz I               |     |     |     |     |     |
| Quiz II              |     |     |     |     |     |

#### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | <u>5</u> |
|-------------------|---|---|---|---|----------|
| А                 | Н | - | L | L | -        |
| В                 | - | Н | Н | - | -        |
| С                 | L | Н | Н | - | -        |
| D                 | - | - | L | Н | -        |
| E                 | - | - | - | - | Н        |

**Mapping of Course Outcomes onto Program Outcomes** 

| Course Outcome # | Program Outcomes |   |   |   |   |   |
|------------------|------------------|---|---|---|---|---|
|                  | а                | b | с | d | e | f |
| 1                | Н                | М | Н | М | L | М |
| 2                | Н                | Н | Н | М | Н | М |
| 3                | L                | Н | М | М | Н | М |
| 4                | L                | М | М | М | Н | М |
| 5                | М                | М | М | М | М | М |

### Lecture wise Lesson planning Details.

I

| Week | Lect. | Tentative | Ch. | Topics to be covered             | Гext   | COs    | Actual  | Methodology | Remarks by     |
|------|-------|-----------|-----|----------------------------------|--------|--------|---------|-------------|----------------|
| No.  | No.   | Date      | No. | -                                | Book / | mapped | Content | used        | faculty if any |
|      |       |           |     |                                  | Refere |        | covered |             |                |
|      |       |           |     |                                  | nces   |        |         |             |                |
| 1    | L1-   |           |     | Atomic Physics:                  | T2, R1 | 1      |         | PPT Digi    |                |
|      | L3    |           |     | Quantum states of an             |        |        |         | Class/Choc  |                |
|      |       |           |     | electron in an atom;             |        |        |         | k           |                |
|      |       |           |     | Electron spin; Stern-            |        |        |         | <b>D</b> 1  |                |
|      |       |           |     | Gerlach experiment;              |        |        |         | -Board      |                |
|      |       |           |     | Spectrum of                      |        |        |         |             |                |
|      |       |           |     | Hydrogen, helium and             |        |        |         |             |                |
|      |       |           |     | alkali atoms;                    |        |        |         |             |                |
|      |       |           |     | Relativistic                     |        |        |         |             |                |
|      |       |           |     | corrections for energy           |        |        |         |             |                |
|      |       |           |     | levels of hydrogen               |        |        |         |             |                |
| 2    | L4-   |           |     | Hyperfine structure              | T2, R1 | 1      |         |             |                |
|      | L6    |           |     | and isotopic shift;              |        |        |         |             |                |
|      |       |           |     | Spectral terms, L-S              |        |        |         |             |                |
|      |       |           |     | and J-J coupling                 |        |        |         |             |                |
|      |       |           |     | schemes, Singlet-                |        |        |         |             |                |
|      |       |           |     | Triplet separation for           |        |        |         |             |                |
|      |       |           |     | interaction energy of            |        |        |         |             |                |
|      |       |           |     | L-S coupling                     |        |        |         |             |                |
| 3    | L7-   |           |     | Lande Interval rule,             | T2, R1 | 1      |         |             |                |
|      | L9    |           |     | Zeeman, Paschen                  |        |        |         |             |                |
|      |       |           |     | Back & Stark effect;             |        |        |         |             |                |
| 4    | I 10  |           |     | width of spectral lines          | T2 D1  | 2      |         |             |                |
| 4    | L10-  |           |     | Molecular<br>Speetroseenvy Types | 12, KI | 2      |         |             |                |
|      | LIZ   |           |     | spectroscopy: Types              |        |        |         |             |                |
|      |       |           |     | spectroscopy                     |        |        |         |             |                |
|      |       |           |     | applications                     |        |        |         |             |                |
|      |       |           |     | Rotational vibrational           |        |        |         |             |                |
|      |       |           |     | and electronic spectra           |        |        |         |             |                |
|      |       |           |     | of diatomic and                  |        |        |         |             |                |
|      |       |           |     | polyatomic molecules:            |        |        |         |             |                |
|      |       |           |     | Born Oppenheimer                 |        |        |         |             |                |
|      |       |           |     | approximation. Frank             |        |        |         |             |                |
|      |       |           |     | – Condon principle               |        |        |         |             |                |
|      |       |           |     | and selection rules.             |        |        |         |             |                |
| 5    | L13-  |           |     | Molecular hydrogen,              | T2, R1 | 2      |         |             |                |
|      | L15   |           |     | Fluorescence and                 |        |        |         |             |                |
|      |       |           |     | Phosphorescence,                 |        |        |         |             |                |
|      |       |           |     | Instrumentations of IR           |        |        |         |             |                |
|      |       |           |     | and Microwave                    |        |        |         |             |                |
|      |       |           |     | Spectroscopy and                 |        |        |         |             |                |
|      |       |           |     | Applications. Raman              |        |        |         |             |                |
|      |       |           |     | Effect                           |        |        |         |             |                |

| 6  | L16- | Rotational Raman       | T2, R1 | 2 |  |  |
|----|------|------------------------|--------|---|--|--|
|    | L19  | spectra. Vibrational   | ,      |   |  |  |
|    |      | Raman spectra Stokes   |        |   |  |  |
|    |      | and anti-Stokes lines  |        |   |  |  |
|    |      | and their Intensity    |        |   |  |  |
|    |      | difference             |        |   |  |  |
|    |      | Instrumentation and    |        |   |  |  |
|    |      | and annihilation and   |        |   |  |  |
| 7  | 1.20 | applications.          | TO D 1 | 2 |  |  |
| /  | L20- | Characterization of    | 12, R1 | 3 |  |  |
|    | L22  | electromagnetic        |        |   |  |  |
|    |      | radiation, regions of  |        |   |  |  |
|    |      | spectrums, spectra     |        |   |  |  |
|    |      | representation, basic  |        |   |  |  |
|    |      | elements if practical  |        |   |  |  |
|    |      | spectroscopy           |        |   |  |  |
| 8  | L23- | resolving power,       | Т2     | 3 |  |  |
|    | L25  | width and intensity of |        |   |  |  |
|    |      | spectral transition,   |        |   |  |  |
|    |      | Fourier transform      |        |   |  |  |
|    |      | spectroscopy, concept  |        |   |  |  |
|    |      | of stimulated          |        |   |  |  |
|    |      | emission.              |        |   |  |  |
| 9  | L26- | NMR Spectroscopy:      | T2, R2 | 4 |  |  |
|    | L29  | Nuclear spin, nuclear  |        |   |  |  |
|    |      | resonance, saturation, |        |   |  |  |
|    |      | spin-spin and spin-    |        |   |  |  |
|    |      | lattice relaxations    |        |   |  |  |
| 10 | L30- | chemical shift, de     | T2, R2 | 4 |  |  |
|    | L33  | shielding, coupling    |        |   |  |  |
|    |      | constant,              |        |   |  |  |
|    |      | instrumentation and    |        |   |  |  |
|    |      | applications.          |        |   |  |  |
| 11 | L34- | Principle and          | R2     | 5 |  |  |
|    | L37  | applications of Mass   |        |   |  |  |
|    |      | Spectroscopy,          |        |   |  |  |
|    |      | Thomson's method of    |        |   |  |  |
|    |      | determining e/m of     |        |   |  |  |
|    |      | electrons, Aston mass  |        |   |  |  |
|    |      | <br>spectrograph,      |        |   |  |  |
| 12 | L38- | Dempster's mass        | R2     | 5 |  |  |
|    | L41  | spectrometer,          |        |   |  |  |
|    |      | Ionization Methods,    |        |   |  |  |
|    |      | instrumentation and    |        |   |  |  |
|    |      | applications.          |        |   |  |  |

Course code: PH 410 Course title: Electronic Devices & Circuits Pre-requisite(s): Digital and Analog Systems Co- requisite(s): Credits: 3L: 3 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: VIII / II Branch: PHYSICS Name of Teacher:

Code:

PH 410

| Title: Electronic Devices & Circuits | 5 |
|--------------------------------------|---|
|--------------------------------------|---|

| L-T-P-C   |
|-----------|
| [3-0-0-3] |

#### **Course Objectives:**

- To impart knowledge about a To impart knowledge about a variety of special, power and microwave solid state electronic devices, their structure and the underlying physical principles.
- To expose the students to the integrated circuit chip development technologies and associated processes
- Amplifiers would be dealt with in all its expanse and rigor to give a good feel of the associated design and mathematical intricacies.
- A rigorous treatment on integrated circuit operational amplifiers is to be delivered to supplement their understanding on amplifiers
- Linear and non-linear applications of op-amps are introduced to add to the knowledge on the variety of circuits encompassing all major class of applications.
- Nanoelectronic devices and concepts are introduced to give a feel of the future electronics devices and the quantum effects that manifest.

#### **Course Outcomes:**

- Understanding the physics of the devices their characteristics and applications, to be able to use them in electronic circuits
- Students would develop an insight into the technologies that go into an IC chip that they would be extensively using during and after the course
- In depth understanding would enable the students to appreciate the beauty of the subject and design amplifiers that are technically sound.
- Students would develop a comprehensive understanding of contemporary integrated circuit amplifier design.
- Students would be aware of various signal conditioning, processing and generation techniques thus being better equipped to understand their use in larger and complex systems.
- Students would enjoy the new and stimulating ideas behind the future novel devices and would also appreciate the link between electronics and the quantum effects that come into play.

| Madula 1 | Floaturnia Devices                                                                              | 0  |
|----------|-------------------------------------------------------------------------------------------------|----|
| Module-1 | Electronic Devices                                                                              | 0  |
|          | Varactor diode, photo-diode, Schottky diode, solar cell, Principle of Operation and I-V         |    |
|          | Characteristics of IFET MOSFET Thyristors (SCR LASCR Triac and Diac) Microwave                  |    |
|          | aminonductor deviceor Turnel diede INDATT Curn effect and Curn diede                            |    |
|          | semiconductor devices: runner diode, intra i r, Guini effect and Guini diode.                   |    |
| Module-2 | Integrated circuits: Monolithic IC's, Hybrid IC's. Materials for IC fabrication (Si and GaAs),  | 8  |
|          | Crystal growth and wafer preparation, processes Epitaxy, Vapour phase epitaxy (VPE), Molecular  |    |
|          | beam epitaxy (BME), MOCVD Oxidation, Ion implantation, Optical lithography, electron beam       |    |
|          | lithography, Etching processes.                                                                 |    |
| Module-3 | Amplifiers using discrete devices                                                               | 12 |
|          | Amplifiers using BJTs, FETs, MOSFETs and their analysis. Feedback in amplifiers,                |    |
|          | characteristics of negative feedback amplifiers, input resistance, output resistance, method of |    |
|          | analysis of a feedback amplifier, feedback types and their analyses, Bode plots, two-pole and   |    |
|          | three-pole transfer function with Feedback, approximate analysis of a multipole feedback        |    |
|          | amplifier, stability, gain and phase margins, compensation, dominant-pole compensation, pole-   |    |
|          | zero compensation.                                                                              |    |
| Module 4 | Operational amplifiers                                                                          | 10 |
|          | Differential Amplifier, emitter-coupled differential amplifier, transfer characteristics of a   |    |
|          | differential amplifier, current mirror and active load, Measurement of op-amps parameters,      |    |
|          | frequency response of op-amps, dominant-pole compensation, pole-zero compensation, lead         |    |

|          | compensation, step response of op-amps.                                                             |    |
|----------|-----------------------------------------------------------------------------------------------------|----|
| Module 5 | Applications of Op-Amps                                                                             | 12 |
|          | Linear: instrumentation amplifier, precision rectifiers, active filters (low-pass, high-pass, band- |    |
|          | pass, band-reject/ notch), Analog computation circuits                                              |    |
|          | Nonlinear: Comparators, Schmitt trigger, multivibrators, AMV and MMV using 555 timer,               |    |
|          | waveform generation, D/A converters, binary weighted, A/D converters, simultaneous, counter         |    |
|          | type, dual slope converter.                                                                         |    |
|          | Single electron devices: Quantum point contact, Coulomb blockade, Resonant tunneling                |    |
|          | transistor, Single electron transistor (SET).                                                       |    |
|          |                                                                                                     |    |
| Text bo  | oks:                                                                                                |    |
| T1: Phy  | sics of Semiconductor Devices- S. M. Sze                                                            |    |
|          | d State Electronic Devices B. C. Streatman DIII                                                     |    |

T2: Solid State Electronic Devices- B. G. Streetman, PHI

T3: VLSI Technology, S. M. Sze Mc Graw Hill

T4: Integrated Electronics, Jacob Millman and Christos Halkias, -Tata McGraw Hill Publication

T5: Thomas L. Floyd. ELECTRONIC. DEVICES. 9th Edition. Prentice Hall.

T6: Louis Nashelsky and Robert Boylestad, Electronic Devices and Circuit Theory

T7: Khan and Dey, A First course in Electronics, PHI

T8: Operational amplifiers and Linear Integrated Circuits- R. A. Gayakwad, PHI.

T9: Linear Integrated Circuits- D. R. Choudhary and S. B. Jain, New Age Publications

#### **Reference books:**

R1: Operational amplifier and Linear Integrated Circuits- R. F. Coughlin, F. F. Driscoll, PHI

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | N |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |
|                                                             |   |

#### Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents | CO1 | CO2 | CO3 | <b>CO4</b> | CO5 | CO6 | CO7 |
|----------------------|-----|-----|-----|------------|-----|-----|-----|
| Quiz-I               |     |     |     |            |     |     |     |
| Quiz-II              |     |     |     |            |     |     |     |
| Quiz-III             |     |     |     |            |     |     |     |
| Assignment           |     |     |     |            |     |     |     |
| End Sem Exam         |     |     |     |            |     |     |     |

#### Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

#### <u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

| mapping between course objectives and course outcomes |   |   |   |   |   |   |  |
|-------------------------------------------------------|---|---|---|---|---|---|--|
| Course Objectives                                     | 1 | 2 | 3 | 4 | 5 | 6 |  |
| Α                                                     | Н | Н | Н | Н | Н | Н |  |
| В                                                     | Н | Н | Η | L | Η | Η |  |
| С                                                     | Η | L | Η | L | М | L |  |
| D                                                     | Н | М | М | Н | Н | М |  |
| Е                                                     | Н | Н | Н | Н | Н | М |  |
| F                                                     | Н | Н | Н | L | М | Н |  |
| G                                                     | Н | Н | L | Μ | L | L |  |

#### Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # |   |   | Prog | gram Out | comes |   |   |
|------------------|---|---|------|----------|-------|---|---|
|                  | a | b | c    | d        | e     | f | g |
| 1                | Н | Н | Н    | Н        | Н     | М | Н |
| 2                | Н | Н | Н    | Н        | Н     | М | Н |
| 3                | Н | Н | Н    | Н        | Н     | М | Н |
| 4                | Н | Н | Н    | Н        | Н     | М | Н |
| 5                | Н | Н | Н    | Н        | Н     | М | Н |

|     | Mapping Between COs and Course Delivery (CD) methods        |                   |                           |  |  |  |  |
|-----|-------------------------------------------------------------|-------------------|---------------------------|--|--|--|--|
| CD  | Course Delivery methods                                     | Course<br>Outcome | Course Delivery<br>Method |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1 and CD2               |  |  |  |  |
| CD2 | Tutorials/Assignments                                       | CO2               | CD1 and CD2               |  |  |  |  |
| CD3 | Seminars                                                    | CO3               | CD1 and CD2               |  |  |  |  |
| CD4 | Mini projects/Projects                                      | CO4               | CD1 and CD2               |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        | CO5               | CD1 and CD2               |  |  |  |  |
| CD6 | Industrial/guest lectures                                   | CO6               | CD1 and CD2               |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         | -                 | -                         |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets | -                 | -                         |  |  |  |  |
| CD9 | Simulation                                                  | -                 | -                         |  |  |  |  |

| Week | Lect. | <b>Fentative</b> | Ch.   | <b>Fopics to be covered</b> | Гext             | COs    | Actual             | Methodol    | Remarks       | 5  |
|------|-------|------------------|-------|-----------------------------|------------------|--------|--------------------|-------------|---------------|----|
| No.  | No.   | Date             | No.   |                             | Book /<br>Refere | mapped | Content<br>covered | ogy<br>used | by<br>faculty | if |
|      |       |                  |       |                             | nces             |        |                    | asea        | any           |    |
| 1    | L1    |                  | Mod   | Varactor diode,             | T1               |        |                    |             |               |    |
|      |       |                  | ule-1 | Schottky diode,             |                  |        |                    |             |               |    |
|      | L2    |                  |       | photo-diode,                | T1               |        |                    |             |               |    |
|      | L3    |                  |       | solar cell,                 | T1               |        |                    |             |               |    |
|      | L4    |                  |       | Principle of                | T1, T2,          |        |                    |             |               |    |
|      | L5    |                  |       | Operation and I-V           | T4               |        |                    |             |               |    |
|      |       |                  |       | Characteristics of          |                  |        |                    |             |               |    |
|      |       |                  |       | JFET, MOSFET.               |                  |        |                    |             |               |    |
|      | L6    |                  |       | Thyristors (SCR,            | T1, T4           |        |                    |             |               |    |
|      | L7    |                  |       | LASCR, Triac and            |                  |        |                    |             |               |    |
|      |       |                  |       | Diac)                       |                  |        |                    |             |               |    |

| 1.8  |      | Tunnel diode         | Т1                    |  |  |
|------|------|----------------------|-----------------------|--|--|
| 10   |      | IMPATT Gunn          |                       |  |  |
|      |      | affect and Cum       |                       |  |  |
|      |      |                      |                       |  |  |
|      |      | diode.               | <b>T</b> 1 <b>T</b> 2 |  |  |
| L9   | Mod  | Integrated circuits: | T1, T3                |  |  |
|      | ule- | Monolithic IC's,     |                       |  |  |
|      | II   | Hybrid IC's.         |                       |  |  |
|      |      | Materials for IC     |                       |  |  |
|      |      | fabrication (Si and  |                       |  |  |
|      |      | GaAs)                |                       |  |  |
| L10  |      | Crystal growth and   | T1, T3                |  |  |
|      |      | wafer preparation.   |                       |  |  |
|      |      | processes Epitaxy.   |                       |  |  |
|      |      | Vanour nhase         |                       |  |  |
|      |      | enitaxy (VPF)        |                       |  |  |
| I 11 |      | Molecular beem       | T1 T3                 |  |  |
|      |      | opitavy (DME)        | 11, 15                |  |  |
|      |      | epitaxy (DIVIE),     |                       |  |  |
| L 10 |      | MOC VD Oxidation     | <b>T</b> 1 <b>T</b> 2 |  |  |
| L12  |      | Ion implantation     | 11, 13                |  |  |
| L13  |      | Optical lithography  | T1, T3                |  |  |
| L14  |      | electron beam        | T1, T3                |  |  |
|      |      | lithography, Etching |                       |  |  |
|      |      | processes            |                       |  |  |
| L15  | Mod  | Amplifiers using     | T4, T5,               |  |  |
|      | ule- | discrete devices     | T6                    |  |  |
|      | III  | Amplifiers using     |                       |  |  |
|      |      | BJTs                 |                       |  |  |
| L16  |      | Amplifiers using     | T4 T5                 |  |  |
|      |      | FFTs MOSFFTs         | T6                    |  |  |
|      |      | and their analysis   | 10                    |  |  |
| I 17 |      | Eachack in           | Т4 Т5                 |  |  |
|      |      |                      | 14, 1J,<br>T6         |  |  |
|      |      | ampimers,            | 10                    |  |  |
|      |      | characteristics of   |                       |  |  |
|      |      | negative reedback    |                       |  |  |
|      |      | amplifiers           |                       |  |  |
| L18  |      | input resistance,    | 14, 15,               |  |  |
|      |      | output resistance,   | 16                    |  |  |
| L19  |      | method of analysis   | T4, T5,               |  |  |
|      |      | of a feedback        | T6                    |  |  |
|      |      | amplifier            |                       |  |  |
| L20  |      | feedback types and   | T4, T5,               |  |  |
|      |      | their analyses, Bode | T6                    |  |  |
|      |      | plots, two-pole and  |                       |  |  |
|      |      | three–pole transfer  |                       |  |  |
|      |      | function with        |                       |  |  |
|      |      | Feedback.            |                       |  |  |
|      |      | approximate analysis |                       |  |  |
|      |      | of a multipole       |                       |  |  |
|      |      | feedback amplifier   |                       |  |  |
| I 21 |      | stability gain and   | Т4 Т5                 |  |  |
|      |      | nhase marging        | т6                    |  |  |
|      |      | phase margins        | 10                    |  |  |

| L22                                           |                  | compensation.                                                                                                                                                                                                                                                                                                                                                                                                                  | T4, T5,                                         |  |  |
|-----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|
|                                               |                  | dominant-pole                                                                                                                                                                                                                                                                                                                                                                                                                  | T6                                              |  |  |
|                                               |                  | compensation, pole-                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |  |  |
|                                               |                  | zero compensation                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |  |  |
| L23                                           | Mod              | Operational                                                                                                                                                                                                                                                                                                                                                                                                                    | Τ4,                                             |  |  |
|                                               | ule-             | amplifiers                                                                                                                                                                                                                                                                                                                                                                                                                     | T7                                              |  |  |
|                                               | IV               | Differential                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |  |  |
|                                               |                  | Amplifier,                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |  |  |
| L24                                           |                  | emitter-coupled                                                                                                                                                                                                                                                                                                                                                                                                                | Τ4,                                             |  |  |
| <br>L25                                       | _                | differential amplifier                                                                                                                                                                                                                                                                                                                                                                                                         | T7                                              |  |  |
| <br>126                                       | _                |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |  |  |
| <br>L20                                       | _                | current mirror and                                                                                                                                                                                                                                                                                                                                                                                                             | Т7 Т9                                           |  |  |
|                                               |                  | active load                                                                                                                                                                                                                                                                                                                                                                                                                    | 17,17                                           |  |  |
| L28                                           |                  | transfer                                                                                                                                                                                                                                                                                                                                                                                                                       | T4. T7                                          |  |  |
|                                               |                  | characteristics of a                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                               |  |  |
|                                               |                  | differential amplifier                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |  |  |
| <br>L29                                       |                  | Measurement of op-                                                                                                                                                                                                                                                                                                                                                                                                             | T4, T7                                          |  |  |
|                                               |                  | amps parameters,                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |  |  |
|                                               |                  | frequency response                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |  |  |
|                                               |                  | of op-amps                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |  |  |
| L30                                           |                  | dominant-pole                                                                                                                                                                                                                                                                                                                                                                                                                  | T4, T9                                          |  |  |
|                                               |                  | compensation, pole-                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |  |  |
|                                               |                  | zero compensation,                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |  |  |
|                                               |                  | lead compensation,                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |  |  |
|                                               |                  | step response of op-                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |  |  |
|                                               |                  | 0.000.000                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |  |  |
| <br>                                          |                  | amps.                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |  |  |
| L31                                           | Mod              | Applications of Op-                                                                                                                                                                                                                                                                                                                                                                                                            | T5                                              |  |  |
| L31                                           | Mod<br>ule-      | Applications of Op-<br>Amps                                                                                                                                                                                                                                                                                                                                                                                                    | T5                                              |  |  |
| L31                                           | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:                                                                                                                                                                                                                                                                                                                                                                                         | T5                                              |  |  |
| L31                                           | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation                                                                                                                                                                                                                                                                                                                                                                      | T5                                              |  |  |
| L31                                           | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier                                                                                                                                                                                                                                                                                                                                                         | T5                                              |  |  |
| L31<br>L32                                    | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers                                                                                                                                                                                                                                                                                                                                 | T5<br>T5,T9                                     |  |  |
| L31<br>L32<br>L33                             | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-                                                                                                                                                                                                                                                                                                         | T5<br>T5,T9<br>T5,T9                            |  |  |
| L31<br>L32<br>L33                             | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-<br>pass, high-pass,                                                                                                                                                                                                                                                                                     | T5<br>T5,T9<br>T5,T9                            |  |  |
| L31<br>L32<br>L33                             | Mod<br>ule-<br>V | Applications of Op-AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-                                                                                                                                                                                                                                                                                                 | T5<br>T5,T9<br>T5,T9                            |  |  |
| L31<br>L32<br>L33                             | Mod<br>ule-<br>V | Applications of Op-<br>AmpsLinear:<br>instrumentation<br>amplifierPrecision rectifiersActive filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),                                                                                                                                                                                                                                                          | T5<br>T5,T9<br>T5,T9                            |  |  |
| L31<br>L32<br>L33                             | Mod<br>ule-<br>V | Applications of Op-AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-reject/ notch),Analog computation                                                                                                                                                                                                                                                                | T5<br>T5,T9<br>T5,T9                            |  |  |
| L31<br>L32<br>L33                             | Mod<br>ule-<br>V | Applications of Op-AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-reject/ notch),Analog computationcircuits                                                                                                                                                                                                                                                        | T5<br>T5,T9<br>T5,T9                            |  |  |
| L31<br>L32<br>L33<br>L34                      | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),<br>Analog computation<br>circuits<br>Nonlinear:                                                                                                                                                                                              | T5<br>T5,T9<br>T5,T9<br>T5,T9                   |  |  |
| L31<br>L32<br>L33<br>L34                      | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),<br>Analog computation<br>circuits<br>Nonlinear:<br>Comparators,                                                                                                                                                                              | T5<br>T5,T9<br>T5,T9<br>T5,T9                   |  |  |
| L31<br>L32<br>L33<br>L34                      | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),<br>Analog computation<br>circuits<br>Nonlinear:<br>Comparators,<br>Schmitt trigger                                                                                                                                                           | T5<br>T5,T9<br>T5,T9<br>T5,T9                   |  |  |
| L31<br>L32<br>L33<br>L34<br>L35               | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),<br>Analog computation<br>circuits<br>Nonlinear:<br>Comparators,<br>Schmitt trigger<br>multivibrators, AMV                                                                                                                                    | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9          |  |  |
| L31<br>L32<br>L33<br>L34<br>L35               | Mod<br>ule-<br>V | Amps.Applications of Op-AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-reject/ notch),Analog computationcircuitsNonlinear:Comparators,Schmitt triggermultivibrators, AMVand MMV using 555                                                                                                                                                                          | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9          |  |  |
| L31<br>L32<br>L33<br>L34<br>L35               | Mod<br>ule-<br>V | Amps.Applications of Op-AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-reject/ notch),Analog computationcircuitsNonlinear:Comparators,Schmitt triggermultivibrators, AMVand MMV using 555timer                                                                                                                                                                     | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9          |  |  |
| L31<br>L32<br>L32<br>L33<br>L34<br>L35<br>L36 | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),<br>Analog computation<br>circuits<br>Nonlinear:<br>Comparators,<br>Schmitt trigger<br>multivibrators, AMV<br>and MMV using 555<br>timer<br>Waveform<br>generation                                                                            | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9 |  |  |
| L31<br>L32<br>L32<br>L33<br>L34<br>L35<br>L36 | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),<br>Analog computation<br>circuits<br>Nonlinear:<br>Comparators,<br>Schmitt trigger<br>multivibrators, AMV<br>and MMV using 555<br>timer<br>Waveform<br>generation, D/A<br>converters binery                                                  | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9 |  |  |
| L31<br>L32<br>L32<br>L33<br>L34<br>L35<br>L36 | Mod<br>ule-<br>V | Applications of Op-<br>Amps<br>Linear:<br>instrumentation<br>amplifier<br>Precision rectifiers<br>Active filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),<br>Analog computation<br>circuits<br>Nonlinear:<br>Comparators,<br>Schmitt trigger<br>multivibrators, AMV<br>and MMV using 555<br>timer<br>Waveform<br>generation, D/A<br>converters, binary<br>weighted $\Delta/D$                          | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9 |  |  |
| L31<br>L32<br>L32<br>L33<br>L34<br>L35<br>L36 | Mod<br>ule-<br>V | Amps.Applications of Op-AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-reject/ notch),Analog computationcircuitsNonlinear:Comparators,Schmitt triggermultivibrators, AMVand MMV using 555timerWaveformgeneration, D/Aconverters, binaryweighted, A/Dconverters                                                                                                     | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9 |  |  |
| L31<br>L32<br>L32<br>L33<br>L34<br>L35<br>L36 | Mod<br>ule-<br>V | Amps.Applications of Op-AmpsLinear:instrumentationamplifierPrecision rectifiersActive filters (low-pass, high-pass,band-pass, band-reject/ notch),Analog computationcircuitsNonlinear:Comparators,Schmitt triggermultivibrators, AMVand MMV using 555timerWaveformgeneration, D/Aconverters, binaryweighted, A/Dconverters, simultaneous                                                                                       | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9 |  |  |
| L31<br>L32<br>L32<br>L33<br>L34<br>L35<br>L36 | Mod<br>ule-<br>V | Applications of Op-<br>AmpsLinear:<br>instrumentation<br>amplifierPrecision rectifiersActive filters (low-<br>pass, high-pass,<br>band-pass, band-<br>reject/ notch),<br>Analog computation<br>circuitsNonlinear:<br>Comparators,<br>Schmitt trigger<br>multivibrators, AMV<br>and MMV using 555<br>timerWaveform<br>generation, D/A<br>converters, binary<br>weighted, A/D<br>converters, simultaneous,<br>counter type, dual | T5<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9<br>T5,T9 |  |  |

| L37 | Mod<br>ule-<br>VI | Singleelectrondevices:Quantumpoint contact | T2, T1 |
|-----|-------------------|--------------------------------------------|--------|
| L38 |                   | Coulomb blockade                           | T2, T1 |
| L39 |                   | Resonant tunneling transistor              | T2, T1 |
| L40 |                   | Single electron transistor (SET).          | T2, T1 |

|           |          | COURSE INFORMATION SHEET                                                                             |           |
|-----------|----------|------------------------------------------------------------------------------------------------------|-----------|
| Course    | code: l  | PH 411                                                                                               |           |
| Course    | title: C | Condensed Matter Physics                                                                             |           |
| Pre-req   | uisite(s | s): Quantum Mechanics                                                                                |           |
| Co- req   | uisite(s | s):                                                                                                  |           |
| Credits   | :        | <b>3</b> L: 3 T: 0 P: 0                                                                              |           |
| Class sc  | hedule   | e per week:                                                                                          |           |
| Class: N  | A.Sc.    |                                                                                                      |           |
| Semeste   | er / Lev |                                                                                                      |           |
| Branch    | : PHY    | SICS                                                                                                 |           |
| Name of   | f Teac   | her: Dr S K Rout                                                                                     |           |
| Course    | Object   | aves                                                                                                 |           |
|           | To m     | ibles the students:                                                                                  |           |
| A.<br>D   |          | the crystal structure to symmetry, recognize the correspondence between real and reciprocal          | space.    |
| D.        | Tob      | me knowledge of the behaviour of electrons in solids based on classical and quantum theorie          | 8.        |
| C.        |          | ecome rammar with the different types of magnetism and magnetism based phenomenoli.                  |           |
| D.<br>E   |          | everop an understanding of the different peremeters associated with superconductivity and the theory | of        |
| Е.        | 10 g     | reconductivity                                                                                       | 01        |
|           | super    | conductivity.                                                                                        |           |
| Course    | Outco    | mes                                                                                                  |           |
| After the | e comp   | letion of this course students will be                                                               |           |
| 1.        | Able     | to correlate the X-ray diffraction pattern for a given crystal structure based on the correspond     | ling      |
|           | recip    | rocal lattice.                                                                                       |           |
| 2.        | Able     | to explain how the predicted electronic properties of solids differ in the classical free electro    | n theory, |
|           | quan     | tum free electron theory and the nearly free electron model.                                         | <b>,</b>  |
| 3.        | Åble     | to explain various magnetic phenomena and describe the different types of magnetic orderin           | g based   |
|           | on th    | e exchange interaction.                                                                              |           |
| 4.        | Able     | to differentiate between ferroelectric, anti-ferroelectric, piezoelectric and pyroelectric materi    | als.      |
| 5.        | Able     | to differentiate between type-I and type-II superconductors and their theories.                      |           |
|           |          |                                                                                                      |           |
| Code:PH   | [ 411    | Title : Condensed Matter Physics                                                                     | L-T-P-C   |
|           |          |                                                                                                      | [3-0-0-3] |
| Module    | -1       | CRYSTAL DIFFRACTION AND RECIPROCAL LATTICE Revision of concepts,                                     | [8]       |
|           |          | crystal structure, Bravais Lattice, lattice translation vector, symmetry operations, simple          |           |
|           |          | crystal structures, Miller indices, lattice planes, Braggs' law, reciprocal lattice to SC,           |           |
|           |          | BCC, FCC, Laue's equation and Bragg's law in terms of reciprocal lattice vector,                     |           |
|           |          | diffraction and the structure factor, Ewald's construction, structure determination using            |           |
|           |          | Laue's method, powder crystal diffraction, rotating crystal method, scattered wave                   |           |
|           |          | amplitude, Fourier analysis of the basis, structure factor of lattices (sc, bcc, fcc), atomic        |           |
|           |          | form factor.                                                                                         |           |
| Module    | -2       | ENERGY BAND THEORY                                                                                   | [8]       |
|           |          | Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well,             |           |
|           |          | Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron                |           |
|           |          | theory, density of states, Fermi-Dirac statistics, effect of temperature on Fermi                    |           |
|           |          | distribution function, electrons in a periodic potential, Bloch's theorem, Kronig Penney             |           |
|           |          | Model, construction of Brillouin zone, reduced zone scheme, concept of energy band,                  |           |
|           |          | energy band structure of conductors, semiconductors and insulators.                                  |           |
| Module    | -3       | MAGNETISM                                                                                            | [8]       |
|           |          | Magnetic Susceptibility, diamagnetism, paramagnetism, the ground state of an ion and                 |           |
|           |          | Hund's rules, adiabatic demagnetization, crystal fields, orbital quenching, Jahn-Teller              |           |
|           |          | effect, nuclear magnetic resonance, electron spin resonance, Mossbauer spectroscopy,                 |           |
|           |          | magnetic dipolar interaction, exchange interaction, ferromagnetism, antiferromagnetism,              |           |
|           |          | ferrimagnetism, spin glasses.                                                                        |           |
| Madula    | _4       | DIFLECTRICS AND FERROFLECTRICS                                                                       | [8]       |

|                                                                                                                                      | Macroscopic Maxwell equation of electrostatics, theory of local field, theory of polarisability, dielectric constant, Claussius-Mosotti relation, optical properties of ionic crystals, dielectric breakdown, dielectric losses, ferroelectric, anti-ferroelectric, piezoelectric, pyroelectric, frequency dependence of dielectric properties, classification of ferroelectric crystal, ferroelectric phase transitions, relaxor ferroelectrics. |     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
| Module-5                                                                                                                             | <b>SUPERCONDUCTIVITY</b><br>Basic properties of superconductors, phenomenological thermodynamic treatment,<br>London equation, penetration depth, superconducting transitions, order parameter,<br>Ginzburg-Landau theory, Cooper pair, electron-phonon interaction, BCS theory,<br>coherence length, flux quantization, Josephson junction, high T <sub>c</sub> superconductors, mixed<br>state.                                                 | [8] |  |  |
| state. <u>Textbooks:</u> 1. Introduction to Solid State Physics 8 <sup>th</sup> Edition , Charles Kittel, John Wiley and Sons, 2005. |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |

2. Solid State Physics, Neil W. Ashcroft, N. David Mermin, Saunders College Publishing, 1976.

#### **References:**

- 1. Condensed Matter Physics 2<sup>nd</sup> Edition, Michael. P Marder, John Wiley and Sons, 2010.
- 2. Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4, Stephen Blundell, Oxford University Press, 2001.

| Course Delivery methods                                     |     |
|-------------------------------------------------------------|-----|
| Lecture by use of boards/LCD projectors/OHP projectors      | Yes |
| Tutorials/Assignments                                       | Yes |
| Seminars                                                    | Yes |
| Mini projects/Projects                                      | No  |
| Laboratory experiments/teaching aids                        | No  |
| Industrial/guest lectures                                   | No  |
| Industrial visits/in-plant training                         | No  |
| Self- learning such as use of NPTEL materials and internets | Yes |
| Simulation                                                  | No  |

#### Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Components     | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination Marks | Yes | Yes | Yes | No  | No  |
| End Sem Examination Marks | Yes | Yes | Yes | Yes | Yes |
| Assignment                | Yes | Yes | Yes | Yes | Yes |

#### Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

| Mapping of Course Outcomes onto Frogram Outcomes |                  |   |   |   |   |   |  |
|--------------------------------------------------|------------------|---|---|---|---|---|--|
| <b>Course Outcome #</b>                          | Program Outcomes |   |   |   |   |   |  |
|                                                  | а                | b | с | d | e | f |  |
| 1                                                | Н                | Н | Н | L | L | М |  |
| 2                                                | Н                | Н | Н | L | М | L |  |
| 3                                                | Н                | Н | Н | L | М | L |  |
| 4                                                | М                | Н | М | L | М | L |  |
| 5                                                | М                | Н | Н | L | L | L |  |

#### Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # |   | Course Objective |   |   |   |  |
|------------------|---|------------------|---|---|---|--|
|                  | a | b                | с | d | e |  |
| 1                | Н | L                | М | М | М |  |
| 2                | L | Н                | М | М | L |  |
| 3                | L | М                | Н | L | М |  |
| 4                | L | L                | М | Н | L |  |
| 5                | L | М                | М | L | Н |  |

|     | Mapping Between COs and Course Delivery (CD) methods   |           |                   |                           |  |  |  |  |
|-----|--------------------------------------------------------|-----------|-------------------|---------------------------|--|--|--|--|
| CD  | Course Delivery methods                                |           | Course<br>Outcome | Course Delivery<br>Method |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors |           | CO1               | CD1,CD2 and CD8           |  |  |  |  |
| CD2 | Tutorials/Assignments                                  |           | CO2               | CD1,CD2 and CD8           |  |  |  |  |
| CD3 | Seminars                                               |           | CO3               | CD1,CD2 and CD8           |  |  |  |  |
| CD4 | Mini projects/Projects                                 |           | CO4               | CD1,CD2 and CD8           |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                   |           | CO5               | CD1,CD2 and CD8           |  |  |  |  |
| CD6 | Industrial/guest lectures                              |           |                   |                           |  |  |  |  |
| CD7 | Industrial visits/in-plant training                    |           |                   |                           |  |  |  |  |
|     | Self- learning such as use of NPTEL materials and      | $\square$ |                   |                           |  |  |  |  |
| CD8 | internets                                              |           |                   |                           |  |  |  |  |
| CD9 | Simulation                                             |           |                   |                           |  |  |  |  |

| We  | Lect. | Tent  | Modul | Topics to be covered                | Text   | COs  | Actual  | Methodology | Remar   |
|-----|-------|-------|-------|-------------------------------------|--------|------|---------|-------------|---------|
| ek  | No.   | ative | e     |                                     | Book / | map  | Content | used        | ks by   |
| No. |       | Date  | No.   |                                     | Refere | ped  | covered |             | faculty |
|     |       |       |       |                                     | nces   |      |         |             | if any  |
| 1   | L1    |       | Ι     | Revision of concepts, crystal       | T1, T2 | 1, 2 |         | PPT Digi    |         |
|     |       |       |       | structure, Bravais Lattice,         |        |      |         | Class/Chalk |         |
|     |       |       |       |                                     |        |      |         | -Board      |         |
| 1   | L2    |       |       | lattice translation vector,         | T1, T2 |      |         | PPT Digi    |         |
|     |       |       |       | symmetry operations, simple         |        |      |         | Class/Chalk |         |
|     |       |       |       | crystal structures, Miller indices, |        |      |         | -Board      |         |
|     |       |       |       | lattice planes, Braggs' law,        |        |      |         |             |         |
| 1   | L3-   |       |       | reciprocal lattice to SC, BCC,      | T1, T2 |      |         | PPT Digi    |         |
|     | L4    |       |       | FCC, Laue's equation and Bragg's    |        |      |         | Class/Chalk |         |
|     |       |       |       | law in terms of reciprocal lattice  |        |      |         | -Board      |         |
|     |       |       |       | vector,                             |        |      |         |             |         |

| 2       L6       L6       Factor,       Class/<br>-Board         2       L7       Ewald's construction,       T1, T2       PPT D<br>Class/<br>-Board         3       L8       structure determination using<br>tractor, rotating crystal<br>diffraction, rotating crystal<br>method,       T1, T2       PPT D<br>Class/<br>-Board         4       L11       II       Classical free electron theory,<br>atomic form factor.       T1, T2       PPT D<br>Class/<br>-Board         4       L12       II       Classical free electron theory,<br>atomic form factor.       T1, T2       PPT D<br>Class/<br>-Board         4       L12       II       Classical free electron theory,<br>atomic form factor.       T1, T2       PPT D<br>Class/<br>-Board         5       L14-       Electrons in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theory       T1, T2       PPT D<br>Class/<br>-Board         5       L14-       Electrons in a periodic potential,<br>15       T1, T2       PPT D<br>Class/<br>-Board         5       L16       Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2,<br>PPT D<br>Class/<br>-Board       PPT D<br>Class/<br>-Board         5       L16       Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2,<br>PPT D       PPT D<br>Class/<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | factor,       Class/Chalk<br>-Board         Ewald's construction,       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         structure determination using<br>Laue's method, powder crystal<br>diffraction, rotating crystal<br>method,       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         scattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         II       Classical free electron theory,<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theory       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution function       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2,       PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 | L5           |   |     | diffraction and the structure        | T1, T2                | PPT Digi              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------|---|-----|--------------------------------------|-----------------------|-----------------------|
| 2       L6       Board       Board         2       L7       Ewald's construction,       T1, T2       PPT E         3       L8       structure determination using Laue's method, powder crystal diffraction, rotating crystal method,       T1, T2       PPT D         3       L8       scattered wave amplitude, Fourier factor of lattices (sc, bcc,fcc), atomic form factor.       T1, T2       PPT D         4       L11       II       Classid free electron theory, wave mechanical treatment of electron in 1D and 3D well Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theory       T1, T2       PPT D         4       L12-       I3       Generative of states, Fermi-Dirac for electron in a periodic potential, T1, T2       PPT D         5       L16       Electrons in a periodic potential, concept of energy band, energy energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ewald's construction,T1, T2PPT Digi<br>Class/Chalk<br>-Boardstructure determination using<br>Laue's method, powder crystal<br>diffraction, rotating crystal<br>method,T1, T2PPT Digi<br>Class/Chalk<br>-Boardscattered wave amplitude, Fourier<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIClassical free electron theory,<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theory<br>density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalk<br>-Boardelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,<br>Energy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |              |   |     | factor,                              |                       | Class/Chalk           |
| 2       L6       Ewald's construction,       T1, T2       PPT D         2       L7       structure determination using Laue's method, powder crystal diffraction, rotating crystal method,       T1, T2       PPT D         3       L8       scattered wave amplitude, Fourier analysis of the basis, structure factor of lattices (sc, bcc,fcc), atomic form factor.       T1, T2       PPT D         4       L11       II       Class/a tomic form factor.       T1, T2       PPT D         4       L12-       13       Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theory       T1, T2       PPT D         5       L14-       Bloch's theorem, Kronig Penney Model, construction of Brillouin zone, reduced zone scheme, concept of energy band,       T1, T2       PPT D         5       L16       Energy band structure of cnergy band,       T1, T2       PPT D         5       L16       Energy band structure of conductors and insulators.       T1, T2       PPT D         6       L17       III       Magnetic Susceptibility, T1, T2, PPT D       PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ewald's construction,T1, T2PPT Digi<br>Class/Chalk<br>-Boardstructuredeterminationusing<br>class/Chalk<br>-BoardT1, T2PPT Digi<br>Class/Chalk<br>-Boarddiffraction,<br>method,<br>scattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIClassical free electron theory,<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT Digi<br>Class/Chalk<br>-Boarddensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalk<br>-Boardelectrons in a periodic potential,<br>Nodel, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,<br>Energy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2PT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |              |   |     |                                      |                       | -Board                |
| 2       L7       Class/<br>-Board         3       L8       structure determination using<br>Laue's method, powder crystal<br>diffraction, rotating crystal<br>method,       T1, T2       PPT D<br>Class/<br>-Board         3       L8       scattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.       T1, T2       PPT D<br>Class/<br>-Board         4       L11       II       Classid<br>scattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.       T1, T2       PPT D<br>Class/<br>-Board         4       L11       II       Classid<br>scattered wave mechanical treatment of<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theory       T1, T2       PPT D<br>Class/<br>-Board         4       L12-<br>13       I3       statistics, effect of temperature on<br>Fermi distribution function       T1, T2       PPT D<br>Class/<br>-Board         5       L14-<br>15       Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       T1, T2       PPT D<br>Class/<br>-Board         5       L16       Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2,<br>energy band       PPT D<br>Class/<br>-Board         117       III       Magnetic       Susceptibility,<br>energy band       T1, T2,<br>energy       PPT D<br>Class/<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Image: Class of Charles and the second se | 2 | L6           |   |     | Ewald's construction.                | T1. T2                | PPT Digi              |
| 2       L7       Base Structure determination using Laue's method, powder crystal diffraction, rotating crystal method,       T1, T2       PPT D Class/Laue's method, powder crystal diffraction, rotating crystal method,         3       L8       scattered wave amplitude, Fourier factor of lattices (sc, bcc,fcc), atomic form factor.       T1, T2       PPT D Class/Laue's method,         4       L11       II       Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theory       T1, T2       PPT D Class/Laue's method, electron theory         5       L14-       I5       Bloch's theorem, Kronig Penney Model, construction of Brillouin zone, reduced zone scheme, concept of energy band, tructure of insulators.       T1, T2       PPT D Class/Laus/Laue's concept of energy band, tructure of class/Laue's submitted for electrons and insulators.         5       L16       Energy band structure of concept of energy band, tructure of conductors, semiconductors and insulators.       T1, T2       PPT D         L17       III       Magnetic Susceptibility, T1, T2, PPT D       PPT D       PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | structure       determination       using<br>Laue's method, powder crystal<br>diffraction, rotating crystal<br>method,       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         scattered wave amplitude, Fourier<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         II       Classical free electron theory,<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theory       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution function       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,<br>Energy band structure of<br>Energy band structure of<br>tenergy band       PPT Digi<br>tenergy band structure of<br>tenergy band         III       Magnetic       Susceptibility, T1, T2,       PPT Digi                                                                                                                                                                                                                               |   |              |   |     |                                      |                       | Class/Chalk           |
| 2       L7       structure determination using Laue's method, powder crystal diffraction, rotating crystal method,       T1, T2       PPT D Class/4         3       L8       scattered wave amplitude, Fourier analysis of the basis, structure factor of lattices (sc, bcc, fcc), atomic form factor.       T1, T2       PPT D Class/4         4       L11       II       Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theory       T1, T2       PPT D Class/4         4       L12-       density of states, Fermi-Dirac statistics, effect of temperature on Fermi distribution function       T1, T2       PPT D Class/4         5       L14-       Bloch's theorem, Kronig Penney Model, construction of Brillouin zone, reduced zone scheme, concept of energy band, insulators.       T1, T2       PPT D Class/4         5       L16       Energy band structure of conductors and insulators.       T1, T2       PPT D Class/4         5       L16       III       Magnetic Susceptibility, T1, T2, PPT D       PPT D         6       III       Magnetic Susceptibility, T1, T2, PPT D       PPT D         7       III       Magnetic Susceptibility, T1, T2, PPT D         8       Class/4       Soard       Soard         9       III       Magnetic Susceptibility, T1, T2, PPT D <td>structuredeterminationusing<br/>Laue'sT1, T2PPT Digi<br/>Class/Chalk<br/>-Boardimited<br/>diffraction,<br/>rotating<br/>method,rotating<br/>crystal<br/>method,T1, T2PPT Digi<br/>Class/Chalk<br/>-Boardscattered wave amplitude, Fourier<br/>analysis of the basis, structure<br/>factor of lattices (sc, bcc,fcc),<br/>atomic form factor.T1, T2PPT Digi<br/>Class/Chalk<br/>-BoardIIClassical free electron theory,<br/>wave mechanical treatment of<br/>electron in 1D and 3D well<br/>Wiedemann-Franz law, quantum<br/>theory of thermal conductivity,<br/>failure of free electron theoryT1, T2PPT Digi<br/>Class/Chalk<br/>-Boarddensity of states, Fermi-Dirac<br/>statistics, effect of temperature on<br/>electrons in a periodic potential,<br/>Bloch's theorem, Kronig Penney<br/>Model, construction of Brillouin<br/>zone, reduced zone scheme,<br/>concept of energy band,T1, T2PPT Digi<br/>Class/Chalk<br/>-BoardIIIMagneticSusceptibility,<br/>T1, T2,PPT Digi<br/>Class/Chalk<br/>-Board</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-Board</td> | structuredeterminationusing<br>Laue'sT1, T2PPT Digi<br>Class/Chalk<br>-Boardimited<br>diffraction,<br>rotating<br>method,rotating<br>crystal<br>method,T1, T2PPT Digi<br>Class/Chalk<br>-Boardscattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIClassical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT Digi<br>Class/Chalk<br>-Boarddensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |              |   |     |                                      |                       | -Board                |
| 2       Dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Laue's method, powder crystal<br>diffraction, rotating crystal<br>method,T1, T2Class/Chalk<br>-Boardscattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIClassical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D well<br>wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT Digi<br>Class/Chalk<br>-Boarddensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalk<br>-Boardelectrons in a periodic potential,<br>Doen, reduced zone scheme,<br>concept of energy band<br>Energy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 | L7           |   | _   | structure determination using        | Т1 Т2                 | PPT Digi              |
| 3       L8       Image: Solution of the soluticasolity of the soluticas of the soluticas of t                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Late 5 methol, power bryanChass charkdiffraction, rotating crystal-Boardmethod,-Soardscattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.T1, T2IIClassical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalk<br>-BoardClass/Chalk<br>-Boardelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2Energy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2,IIIMagneticSusceptibility,IIIMagneticSusceptibility,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - | 27           |   |     | Laue's method powder crystal         | 11, 12                | Class/Chalk           |
| 3       L8       method,       rotating for your       For any or your         3       L8       scattered wave amplitude, Fourier analysis of the basis, structure factor of lattices (sc, bcc,fcc), atomic form factor.       T1, T2       PPT D         4       L11       II       Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well       -Board         4       L12-       density of free electron theory       T1, T2       PPT D         4       L12-       density of states, Fermi-Dirac       T1, T2       PPT D         4       L12-       density of states, Fermi-Dirac       T1, T2       PPT D         13       statistics, effect of temperature on Fermi distribution function       T1, T2       PPT D         5       L14-       Electrons in a periodic potential, T1, T2       PPT D       Class/density         5       L16       Energy band       structure of T1, T2       PPT D         Class/density       Subord ference       Class/density       -Board         117       III       Magnetic       Susceptibility, T1, T2, PPT D       PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initiation, forming berystalDotationmethod,scattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIClassical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT Digi<br>Class/Chalk<br>-Boarddensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalk<br>-BoardBloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |              |   |     | diffraction rotating crystal         |                       | -Board                |
| 3       L8       Initiality, scattered wave amplitude, Fourier analysis of the basis, structure factor of lattices (sc, bcc,fcc), atomic form factor.       T1, T2       PPT D. Class/A-Board         4       L11       II       Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well       T1, T2       PPT D. Class/A-Board         4       L12-       Classical free electron theory       T1, T2       PPT D. Class/A-Board         4       L12-       density of states, Fermi-Dirac       T1, T2       PPT D. Class/A-Board         5       L14-       statistics, effect of temperature on Fermi distribution function       T1, T2       PPT D. Class/A-Board         5       L16       Energy band structure of electrons and insulators.       T1, T2       PPT D. Class/A-Board         5       L16       III       Magnetic       Susceptibility, T1, T2, PPT D. Class/A-Board         6       L17       III       Magnetic       Susceptibility, T1, T2, PPT D. Class/A-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Include,<br>scattered wave amplitude, Fourier<br>analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIClassical free electron theory,<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT Digi<br>Class/Chalk<br>-Boarddensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalk<br>-Boardelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardEnergy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2,PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |              |   |     | method                               |                       | Dourd                 |
| 3       Lo       analysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.       11, 12       11, 12         4       L11       II       Class/<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.       71, 12       PPT D         4       L11       II       Classical free electron theory,<br>electron in 1D and 3D well       T1, T2       PPT D         4       L12-<br>13       density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution function       T1, T2       PPT D         5       L14-<br>15       Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       T1, T2       PPT D         5       L16       Energy band structure of<br>insulators.       T1, T2       PPT D         5       L16       In Particle, Susceptibility,<br>insulators.       T1, T2       PPT D         6       L17       III       Magnetic       Susceptibility,<br>Paramagnetism       T1, T2,<br>PPT D       PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Scattered ware anymatic, routed11, 1211 T Figanalysis of the basis, structure<br>factor of lattices (sc, bcc,fcc),<br>atomic form factor.11 T FigClass/Chalk<br>-BoardIIClassical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D wellT1, T2PPT Digi<br>Class/Chalk<br>-BoardWiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT Digi<br>Class/Chalk<br>-Boarddensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalk<br>-Boardelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardEnergy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2,PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 | 18           |   |     | scattered wave amplitude Fourier     | Т1 Т2                 | PPT Digi              |
| AL11IIClassical free electron theory, atomic form factor.T1, T2PPT D4L11IIClassical free electron theory, electron in 1D and 3D wellT1, T2PPT D4L12-Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theoryT1, T2PPT D4L12-density of states, Fermi-DiracT1, T2PPT D13statistics, effect of temperature on Fermi distribution functionFermi distribution functionBoard5L14-electrons in a periodic potential, T1, T2PPT D15Bloch's theorem, Kronig PenneyClass/WModel, construction of Brillouin zone, reduced zone scheme, concept of energy band,Fanzy band, structure of T1, T2PPT D5L16Energy band structure of insulators.T1, T2PPT DL17IIIMagneticSusceptibility, T1, T2, PPT DPPT DClass/WGlamagnetismParamagnetismR2Class/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | analysis of lattices (sc, bcc,fcc),<br>atomic form factorBoardIIClassical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D wellT1, T2Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalkelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2Energy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2,IIIMagneticSusceptibility,<br>T1, T2,IIIMagneticSusceptibility,<br>T1, T2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 | LO           |   |     | analysis of the basis structure      | 11, 12                | Class/Chalk           |
| 4L11IIClassical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D well<br>Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT D<br>Class/<br>-Board4L12-<br>13density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT D<br>Class/<br>-Board5L14-<br>15electrons in a periodic potential,<br>Nodel, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT D<br>Class/<br>-Board5L16Energy band structure of<br>insulators.T1, T2PPT D<br>Class/<br>-BoardL17IIIMagnetic<br>diamagnetism<br>ParamagnetismSusceptibility,<br>R2T1, T2,<br>PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atomic form factor.       T1, T2       PPT Digi         II       Classical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D well       T1, T2       PPT Digi         Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theory       T1, T2       PPT Digi         density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution function       T1, T2       PPT Digi         electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       T1, T2       PPT Digi         Energy band structure of<br>insulators.       T1, T2       PPT Digi         III       Magnetic       Susceptibility, T1, T2,       PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              |   |     | factor of lattices (sc bcc fcc)      |                       | -Board                |
| 4       L11       II       Classical free electron theory, wave mechanical treatment of electron in 1D and 3D well       T1, T2       PPT D Class/4         4       L12       Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theory       T1, T2       PPT D Class/4         4       L12-       density of states, Fermi-Dirac statistics, effect of temperature on Fermi distribution function       T1, T2       PPT D Class/4         5       L14-       electrons in a periodic potential, T1, T2       PPT D Class/4         5       L14-       Bloch's theorem, Kronig Penney Model, construction of Brillouin zone, reduced zone scheme, concept of energy band,       T1, T2       PPT D Class/4         5       L16       Energy band structure of T1, T2       PPT D Class/4       Board         5       L17       III       Magnetic       Susceptibility, T1, T2, PPT D       PPT D         6       L17       III       Magnetic       Susceptibility, T1, T2, PPT D       PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ItClassical free electron theory,<br>wave mechanical treatment of<br>electron in 1D and 3D wellT1, T2PPT Digi<br>Class/Chalk<br>-BoardWiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT Digi<br>Class/Chalk<br>-Boarddensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalk<br>-Boardelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardEnergy band structure of<br>insulators.T1, T2,PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,PT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |              |   |     | atomic form factor                   |                       | -Doard                |
| 4       L11       II       Classical free electron fneory, and and an an an and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | II       Classical free electron theory, 11, 12       PPT Digi         wave mechanical treatment of electron in 1D and 3D well       Class/Chalk         Wiedemann-Franz law, quantum theory of thermal conductivity, failure of free electron theory       Board         density of states, Fermi-Dirac statistics, effect of temperature on Fermi distribution function       T1, T2       PPT Digi         electrons in a periodic potential, Bloch's theorem, Kronig Penney Model, construction of Brillouin zone, reduced zone scheme, concept of energy band,       T1, T2       PPT Digi         Energy band structure of insulators.       T1, T2       PPT Digi         III       Magnetic       Susceptibility, T1, T2,       PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 | T 11         |   | TT  | Classical free clastron theory       | T1 T2                 |                       |
| 4L12-<br>13density of states, Fermi-Dirac<br>telectron theoryT1, T2PPT D<br>Class/<br>PPT D<br>Class/<br>PPT D5L14-<br>15electrons in a periodic potential,<br>telectrons in a periodic potential,<br>T1, T2T1, T2PPT D<br>Class/<br>PPT D<br>Class/<br>PPT D5L16Energy band structure of<br>insulators.T1, T2PPT D<br>Class/<br>PPT DL17IIIMagnetic<br>Class/<br>Susceptibility,<br>Class/<br>PPT DSusceptibility,<br>T1, T2,<br>PPT DT1, T2,<br>PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wave mechanical deathent of<br>electron in 1D and 3D wellClass/ChalkWiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theory-Boarddensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digi<br>Class/Chalkelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardEnergy band structure of<br>insulators.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 |              |   | 11  | Classical life electron theory,      | 11, 12                | Class/Chall           |
| 4L12-<br>13density of states, Fermi-Dirac<br>telectron theoryT1, T2PPT D<br>Class/d<br>-Board5L14-<br>15electrons in a periodic potential,<br>reduced zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT D<br>Class/d<br>-Board5L16Energy band structure of<br>insulators.T1, T2PPT D<br>Class/d<br>-BoardL17IIIMagnetic<br>class/d<br>susceptibility,<br>T1, T2,PPT D<br>PT D<br>Class/d<br>PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | electron in 1D and 3D well-BoardWiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryPPT Digidensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digielectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT DigiEnergy band structure of<br>insulators.T1, T2PPT DigiIIIMagneticSusceptibility,<br>T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |              |   |     | wave mechanical treatment of         |                       | Class/Chaik           |
| Wiedemann-Franz law, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryPPT D4L12-<br>13density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT D5L14-<br>15electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT D5L16Energy band structure of<br>insulators.T1, T2PPT DL17IIIMagnetic<br>diamagnetismSusceptibility,<br>ParamagnetismT1, T2,<br>B2PPT DClass/d<br>class/dClass/d-Board5L16Energy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2,<br>Class/dPPT DClass/dClass/d-Board6Class/d-Board7Class/d-Board7Class/d-Board82Class/d-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wiedemann-Franz Taw, quantum<br>theory of thermal conductivity,<br>failure of free electron theoryPPT Digidensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digielectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT DigiEnergy band structure of<br>insulators.T1, T2PPT DigiIIIMagneticSusceptibility,<br>T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |              |   |     | electron in ID and 3D well           |                       | -Board                |
| 4L12-<br>13failure of free electron theoryT1, T2PPT D4L12-<br>13density of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT D5L14-<br>15electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT D5L16Energy band structure of<br>insulators.T1, T2PPT DL17IIIMagnetic<br>diamagnetismSusceptibility,<br>ParamagnetismT1, T2,<br>R2PPT DClass/dClass/d-Board5L17IIIMagnetic<br>diamagnetismSusceptibility,<br>ParamagnetismT1, T2,<br>R2PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ineory of thermal conductivity,<br>failure of free electron theoryT1, T2PPT Digidensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digielectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT DigiEnergy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2,PPT DigiIIIMagneticSusceptibility,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |   |     | wiedemann-Franz law, quantum         |                       |                       |
| 4       L12-<br>13       Image: Construction of the electron theory       Image: Construction theory       Image: Construction theory         5       L14-<br>15       Image: Construction of the electron theory         5       L14-<br>15       Image: Construction of the electron theory         5       L16       Image: Construction of the electron theory         5       L16       Image: Construction of the electron theory       Image: Construction of the electron the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tailure of free electron theoryT1, T2PPT Digidensity of states, Fermi-Dirac<br>statistics, effect of temperature on<br>Fermi distribution functionT1, T2PPT Digielectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT DigiEnergy band structure of<br>insulators.T1, T2PPT DigiEnergy band structure of<br>insulators.T1, T2,PPT DigiIIIMagneticSusceptibility,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |   |     | theory of thermal conductivity,      |                       |                       |
| 4       L12-<br>13       11, 12       PPT D         13       statisty of states, Fermi-Dirac 11, 12       PPT D         13       statistics, effect of temperature on<br>Fermi distribution function       Class/4         5       L14-<br>15       Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       T1, T2       PPT D         5       L16       Energy band structure of<br>insulators.       T1, T2       PPT D         L17       III       Magnetic       Susceptibility,<br>diamagnetism       T1, T2,<br>PPT D       PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | density of states, Fermi-Dirac11, 12PP1 Digistatistics, effect of temperature on<br>Fermi distribution functionClass/Chalk<br>-Boardelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardEnergy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2,PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 | L 10         |   |     | failure of free electron theory      | <b>T</b> 1 <b>T</b> 2 |                       |
| 13Statistics, effect of temperature on<br>Fermi distribution functionClass/d<br>-Board5L14-<br>15electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT D<br>Class/d<br>-Board5L16Energy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2PPT D<br>Class/d<br>-BoardL17IIIMagnetic<br>diamagnetism<br>ParamagnetismSusceptibility,<br>R2T1, T2,<br>Class/dPPT D<br>Class/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | statistics, effect of temperature on<br>Fermi distribution functionClass/Chalk<br>-Boardelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardEnergy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 | L12-         |   |     | density of states, Fermi-Dirac       | 11, 12                | PPT Digi              |
| 5L14-<br>15electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT D<br>Class/d<br>-Board5L16Energy band structure of<br>insulators.T1, T2PPT D<br>Class/d<br>-BoardL17IIIMagnetic<br>diamagnetismSusceptibility,<br>ParamagnetismT1, T2,<br>R2PPT D<br>Class/d<br>Class/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fermi distribution function-Boardelectrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,T1, T2PPT Digi<br>Class/Chalk<br>-BoardEnergy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,<br>T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | 13           |   |     | statistics, effect of temperature on |                       | Class/Chalk           |
| 5       L14-<br>15       electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       T1, T2       PPT D<br>Class/d<br>-Board         5       L16       Energy band structure of<br>insulators.       T1, T2       PPT D<br>Class/d<br>-Board         L17       III       Magnetic<br>diamagnetism       Susceptibility,<br>Paramagnetism       T1, T2,<br>R2       PPT D<br>Class/d<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | electrons in a periodic potential,<br>Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         III       Magnetic       Susceptibility,       T1, T2,       PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ | <b>T</b> 1 4 |   | -   | Fermi distribution function          | <b>T</b> 1 <b>T</b> 2 | -Board                |
| 15       Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       -Board<br>-Board         5       L16       Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2       PPT D<br>Class/d<br>-Board         L17       III       Magnetic<br>diamagnetism       Susceptibility,<br>Paramagnetism       T1, T2,<br>R2       PPT D<br>Class/d<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bloch's theorem, Kronig Penney<br>Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       Class/Chalk<br>-Board         Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         III       Magnetic       Susceptibility,       T1, T2,       PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 | L14-         |   |     | electrons in a periodic potential,   | T1, T2                | PPT Digi              |
| Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       -Board         5       L16       Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2       PPT D<br>Class/d         L17       III       Magnetic<br>diamagnetism       Susceptibility,<br>Paramagnetism       T1, T2,<br>R2       PPT D<br>Class/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Model, construction of Brillouin<br>zone, reduced zone scheme,<br>concept of energy band,       -Board         Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2       PPT Digi<br>Class/Chalk<br>-Board         III       Magnetic       Susceptibility,       T1, T2,       PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 15           |   |     | Bloch's theorem, Kronig Penney       |                       | Class/Chalk           |
| zone, reduced zone scheme,<br>concept of energy band,       zone, reduced zone scheme,<br>concept of energy band,       PPT D         5       L16       Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2       PPT D         L17       III       Magnetic       Susceptibility,<br>diamagnetism       T1, T2,<br>PPT D       PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | zone, reduced zone scheme,<br>concept of energy band,       PPT Digi         Energy band structure of<br>conductors, semiconductors and<br>insulators.       T1, T2       PPT Digi         III       Magnetic       Susceptibility,       T1, T2,       PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |              |   |     | Model, construction of Brillouin     |                       | -Board                |
| 5       L16       Concept of energy band,       PPT D         5       L16       Energy band structure of conductors, semiconductors and insulators.       T1, T2       PPT D         L17       III       Magnetic       Susceptibility, T1, T2, diamagnetism       PPT D         Class/diamagnetism       Paramagnetism       R2       Class/diamagnetism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | concept of energy band,T1, T2PPT DigiEnergy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2PPT DigiIIIMagneticSusceptibility,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              |   |     | zone, reduced zone scheme,           |                       |                       |
| 5       L16       Energy band structure of conductors, semiconductors and insulators.       T1, T2       PPT D         L17       III       Magnetic       Susceptibility, T1, T2, diamagnetism       PT D         L17       III       Magnetic       Susceptibility, T1, T2, diamagnetism       PT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Energy band structure of<br>conductors, semiconductors and<br>insulators.T1, T2PPT Digi<br>Class/Chalk<br>-BoardIIIMagneticSusceptibility,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |              |   |     | concept of energy band,              |                       |                       |
| conductors, semiconductors and<br>insulators.Class/<br>-BoardL17IIIMagneticSusceptibility,<br>ParamagnetismT1,<br>R2T2,<br>Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | conductors, semiconductors and<br>insulators.Class/Chalk<br>-BoardIIIMagneticSusceptibility,T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 | L16          |   |     | Energy band structure of             | T1, T2                | PPT Digi              |
| Image: Insulators insulatorsBoarcL17IIIMagneticSusceptibility,T1,T2,diamagnetismParamagnetismR2Class/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | insulatorsBoardIIIMagneticSusceptibility,T1,T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |   |     | conductors, semiconductors and       |                       | Class/Chalk           |
| L17 III Magnetic Susceptibility, T1, T2, PPT D<br>diamagnetism Paramagnetism R2 Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | III Magnetic Susceptibility, T1, T2, PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |              |   |     | insulators.                          |                       | -Board                |
| diamagnetism Paramagnetism R2 Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | L17          |   | III | Magnetic Susceptibility,             | T1, T2,               | PPT Digi              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | diamagnetism, Paramagnetism, R2 Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |              |   |     | diamagnetism, Paramagnetism,         | R2                    | Class/Chalk           |
| The ground state of an ion and -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The ground state of an ion and -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              |   |     | The ground state of an ion and       |                       | -Board                |
| Hund's rules, adiabatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hund's rules, adiabatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |   |     | Hund's rules, adiabatic              |                       |                       |
| demagnetization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | demagnetization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |              |   |     | demagnetization                      |                       |                       |
| L18 Crystal fields, orbital quenching T1, T2, PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Crystal fields, orbital quenching T1 T2 PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | L18          |   |     | Crystal fields, orbital quenching    | T1, T2,               | PPT Digi              |
| R2 Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |              |   |     |                                      | R2                    | Class/Chalk           |
| -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R2 Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |              |   |     |                                      |                       | -Board                |
| L19 Jahn-Teller effect Nuclear T1, T2, PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R2 R2 Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | L19          |   |     | Jahn-Teller effect Nuclear           | T1, T2,               | PPT Digi              |
| magnetic resonance R2 Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R2Class/Chalk<br>-BoardJahn-TellereffectNuclearT1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |              |   |     | magnetic resonance                   | R2                    | Class/Chalk           |
| -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |              |   |     |                                      |                       | -Board                |
| L20- Electron spin resonance T1, T2, PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | L20-         |   |     | Electron spin resonance              | T1, T2,               | PPT Digi              |
| 21 Mossbauer spectroscopy, R2 Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>PPT DigiPPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 21           |   |     | Mossbauer spectroscopy,              | R2                    | Class/Chalk           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |              |   |     |                                      |                       | -Board                |
| -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | L22          |   |     | Magnetic dipolar interaction,        | T1, T2,               | PPT Digi              |
| L22     Magnetic dipolar interaction, T1, T2,     PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMossbauer spectroscopy,<br>Magnetic dipolar interaction, T1, T2,PPT DigiMagnetic dipolar interaction, T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |              |   |     | Exchange interaction,                | R2                    | Class/Chalk           |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |              |   |     |                                      |                       | -Board                |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>R2T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | L23-         |   | 1   | Ferromagnetism, anti-                | T1, T2,               | PPT Digi              |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-Ferromagnetism,<br>Ferromagnetism,anti-T1, T2,<br>PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Explain fields, or start quenchingT1, T2,<br>R2PT Digi<br>Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardFerromagnetism,anti-T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | L24          |   |     | ferromagnetism, Ferrimagnetisms.     | R2                    | Class/Chalk           |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism,<br>ferromagnetism,Ferrimagnetisms,<br>R2R2PPT D<br>Class/<br>Class/<br>R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Provide field of the problemProvide field of the problemProvide field of the provide field of the pro    |   |              |   |     | Spin glasses.                        |                       | -Board                |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism,<br>ferromagnetism,Ferrimagnetisms,<br>Spin glasses.PT D<br>R2Class/<br>Class/<br>R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonance<br>Mossbauer spectroscopy,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,<br>Ferromagnetism, anti-<br>ferromagnetism, Ferrimagnetisms,<br>Spin glasses.T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | L25          |   | IV  | Macroscopic Maxwell equation of      | T1, T2,               | PPT Digi              |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism,<br>ferromagnetism,Ferrimagnetisms,<br>Spin glasses.R2Class/<br>Class/<br>Class/<br>R2L25IVMacroscopic Maxwell equation of<br>T1, T2,PPT D<br>T1, T2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardFerromagnetism,<br>ferromagnetism,<br>Spin glasses.T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardIVMacroscopic Maxwell equation of<br>T1, T2,PPT Digi<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |              |   |     | electrostatics                       | R1                    | Class/Chalk           |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism,<br>ferromagnetism,Ferrimagnetisms,<br>Spin glasses.R2Class/<br>Class/<br>Class/<br>R2L25IVMacroscopic Maxwell equation of<br>electrostaticsT1, T2,<br>R1PPT D<br>Class/<br>Class/<br>R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardFerromagnetism,<br>ferromagnetism, Ferrimagnetisms,<br>Spin glasses.T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardIVMacroscopic Maxwell equation of<br>electrostaticsT1, T2,<br>R1PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |              |   |     |                                      |                       | -Board                |
| The ground state of an ion and -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The ground state of an ion and -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              |   |     | The ground state of an ion and       |                       | -Board                |
| Hund's rules, adiabatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hund's rules, adiabatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |   |     | Hund's rules, adiabatic              |                       |                       |
| demagnetization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | demagnetization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |              |   |     | demagnetization                      |                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | T 10         |   | _   |                                      | T1 T2                 |                       |
| L18 Crystal fields, orbital quenching T1, T2, PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Crystal fields, orbital quenching 1 TL T2 1 1 PPT Digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | L18          |   |     | Crystal fields, orbital quenching    | T1, T2,               | PPT Digi              |
| R2 Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |              |   |     |                                      | R2                    | Class/Chalk           |
| -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R2 Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |              |   |     |                                      |                       | -Board                |
| L19 Jahn-Teller effect Nuclear T1, T2, PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R2 R2 Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | L19          |   |     | Jahn-Teller effect Nuclear           | T1, T2,               | PPT Digi              |
| magnetic resonance R2 Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R2Class/Chalk<br>-BoardJahn-TellereffectNuclearT1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |              |   |     | magnetic resonance                   | R2                    | Class/Chalk           |
| -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear T1, T2,<br>magnetic resonancePPT Digi<br>Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |              |   |     |                                      |                       | -Board                |
| L20- Electron spin resonance T1, T2, PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R2     Class/Chalk       Jahn-Teller effect Nuclear magnetic resonance     T1, T2, R2       R2     Class/Chalk       -Board       PPT Digi       Class/Chalk       -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | L20-         |   |     | Electron spin resonance              | T1. T2.               | PPT Digi              |
| 21 Mossbauer spectroscopy, R2 Class/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | 21           |   |     | Mossbauer spectroscopy,              | R2                    | Class/Chalk           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonance<br>Mossbauer spectroscopy,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |   |     |                                      |                       | -Board                |
| -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | L22          |   |     | Magnetic dipolar interaction,        | T1, T2,               | PPT Digi              |
| L22     Magnetic dipolar interaction, T1, T2, PPT D       Exchange interaction     P2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Fxahanga interactionT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Fxahanga interactionT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |              |   |     | Exchange interaction,                | κ∠                    | Class/Clialk<br>Doord |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>R2T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | I 23-        |   | 1   | Ferromagnetism anti                  | T1 T2                 | PPT Digi              |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-Ferromagnetism,<br>anti-anti-<br>T1, T2,PPT D<br>PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Explain head, or that quenchingT1, T2,<br>R2PT Digit<br>Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digit<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digit<br>Class/Chalk<br>-BoardMossbauer spectroscopy,<br>Exchange interaction,<br>Ferromagnetism,T1, T2,<br>R2PPT Digit<br>Class/Chalk<br>-BoardFerromagnetism,<br>Ferromagnetism,T1, T2,<br>R2PPT Digit<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | L24          |   |     | ferromagnetism, Ferrimagnetisms.     | R2                    | Class/Chalk           |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism,<br>ferromagnetism,Ferrimagnetisms,<br>R2P1, T2,<br>R2PPT D<br>Class/<br>Class/<br>R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Provide field of the second questioningPrivate PrivateR2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonance<br>Mossbauer spectroscopy,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,<br>Ferromagnetism, anti-<br>ferromagnetism, Ferrimagnetisms,<br>R2T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardFerromagnetism, Ferrimagnetisms,<br>R2R2Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |              |   |     | Spin glasses.                        |                       | -Board                |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism,<br>ferromagnetism,Ferrimagnetisms,<br>Spin glasses.anti-<br>R2T1, T2,<br>R2PPT D<br>Class/<br>Class/<br>R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R2R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonance<br>Mossbauer spectroscopy,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Ferromagnetism, Ferrimagnetisms,<br>Spin glasses.T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | L25          |   | IV  | Macroscopic Maxwell equation of      | T1, T2,               | PPT Digi              |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism,<br>ferromagnetism,Ferrimagnetisms,<br>Spin glasses.R2Class/<br>Class/<br>Class/<br>R2L25IVMacroscopic Maxwell equation of<br>Ferromagnetism of<br>T1, T2,PPT D<br>PPT D<br>PPT D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMossbauer spectroscopy,<br>Exchange interaction,<br>Ferromagnetism, Ferrimagnetisms,<br>Spin glasses.T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardFerromagnetism, Ferrimagnetisms,<br>Spin glasses.T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardIVMacroscopic Maxwell equation of<br>T1, T2,PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              |   |     | electrostatics                       | R1                    | Class/Chalk           |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism,<br>ferromagnetism,Ferrimagnetisms,<br>Spin glasses.T1, T2,<br>R2PPT D<br>Class/<br>Class/<br>R2L25IVMacroscopic Maxwell equation of<br>electrostaticsT1, T2,<br>R1PPT D<br>Class/<br>Class/<br>R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardFerromagnetism,<br>ferromagnetism,<br>Spin glasses.T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardIVMacroscopic Maxwell equation of<br>electrostaticsT1, T2,<br>R1PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |              |   |     |                                      |                       | -Board                |
| L22Magnetic dipolar interaction,<br>Exchange interaction,T1, T2,<br>R2PPT D<br>Class/<br>-BoardL23-<br>L24Ferromagnetism, ferrimagnetisms,<br>Spin glasses.T1, T2,<br>R2PPT D<br>Class/<br>-BoardL25IVMacroscopic Maxwell equation of<br>electrostaticsT1, T2,<br>R1PPT D<br>Class/<br>Class/<br>R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R1PriprR2Class/Chalk<br>-BoardJahn-Teller effect Nuclear<br>magnetic resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardElectron spin resonanceT1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardMossbauer spectroscopy,<br>Mossbauer spectroscopy,R2Class/Chalk<br>-BoardMagnetic dipolar interaction,<br>Exchange interaction,<br>Ferromagnetism, anti-<br>ferromagnetism, Ferrimagnetisms,<br>Spin glasses.T1, T2,<br>R2PPT Digi<br>Class/Chalk<br>-BoardIVMacroscopic Maxwell equation of<br>electrostaticsT1, T2,<br>R1PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | 1            | 1 | 1   |                                      |                       | 1                     |

| L26  |   | Theory of local field, theory of           | T1, T2, | PPT Digi    |
|------|---|--------------------------------------------|---------|-------------|
|      |   | Polarisability, dielectric constant,       | R1      | Class/Chalk |
|      |   | Claussius-Mosotti relation                 |         | -Board      |
| L27  |   | Optical properties of ionic                | T1, T2, | PPT Digi    |
|      |   | crystals.                                  | R1      | Class/Chalk |
|      |   |                                            |         | -Board      |
| L28- |   | Dielectric breakdown, dielectric           | T1, T2, | PPT Digi    |
| 29   |   | losses, ferroelectric, anti-               | R1      | Class/Chalk |
|      |   | ferroelectric.                             |         | -Board      |
| L30- |   | Piezoelectric, Pyroelectric,               | T1, T2, | PPT Digi    |
| 31   |   | frequency dependence of                    | R1      | Class/Chalk |
|      |   | dielectric properties.                     |         | -Board      |
| L32  |   | Classification of ferroelectric            | T1, T2, | PPT Digi    |
|      |   | crystal, ferroelectric phase               | R1      | Class/Chalk |
|      |   | transitions, relaxor ferroelectrics.       |         | -Board      |
| L33  | V | Basic properties of                        | T1, T2, | PPT Digi    |
|      |   | Superconductors,                           | R1      | Class/Chalk |
|      |   | Phenomenological                           |         | -Board      |
|      |   | thermodynamic treatment                    |         |             |
| L34- |   | London equation, penetration               | T1, T2, | PPT Digi    |
| 35   |   | depth                                      | R1      | Class/Chalk |
|      |   |                                            |         | -Board      |
| L36  |   | Superconducting transitions, order         | T1, T2, | PPT Digi    |
|      |   | parameter, Ginzburg-Landau                 | R1      | Class/Chalk |
|      |   | theory                                     |         | -Board      |
| L37  |   | Cooper pair, electron-phonon               | T1, T2, | PPT Digi    |
|      |   | interaction, BCS theory                    | R1      | Class/Chalk |
|      |   |                                            |         | -Board      |
| L38  |   | Josephson junction                         | T1, T2, | PPT Digi    |
|      |   |                                            | R1      | Class/Chalk |
|      |   |                                            |         | -Board      |
| L39  |   | Coherence length, Flux                     | T1, T2, | PPT Digi    |
|      |   | quantization                               | R1      | Class/Chalk |
|      |   |                                            |         | -Board      |
| L40  |   | High T <sub>c</sub> superconductors, mixed | T1, T2, | PPT Digi    |
|      |   | state.                                     | R1      | Class/Chalk |
|      |   |                                            |         | -Board      |

Course code: PH 412 Course title: Electronics Lab Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

|         | Electronics Lab                                                        |                     |
|---------|------------------------------------------------------------------------|---------------------|
|         | [                                                                      | L-T-P-C<br>0-0-4-21 |
|         | L                                                                      | 001-1               |
| List of | f Experiments:                                                         |                     |
| 1.      | Verification of truth tables of OR, NOT and AND gates using NAND gates |                     |
| 2.      | Verification of truth tables of OR, NOT and AND gates using NOR gates  |                     |
| 3.      | Realization of XOR and XNOR gates using NAND and NOR gates             |                     |
| 4.      | Design and verification of a 2 bit binary half adder                   |                     |
| 5.      | Design and verification of a 2- bit binary full adder                  |                     |
| 6.      | Design of a half subtractor and verification of its truth table        |                     |
| 7.      | Design of a half subtractor and verification of its truth table        |                     |
| 8.      | Design and implementation of clocked R-S flipflops using NAND gates    |                     |
| 9.      | Design and implementation of clocked J-K flipflops using NAND gates    |                     |
| 10.     | . Design and testing of monostable vibrator using IC 555 timer         |                     |
| 11.     | . Design and testing of astable multivibrator using IC 555 timer       |                     |
| 12.     | . Design and testing of Schmidt Trigger using IC 741                   |                     |
| 13.     | . Design and testing of modulo 9 ripple counter using IC CD4029.       |                     |
| 14.     | . Design and testing of CMOS switch and 2:1 multiplexer using IC 4066. |                     |

#### **Course Assessment tools & Evaluation procedure**

| Assessment Tool        | % Contribution                                      |
|------------------------|-----------------------------------------------------|
| Progressive Evaluation | 60 (Day to day performance: 30, Quiz: 10, Viva: 20) |
| End Sem Examination    | 40 (Experiment Performance: 30, Quiz: 10)           |

Course code: PH 413 Course title: Condensed Matter Physics Lab Pre-requisite(s): Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher:

#### **Condensed Matter Physics Lab**

#### L-T-P-C [0-0-4-2]

#### List of experiments:

- 1. To study the permeability of a ferrite substance as a function of frequency. (Take atleast 20 data)
- 2. To study the relative permittivity of a dielectric material as a function of temperature. (Take atleast 20 data).
- 3. Analysis of XRD data using JCPDS software.
- 4. Analysis of FESEM data using ImageJ software to calculate density function.
- 5. Analysis of XRD data using CheckCell software.
- 6. Measurement of resistance of a semiconductor as a function of temperature.
- 7. Measurement of susceptibility using lock in amplifier.
- 8. Synthesis of a ceramic sample using a programmable furnace.
- 9. Analysis of XRD data using FullProf software.
- 10. Design of crystal structure using VESTA software.

#### **Course Assessment tools & Evaluation procedure**

| Assessment Tool        | % Contribution                                      |
|------------------------|-----------------------------------------------------|
| Progressive Evaluation | 60 (Day to day performance: 30, Quiz: 10, Viva: 20) |
| End Sem Examination    | 40 (Experiment Performance: 30, Quiz: 10)           |

# **Semester III**

#### **COURSE INFORMATION SHEET**

Course code: PH 501 Course title: Nuclear and Particle Physics Pre-requisite(s): Modern Physics Co- requisite(s): Credits: 4L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: IX / III Branch: PHYSICS Name of Teacher:

| ode:<br>PH 501 | Title: Nuclear and Particle Physics                                             | L-T-P-C<br>[3-1-0-4] |  |  |  |
|----------------|---------------------------------------------------------------------------------|----------------------|--|--|--|
| Module         | Course Objective:                                                               |                      |  |  |  |
| 1              | To impart the knowledge regarding the fundamental and basics of Nucleus and i   | ts                   |  |  |  |
|                | models.                                                                         |                      |  |  |  |
| 2              | To provide the knowledge of the Two-nucleus problem, concept of nuclear force.  |                      |  |  |  |
| 3              | To acquire knowledge about the nucleus by the study of scattering of particles. |                      |  |  |  |
| 4              | To have a good understanding of interaction of charged particles with matter.   |                      |  |  |  |
| 5              | To have an elementary idea of particles and their classification.               |                      |  |  |  |

| Course Name : Nuclear and Particle Physics |                                                                                              |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| Modul                                      | e Course Outcome:                                                                            |  |  |  |  |
| 1                                          | Student will have an idea developed about the nucleus.                                       |  |  |  |  |
| 2                                          | Student will have a concept and nature of nuclear force.                                     |  |  |  |  |
| 3                                          | Student will learn about the method and analysis of Scattering process.                      |  |  |  |  |
| 4                                          | Student will have an idea about the interaction of particles with matter.                    |  |  |  |  |
| 5                                          | Student will understand te nature, interaction etc of the elementary particles.              |  |  |  |  |
| Module-1                                   | Nuclear Models Liquid drop Model, semi-empirical mass formula, transitions between odd       |  |  |  |  |
|                                            | A isobars, transitions between even isobars, odd-even effects and magic numbers, Shell       |  |  |  |  |
|                                            | model, collective model.                                                                     |  |  |  |  |
| Module-2                                   | Two nucleon problem, The deuteron, ground state of deuteron, nature of nuclear forces,       |  |  |  |  |
|                                            | excited state of deuteron, spin dependence of nuclear force, meson theory of nuclear force   |  |  |  |  |
| Module-3                                   | Scattering, Cross section, differential cross section, scattering cross section, nucleon     |  |  |  |  |
|                                            | nucleon scattering, proton-proton and neutron-neutron scattering at low energies.            |  |  |  |  |
| Module-4                                   | Interaction of radiation with matter, Interaction of charged particles with matter, stopping |  |  |  |  |
|                                            | power of heavy charged particles, energy loss of electrons, absorption of gamma rays,        |  |  |  |  |
|                                            | photoelectric effect, Compton effect and pair production.                                    |  |  |  |  |
| Module-5                                   | Classification of elementary particle, Eightfold way, Baryon octate and meson octate,        |  |  |  |  |
|                                            | Quark model, Baryon Decuplet, meson nonlet, Intermediate vector Boson, Strong                |  |  |  |  |
|                                            | electromagnetic and week interactions, standard model, lepton classification and quark       |  |  |  |  |
|                                            | classification.                                                                              |  |  |  |  |
| <u>Referen</u>                             | <u>ces</u>                                                                                   |  |  |  |  |

1. Nuclear Theory-Roy and Nigam

2. Introductory Nuclear Physics- Kenneth S-Krane

3. Nuclear Physics: D. Halliday

4. Elements of Nuclear Physics: Pandya and Yadav

5. Introduction to Elementary Particle: David Griffiths

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

#### Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2          | CO3          | CO4          | CO5 |
|---------------------------|--------------|--------------|--------------|--------------|-----|
| Mid Sem Examination Marks |              |              |              |              |     |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |     |
| Quiz I                    |              |              | $\checkmark$ | $\checkmark$ |     |
| Quiz II                   |              |              |              |              |     |

#### Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

# <u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | 5 |  |
|-------------------|---|---|---|---|---|--|
| Α                 | Н | М | L | L | L |  |
| В                 | Μ | Н | L | L | L |  |
| С                 | М | L | Н | L | L |  |
| D                 | L | L | L | Η | L |  |
| Е                 | L | М | L | L | Н |  |

#### Mapping of Course Outcomes onto Program Outcomes

| Course    |   |   |   |   | Pr | ogram | Outco | mes |   |   |   |   |
|-----------|---|---|---|---|----|-------|-------|-----|---|---|---|---|
| Outcome # | Α | b | c | D | E  | f     | g     | h   | Ι | J | k | 1 |
| 1         | Н | Н | L | Μ | Μ  | N     |       |     |   |   |   |   |
| 2         | Н | Н | L | Μ | Μ  | H     |       |     |   |   |   |   |
| 3         | Н | Н | Μ | Μ | Μ  | H     |       |     |   |   |   |   |

| 4 | Н | Н | Μ | Μ | Μ | H |  |  |  |
|---|---|---|---|---|---|---|--|--|--|
| 5 | Н | Н | L | Μ | Μ | H |  |  |  |

|     | Mapping Between COs and Course Delivery (CD) methods        |                   |                  |          |  |  |  |  |
|-----|-------------------------------------------------------------|-------------------|------------------|----------|--|--|--|--|
| CD  | Course Delivery methods                                     | Course<br>Outcome | Course<br>Method | Delivery |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1 CD2          |          |  |  |  |  |
| CD2 | Tutorials/Assignments                                       | CO2               | CD1 CD2          |          |  |  |  |  |
| CD3 | Seminars                                                    | CO3               | CD1 CD2          |          |  |  |  |  |
| CD4 | Mini projects/Projects                                      | CO4               | CD1 CD2          |          |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        | CO5               | CD1 CD2          |          |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |                   |                  |          |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |                   |                  |          |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |                   |                  |          |  |  |  |  |
| CD9 | Simulation                                                  |                   |                  |          |  |  |  |  |

| Week | Lect. | Tentative | Ch. | Topics      | to       | be   | Text   | COs    | Actual | Methodology | Remarks b | y  |
|------|-------|-----------|-----|-------------|----------|------|--------|--------|--------|-------------|-----------|----|
| No.  | No.   | Date      | No. | covered     |          |      | Book   | mapped | Conten | Used        | faculty   | if |
|      |       |           |     |             |          |      | /      |        | t      |             | any       |    |
|      |       |           |     |             |          |      | Refere |        | covere |             |           |    |
|      |       |           |     |             |          |      | nces   |        | d      |             |           |    |
| 1    | L1-   |           |     | Nuclear     | Mo       | dels | T1 R1  |        |        |             |           |    |
|      | L2    |           |     | Liquid      | C        | lrop |        |        |        |             |           |    |
|      |       |           |     | Model,      | se       | emi- |        |        |        |             |           |    |
|      |       |           |     | empirical   | n        | nass |        |        |        |             |           |    |
|      |       |           |     | formula,    |          |      |        |        |        |             |           |    |
|      | L3-   |           |     | transitions | 5        |      | T1 R1  |        |        |             |           |    |
|      | L4    |           |     | between     | odd      | А    |        |        |        |             |           |    |
|      |       |           |     | isobars,    |          |      |        |        |        |             |           |    |
|      |       |           |     | transitions | 5        |      |        |        |        |             |           |    |
|      |       |           |     | between     | e        | even |        |        |        |             |           |    |
|      |       |           |     | isobars,    |          |      |        |        |        |             |           |    |
|      | L5-   |           |     | odd-even    | eff      | ects | T1 R1  |        |        |             |           |    |
|      | L8    |           |     | and         | m        | agic |        |        |        |             |           |    |
|      |       |           |     | numbers,    | S        | hell |        |        |        |             |           |    |
|      |       |           |     | model, c    | ollec    | tive |        |        |        |             |           |    |
|      |       |           |     | model. L    |          |      |        |        |        |             |           |    |
|      | L9-   |           |     | Two         | nucl     | leon | T1 T2  |        |        |             |           |    |
|      | L11   |           |     | problem,    |          | The  |        |        |        |             |           |    |
|      |       |           |     | deuteron,   | gro      | und  |        |        |        |             |           |    |
|      |       |           |     | state of de | eutero   | on,  |        |        |        |             |           |    |
|      | L12-  |           |     | nature of   | nuc      | lear | T1-T2  |        |        |             |           |    |
|      | L13   |           |     | forces,     | exc      | ited |        |        |        |             |           |    |
|      |       |           |     | state of de | eutero   | on,  |        |        |        |             |           |    |
|      | L14-  |           |     | spin dep    | bende    | ence | T1 T2  |        |        |             |           |    |
|      | L15   |           |     | of nuclear  | forc     | e,   |        |        |        |             |           |    |
|      | L-16  |           |     | meson th    | eory     | of   | T1 T2  |        |        |             |           |    |
|      |       |           |     | nuclear fo  | rce      |      |        |        |        |             |           |    |
|      | L17-  |           |     | Scattering  | , C      | ross | T1 T2  |        |        |             |           |    |
|      | L20   |           |     | section,    | <u> </u> |      | R1     |        |        |             |           |    |

|      | differential areas  |       |      |  |
|------|---------------------|-------|------|--|
|      | differential cross  |       |      |  |
|      | section, scattering |       |      |  |
|      | cross section,      |       |      |  |
| L20- | nucleon nucleon     | T1 T2 |      |  |
| L24  | scattering, proton- | R1    |      |  |
|      | proton and          |       |      |  |
|      | neutron neutron     |       |      |  |
|      |                     |       |      |  |
|      | scattering at low   |       |      |  |
|      | energies            |       |      |  |
| L25- | Interaction of      | T1 R1 |      |  |
| L28  | radiation with      |       |      |  |
|      | matter, Interaction |       |      |  |
|      | of charged          |       |      |  |
|      | narticles with      |       |      |  |
|      | matter              |       |      |  |
|      |                     | T1 D1 |      |  |
| L29- | stopping power of   | IIKI  |      |  |
| L32  | heavy charged       |       |      |  |
|      | particles, energy   |       |      |  |
|      | loss of electrons,  |       |      |  |
|      | absorption of       |       |      |  |
|      | gamma ravs.         |       |      |  |
|      | photoelectric       |       |      |  |
|      | effect Compton      |       |      |  |
|      | offect, compton     |       |      |  |
|      | effect and pair     |       |      |  |
|      | production          |       | <br> |  |
| L33- | Classification of   | T1 T3 |      |  |
| L35  | elementary          |       |      |  |
|      | particle,           |       |      |  |
| L36- | Eightfold way,      | T1 T3 |      |  |
| 1.38 | Baryon octate and   |       |      |  |
| 200  | meson octate        |       |      |  |
|      | Quark model         |       |      |  |
|      | Quark model,        |       |      |  |
|      | Baryon Decupiet,    |       |      |  |
|      | meson nonlet,       |       |      |  |
|      | Intermediate        |       |      |  |
|      | vector Boson        |       |      |  |
| L39- | Strong              | T1 T3 |      |  |
| L40  | electromagnetic     |       |      |  |
|      | and week            |       |      |  |
|      | interactions        |       |      |  |
|      | standard mad-1      |       |      |  |
|      | stanuaru model,     |       |      |  |
|      | lepton              |       |      |  |
|      | classification and  |       |      |  |
|      | quark               |       |      |  |
|      | classification.     |       |      |  |
|      |                     |       |      |  |

Course code: PH 502 Course title: Advanced Quantum Mechanics Pre-requisite(s): Quantum Mechanics Co- requisite(s): Credits: 4L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level:IX / III Branch: PHYSICS

| Code: PH 502                                        | Title: Advanced Quantum Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                | [L-T-P-C<br>[3-1-0-4] |  |  |  |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Module                                              | Course Objective:                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |  |  |  |  |  |
| 1                                                   | To learn how to apply Perturbation Theory (Time Independent) in non-degenerate and degenerate situations.                                                                                                                                                                                                                                                                                                                                        |                       |  |  |  |  |  |
| 2                                                   | To apply approximate method in Quantum Mechanics to treat molecules.                                                                                                                                                                                                                                                                                                                                                                             |                       |  |  |  |  |  |
| 3                                                   | To learn how to apply semi-classical method to treat the interaction of atoms with field.                                                                                                                                                                                                                                                                                                                                                        |                       |  |  |  |  |  |
| 4                                                   | To learn how to treat Two –level systems Quantum Mechanically.                                                                                                                                                                                                                                                                                                                                                                                   |                       |  |  |  |  |  |
| 5                                                   | To learn the basics of relativistic quantum Mechanics.                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |
| Module                                              | Course Outcome:                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |  |  |  |  |  |
| 1                                                   | Will be able to solve and analyse various quantum mechanical problem related to Time Independent Perturbation Theory.                                                                                                                                                                                                                                                                                                                            |                       |  |  |  |  |  |
| 2                                                   | Will be able to treat molecules quantum mechanically .                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |  |  |  |
| 3                                                   | Will be able to apply semi-classical method to treat atom field interactions.                                                                                                                                                                                                                                                                                                                                                                    |                       |  |  |  |  |  |
| 4                                                   | Will be able to treat Two- Level System Quantum Mechanically.                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |  |  |  |  |
| 5                                                   | Will be able to understand the central concept and principles of relativistic Quantum Mechanics.                                                                                                                                                                                                                                                                                                                                                 |                       |  |  |  |  |  |
| Module-1                                            | Perturbation theory, time-independent perturbation theory (non-degenerate and degenerate) and applications. Stark effect and other simple cases. Relativistic perturbation to hydrogen atom. Energy levels of hydrogen including fine structure, Lamb shift and hyperfine splitting. Zeeman effect (normal and anomalous) time, first and second order, the effect of the electric field on the energy levels of an atom ( <b>Stark effect</b> ) | 15                    |  |  |  |  |  |
| Module-2                                            | Quantum mechanics of molecules, Born-Oppenheimer approximation                                                                                                                                                                                                                                                                                                                                                                                   | 5                     |  |  |  |  |  |
| Module-3                                            | Time-dependent perturbations, first order transitions, Semi- classical theory of interaction of atoms with field. Quantization of radiation field. Hamiltonian of field and atom, Fermi golden rule, the Einstein's A & B coefficients.                                                                                                                                                                                                          | 10                    |  |  |  |  |  |
| Module-4                                            | Atom field interaction, density matrix equation, closed and open two-level atoms, Rabi oscillations.                                                                                                                                                                                                                                                                                                                                             | 10                    |  |  |  |  |  |
| Module-5                                            | Relativistic wave equations: Klein-Gordon equation for a free particle and particle under<br>the influence of an electromagnetic potential, Dirac's relativistic Hamiltonian, Dirac's<br>relativistic wave equation, positive and negative energy states, significance of negative<br>energy states.                                                                                                                                             | 10                    |  |  |  |  |  |
| Book:<br>1. Quantu<br><u>Reference</u><br>1. Quantu | um Mechanics by L. I. Schiff. (Tata McGraw Hill, New Delhi)<br><u>s:</u><br>um Mechanics by L. D. Landau and E. M. Lifshitz (Pergamor                                                                                                                                                                                                                                                                                                            | n Berlin)             |  |  |  |  |  |

Ghatak

and

S.

by

Mechanics

2. Quantum

3.

A.

A Textbook of Quantum Mechanics by P. T. Mathews (Tata McGraw Hill)

K.

(McMillan

India)

Lokanathan

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | N |
| Mini projects/Projects                                      | N |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | N |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

#### Course Outcome (CO) Attainment Assessment tools & Evaluation procedure

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Mid Sem Examination Marks | 25                                  |
| End SemExamination Marks  | 50                                  |
| Quiz                      | 10+10                               |
| Teacher's assessment      | 5                                   |

| Assessment Compoents      | CO1          | CO2 | CO3          | CO4          | CO5 |
|---------------------------|--------------|-----|--------------|--------------|-----|
| Mid Sem Examination Marks | $\checkmark$ |     |              |              |     |
| End Sem Examination Marks | $\checkmark$ |     | $\checkmark$ | $\checkmark$ |     |
| Quiz I                    |              |     | $\checkmark$ | $\checkmark$ |     |
| Quiz II                   |              |     |              |              |     |

#### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

#### **Mapping between Objectives and Outcomes**

#### Mapping between Course Objectives and Course Outcomes **Course Objectives** 4 5 1 2 3 Η L Μ Μ L А В L Η L L L С Μ L Η Μ L D М L М Η L E L L L Η L

#### Mapping of Course Outcomes onto Program Outcomes

| Course    |   | Program Outcomes |   |   |   |   |  |   |   |   |   |   |
|-----------|---|------------------|---|---|---|---|--|---|---|---|---|---|
| Outcome # | а | В                | c | d | e | f |  | h | i | j | k | 1 |
| 1         | Н | Η                | Н | Μ | Η | Н |  |   |   |   |   |   |
| 2         | Н | Η                | Н | Μ | Η | Н |  |   |   |   |   |   |
| 3         | Н | Η                | Н | Μ | Η | Н |  |   |   |   |   |   |
| 4         | Η | Η                | Η | Μ | L | Н |  |   |   |   |   |   |
| 5         | Н | Η                | Н | Μ | Μ | Н |  |   |   |   |   |   |

|    | Mapping Between COs and Course Delivery (CD) methods |  |         |                        |  |  |  |  |  |  |
|----|------------------------------------------------------|--|---------|------------------------|--|--|--|--|--|--|
|    |                                                      |  | Course  | <b>Course Delivery</b> |  |  |  |  |  |  |
| CD | Course Delivery methods                              |  | Outcome | Method                 |  |  |  |  |  |  |

| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1 | CD1 CD2 |
|-----|-------------------------------------------------------------|-----|---------|
| CD2 | Tutorials/Assignments                                       | CO2 | CD1 CD2 |
| CD3 | Seminars                                                    | CO3 | CD1 CD2 |
| CD4 | Mini projects/Projects                                      | CO4 | CD1 CD2 |
| CD5 | Laboratory experiments/teaching aids                        | CO5 | CD1 CD2 |
| CD6 | Industrial/guest lectures                                   |     |         |
| CD7 | Industrial visits/in-plant training                         |     |         |
| CD8 | Self- learning such as use of NPTEL materials and internets |     |         |
| CD9 | Simulation                                                  |     |         |

| Week | Lect. | Tent  | С  | Topics to be covered                | Text   | COs | Actual  | Method | Remark  |
|------|-------|-------|----|-------------------------------------|--------|-----|---------|--------|---------|
| No.  | No.   | ative | h. |                                     | Book / | map | Content | ology  | s by    |
|      |       | Date  | Ν  |                                     | Refere | ped | covered | Used   | faculty |
|      |       |       | 0. |                                     | nces   |     |         |        | if any  |
| 1    | L1-L6 |       |    | Perturbation theory, time-          | T1-    |     |         |        |         |
|      |       |       |    | independent perturbation theory     | T2-R1  |     |         |        |         |
|      |       |       |    | (non-degenerate and degenerate)     |        |     |         |        |         |
|      |       |       |    | and applications.                   |        |     |         |        |         |
|      | L7-L9 |       |    | Stark effect and other simple       | T1-    |     |         |        |         |
|      |       |       |    | cases. Relativistic perturbation to | T2_R   |     |         |        |         |
|      |       |       |    | hydrogen atom.                      | 1      |     |         |        |         |
|      | L10-  |       |    | Energy levels of hydrogen           | T1 T2  |     |         |        |         |
|      | L12   |       |    | including fine structure, Lamb      | R1     |     |         |        |         |
|      |       |       |    | shift and hyperfine splitting       |        |     |         |        |         |
|      | L13-  |       | l  | Zeeman effect (normal and           | T1 T2  |     |         |        |         |
|      | L15   |       |    | anomalous) time, first and second   | R1     |     |         |        |         |
|      |       |       |    | order, the effect of the electric   |        |     |         |        |         |
|      |       |       |    | field on the energy levels of an    |        |     |         |        |         |
|      |       |       |    | atom (Stark effect)                 |        |     |         |        |         |
|      | L16-  |       |    | Quantum mechanics of molecules,     | T1 T3  |     |         |        |         |
|      | L20   |       |    | Born-Oppenheimer approximation      | R1     |     |         |        |         |
|      | L21-  |       |    | Time-dependent perturbations,       | T1 T3  |     |         |        |         |
|      | L24   |       |    | first order transitions, Semi-      | R1     |     |         |        |         |
|      |       |       |    | classical theory of interaction of  |        |     |         |        |         |
|      |       |       |    | atoms with field.                   |        |     |         |        |         |
|      | L25-  |       |    | Quantization of radiation field.    | T1 T2  |     |         |        |         |
|      | L28   |       |    | Hamiltonian of field and atom,      | R1     |     |         |        |         |
|      | L29-  |       |    | Fermi golden rule, the Einstein's   | T1 T2  |     |         |        |         |
|      | L30   |       |    | A & B coefficients.                 |        |     |         |        |         |
|      | L31-  |       |    | Atom field interaction, density     | T1 T2  |     |         |        |         |
|      | L34   |       |    | matrix equation,                    |        |     |         |        |         |
|      | L35-  |       |    | closed and open two-level atoms,    | T1 T2  |     |         |        |         |
|      | L38   |       |    | Rabi oscillations.                  | Т3     |     |         |        |         |
|      | L39-  |       |    | Relativistic wave equations:        | T1 T2  |     |         |        |         |
|      | L44   |       |    | Klein-Gordon equation for a free    | T3     |     |         |        |         |
|      |       |       |    | particle and particle under the     |        |     |         |        |         |
|      |       |       |    | influence of an electromagnetic     |        |     |         |        |         |
|      |       |       |    | potential,                          |        |     |         |        |         |
|      | L44-  |       |    | , Dirac's relativistic Hamiltonian, | T1 T2  |     |         |        |         |

| L50 |  | Dirac's relativistic wave equation,<br>positive and negative energy<br>states, significance of negative<br>energy states. | Т3 |  |  |
|-----|--|---------------------------------------------------------------------------------------------------------------------------|----|--|--|
|     |  |                                                                                                                           |    |  |  |

| Course code:         | PH 503    |           |           |          |
|----------------------|-----------|-----------|-----------|----------|
| <b>Course title:</b> | Lasers I  | Physics a | and Appli | ications |
| <b>Pre-requisite</b> | e(s): Way | ves and   | Optics    |          |
| Co- requisite        | e(s):     |           |           |          |
| Credits: 3           | L: 3      | T: 1      | P: 0      |          |
| <b>Class schedu</b>  | le per w  | eek:      |           |          |
| Class: I.M.S         | 2.        |           |           |          |
| Semester / L         | evel: IX  | / III     |           |          |
| <b>Branch: PHY</b>   | ISICS     |           |           |          |
| Name of Tea          | cher:     |           |           |          |

| Code:                                                                                  |                                                                                              | Title: Lasers Physics and Applications                                                                    | L-T-P-C          |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
| PH 503                                                                                 | 3                                                                                            |                                                                                                           | [3-1-0-4]        |  |  |  |  |  |  |
| Cours                                                                                  | se Obi                                                                                       | lectives                                                                                                  |                  |  |  |  |  |  |  |
| This                                                                                   | course                                                                                       | enables the students:                                                                                     |                  |  |  |  |  |  |  |
|                                                                                        | A.                                                                                           | To identify conditions for lasing phenomenon and properties of the laser.                                 |                  |  |  |  |  |  |  |
|                                                                                        | B.                                                                                           | To discuss stable, unstable resonators and cavity modes.                                                  |                  |  |  |  |  |  |  |
|                                                                                        | C. To compare continuous and pulsed lasers.                                                  |                                                                                                           |                  |  |  |  |  |  |  |
| D. To classify different types of lasers with respect to design and working principles |                                                                                              |                                                                                                           |                  |  |  |  |  |  |  |
|                                                                                        | Е                                                                                            | To illustrate various applications of laser e.g. holographic non-destructive testing.                     |                  |  |  |  |  |  |  |
| Cour                                                                                   | se Ou                                                                                        | tcomes                                                                                                    |                  |  |  |  |  |  |  |
| After                                                                                  | the co                                                                                       | ompletion of this course, students will be:                                                               |                  |  |  |  |  |  |  |
|                                                                                        | 1.                                                                                           | To evaluate conditions for lasing phenomenon and properties of the laser.                                 |                  |  |  |  |  |  |  |
|                                                                                        | 2.                                                                                           | To calculate cavity modes of a given cavity and identify the given resonator is stable or unstable        | one.             |  |  |  |  |  |  |
|                                                                                        | 3.                                                                                           | To evaluate Q-switching and the mode-locked lasing phenomenon.                                            |                  |  |  |  |  |  |  |
|                                                                                        | 4.                                                                                           | To appraise different type of lasers with respect to design and working principles.                       |                  |  |  |  |  |  |  |
|                                                                                        | 5.                                                                                           | To assess applications of a laser for measurement of distance, holography and medical surgeries           | etc.             |  |  |  |  |  |  |
| Modu                                                                                   | Interaction of radiations with atoms and ions: Spontaneous and Stimulated emissions, Stimula | ited [15]                                                                                                 |                  |  |  |  |  |  |  |
|                                                                                        |                                                                                              | absorption. Population inversion, gain oscillation, gain saturation, threshold, rate equation, 3 an       | d 4              |  |  |  |  |  |  |
|                                                                                        |                                                                                              | level systems, laser line shape, hole burning, Lamb dip, output power. Properties of las                  | ser:             |  |  |  |  |  |  |
|                                                                                        |                                                                                              | coherence, monochromaticity, divergence.                                                                  |                  |  |  |  |  |  |  |
| Modu                                                                                   | ıle-2                                                                                        | Theory of resonator. Stable and unstable resonator, Optical cavities, Cavity modes, longitudi             | nal [10]         |  |  |  |  |  |  |
|                                                                                        |                                                                                              | and transverse modes of the cavity.                                                                       |                  |  |  |  |  |  |  |
| Modu                                                                                   | ıle-3                                                                                        | Continuous wave, Pulsed, Q- switched and Modelocked lasers.                                               | [5]              |  |  |  |  |  |  |
| Modu                                                                                   | ıle-4                                                                                        | Different type of lasers, design (in brief) and functioning of different lasers - Ruby laser, Nd: Y.      | AG [10]          |  |  |  |  |  |  |
|                                                                                        |                                                                                              | laser, He-Ne laser, CO <sub>2</sub> laser, Argon ion laser, Dye laser, Excimer laser. Free electron laser |                  |  |  |  |  |  |  |
| Modu                                                                                   | ıle-5                                                                                        | Measurement with laser, alignment, targeting, tracking, velocity measurement, surface qua                 | lity <b>[10]</b> |  |  |  |  |  |  |
|                                                                                        |                                                                                              | measurement. Measurement of distance (interferometric, pulse echo, Beam modulation). la                   | iser             |  |  |  |  |  |  |
|                                                                                        |                                                                                              | gyroscope, Holographic nondestructive testing (NDT). Application in communication. Mater                  | rial             |  |  |  |  |  |  |
|                                                                                        |                                                                                              | Processing: cutting, welding, drilling and surface treatment. Medical Applications, Laser trappin         | ng.              |  |  |  |  |  |  |
| Boo                                                                                    | k:                                                                                           |                                                                                                           |                  |  |  |  |  |  |  |
| T                                                                                      | 1: 0.                                                                                        | Svelto; Principles of Lasers, Springer (2004)                                                             |                  |  |  |  |  |  |  |
| T.                                                                                     | 2: Lase                                                                                      | er Fundamentsls: William T. Silfvast, Cambridge University Press (1998)                                   |                  |  |  |  |  |  |  |
| R                                                                                      | 1 K. S                                                                                       | himoda, Introduction to laser Physics, Springer Verlag, Berlin (1984)                                     |                  |  |  |  |  |  |  |
| R                                                                                      | 2: Las                                                                                       | er Electronics: J.T.Verdeyen, 3rdEd, Prentice Hall (1994)                                                 |                  |  |  |  |  |  |  |
|                                                                                        | 2 I a a                                                                                      | an Annlightians in Surface Science and Technology IIC Dubahay John Wiley & Song (1000)                    |                  |  |  |  |  |  |  |

R3 Laser Applications in Surface Science and Technology; H.G.Rubahn; John Wiley & Sons (1999)

1. R4 Optical Methods in Engineering Metrology: Ed D.C.Williams; Chapman & Hall

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | N |
| Mini projects/Projects                                      | N |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | N |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

#### <u>Course Outcome (CO) Attainment Assessment tools & Evaluation procedure</u> Direct Assessment

| Assessment Tool           | % Contribution during CO Assessment |  |  |  |  |  |
|---------------------------|-------------------------------------|--|--|--|--|--|
| Assignment                | 10                                  |  |  |  |  |  |
| Seminar before a commitee | 10                                  |  |  |  |  |  |
| Three Quizzes             | 30 (10+10+10)                       |  |  |  |  |  |
| End Sem Examination Marks | 50                                  |  |  |  |  |  |

| Assessment Components     | CO1          | CO2 | CO3          | CO4          | CO5          |
|---------------------------|--------------|-----|--------------|--------------|--------------|
| Mid Sem Examination Marks | $\checkmark$ |     | $\checkmark$ |              |              |
| End Sem Examination Marks | $\checkmark$ |     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Quiz I                    |              |     | $\checkmark$ | $\checkmark$ |              |
| Quiz II                   |              |     |              | $\checkmark$ | $\checkmark$ |
|                           |              |     |              |              |              |

Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

### **Mapping between Objectives and Outcomes**

#### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | 5 |
|-------------------|---|---|---|---|---|
| Α                 | Н | Μ | Μ | L | Μ |
| В                 | М | Н | М | L | L |
| С                 | L | L | Н | L | L |
| D                 | - | L | L | Η | L |
| E                 | L | Μ | L | L | Н |

#### Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # |   | Program Outcomes |   |   |   |   |  |  |
|------------------|---|------------------|---|---|---|---|--|--|
|                  | а | b                | с | d | e | f |  |  |
| 1                | Н | Н                | Н | Η | L | Н |  |  |
| 2                | Н | Н                | Н | Η | М | Н |  |  |
| 3                | Н | Н                | Н | М | L | Μ |  |  |
| 4                | Н |                  | Н | Η | L | М |  |  |
| 5                | М | Н                | Н | Н | Н | Н |  |  |

| Mapping Between COs and Course Delivery (CD) methods |                                                             |                   |                           |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------|-------------------|---------------------------|--|--|--|
| CD                                                   | Course Delivery methods                                     | Course<br>Outcome | Course Delivery<br>Method |  |  |  |
| CD1                                                  | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1 and CD2               |  |  |  |
| CD2                                                  | Tutorials/Assignments                                       | CO2               | CD1 and CD2               |  |  |  |
| CD3                                                  | Seminars                                                    | CO3               | CD1 and CD2               |  |  |  |
| CD4                                                  | Mini projects/Projects                                      | CO4               | CD1 and CD2               |  |  |  |
| CD5                                                  | Laboratory experiments/teaching aids                        | CO5               | CD1 and CD2               |  |  |  |
| CD6                                                  | Industrial/guest lectures                                   | -                 | -                         |  |  |  |
| CD7                                                  | Industrial visits/in-plant training                         | -                 | -                         |  |  |  |
| CD8                                                  | Self- learning such as use of NPTEL materials and internets | -                 | -                         |  |  |  |
| CD9                                                  | Simulation                                                  | -                 | -                         |  |  |  |

| Week<br>No. | Lect.<br>No. | Tent<br>ative<br>Date | Ch.<br>No. | Topics to be covered                                                                        | Text<br>Book /<br>Refere<br>nces | COs<br>mapp<br>ed | Actual<br>Content<br>covered | Methodology<br>used               | Remarks<br>by<br>faculty if<br>any |
|-------------|--------------|-----------------------|------------|---------------------------------------------------------------------------------------------|----------------------------------|-------------------|------------------------------|-----------------------------------|------------------------------------|
| 1           | L1-L2        |                       | 1          | Interaction of radiations<br>with atoms and ions                                            | T1,<br>T2,                       | 1,2               |                              | PPT Digi<br>Class/Chock<br>-Board |                                    |
|             | L3-L7        |                       |            | SpontaneousandStimulatedemissions,Stimulatedabsorption.Populationinversion,gain oscillation |                                  | 1,                |                              | Digi<br>Class/Chock<br>-Board     |                                    |
|             | L8-<br>L10   |                       |            | gain saturation, threshold,<br>rate equation, 3 and 4<br>level systems,                     |                                  | 1,2               |                              | Digi<br>Class/Chock<br>-Board     |                                    |
|             | L11-<br>L14  |                       |            | laser line shape, hole<br>burning, Lamb dip,<br>output power.                               |                                  | 1,2,3             |                              | Digi<br>Class/Chock<br>-Board     |                                    |
|             | L15          |                       |            | Properties of laser:<br>coherence,<br>monochromaticity,<br>divergence.                      |                                  | 1,2               |                              | Digi<br>Class/Chock<br>-Board     |                                    |
|             | L16-<br>L18  |                       |            | Theory of resonator.<br>Stable and unstable<br>resonator,                                   |                                  | 1                 |                              | Digi<br>Class/Chock<br>-Board     |                                    |
|             | L19-<br>L25  |                       |            | Optical cavities, Cavity<br>modes, longitudinal and<br>transverse modes of the<br>cavity.   |                                  | 2                 |                              | Digi<br>Class/Chock<br>-Board     |                                    |
|             | L26-<br>L30  |                       |            | Continuous wave, Pulsed,<br>Q- switched and<br>Modelocked lasers.                           |                                  | 3                 |                              | Digi<br>Class/Chock<br>-Board     |                                    |
|             | L31-35       |                       |            | Different type of lasers,<br>design (in brief) and<br>functioning of different<br>lasers -  |                                  | 4                 |                              | Digi<br>Class/Chock<br>-Board     |                                    |

| L36-<br>L40 | Ruby laser, Nd: YAG<br>laser, He-Ne laser, $CO_2$<br>laser, Argon ion laser,<br>Dye laser, Excimer laser.<br>Free electron laser                                                                                                                                                                                  | 4 | Digi<br>Class/Chock<br>-Board |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------|
| L41-<br>L45 | Measurement with laser,<br>alignment, targeting,<br>tracking, velocity<br>measurement, surface<br>quality measurement.                                                                                                                                                                                            | 5 | Digi<br>Class/Chock<br>-Board |
| L46-<br>L50 | Measurement of distance<br>(interferometric, pulse<br>echo, Beam modulation).<br>laser gyroscope,<br>Holographic<br>nondestructive testing<br>(NDT). Application in<br>communication. Material<br>Processing: cutting,<br>welding, drilling and<br>surface treatment.<br>Medical Applications,<br>Laser trapping. |   | Digi<br>Class/Chock<br>-Board |

Course code: PH 513 Course title: Laser Physics Lab Pre-requisite(s): Laser Physics and Applications Co- requisite(s): Credits: 2 L: 0 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: I Branch: PHYSICS Name of Teacher: Dr K. Bose

|          | Laser Physics Lab                                                                       |                      |
|----------|-----------------------------------------------------------------------------------------|----------------------|
|          | ·                                                                                       | L-T-P-C<br>[0-0-4-2] |
| 1.       | To determine the wavelength of sodium light using Michelson Interferometer              |                      |
| 2.       | Demonstrate interference fringe pattern using Mach Zhender interferometer.              |                      |
| 3.       | Study of mercury spectrum using grating and spectrometer.                               |                      |
| 4.       | Determine the coherence length of a diode laser using a Michelson Interferometer.       |                      |
| 5.       | Perform Faraday Effect experiment and find verdet constant of flint glass.              |                      |
| 6.       | To study the birefringence with respect to applied voltage in an electro optic crystal. |                      |
| ·/.<br>o | To determine the Kerr constant of the liquid (Nitro Benzene)                            |                      |
| ð.<br>Q  | To find the velocity of ultrasonic wave in a liquid using ultrasonic diffraction appara | tus                  |
| ).       | To find the velocity of unusonic wave in a riquid using unusonic diffraction appara     |                      |

### **Course Assessment tools & Evaluation procedure**

| Assessment Tool        | % Contribution                                      |
|------------------------|-----------------------------------------------------|
| Progressive Evaluation | 60 (Day to day performance: 30, Quiz: 10, Viva: 20) |
| End Sem Examination    | 40 (Experiment Performance: 30, Quiz: 10)           |

# **Semester IV**

#### PE- VI & VII

Two papers from the same Group A or B or C or  $\,$  D or E

**Project** from the same Group A or B or C or D or E

# PE-V

| Group               | A- <u>Theoretical and Computational Physics:</u>                                                                                                                                                                    |            |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1.                  | Numerical Methods for Physicists                                                                                                                                                                                    |            |
| 2.                  | Theory of Solids                                                                                                                                                                                                    |            |
|                     | COURSE INFORMATION SHEET                                                                                                                                                                                            |            |
| ourse co            | ode: PH 504                                                                                                                                                                                                         |            |
| ourse u<br>re-reau  | ue: Numerical Methods for Physicists<br>site(s): Mathematical Physics                                                                                                                                               |            |
| o- requi            | site(s):                                                                                                                                                                                                            |            |
| redits:             | <b>4</b> L: 4 T: 0 P: 0                                                                                                                                                                                             |            |
| lass sch            | edule per week:                                                                                                                                                                                                     |            |
| lass: I.N           | 1.Sc.<br>/ Level: DE V                                                                                                                                                                                              |            |
| emester<br>ranch• ] | / Level: PE V<br>PHYSICS                                                                                                                                                                                            |            |
| ame of              | Feacher:                                                                                                                                                                                                            |            |
| Grou                | p: A Option 1                                                                                                                                                                                                       |            |
| ode:                | Title: Numerical Methods for Physicists                                                                                                                                                                             | L-T-P-C    |
| H 504               |                                                                                                                                                                                                                     | [4- 0-0- 4 |
|                     | Theory & Programming using C for solving problems on following topics:                                                                                                                                              |            |
| Cou                 | rse Objectives                                                                                                                                                                                                      | 1          |
| This                | course enables the students:                                                                                                                                                                                        |            |
| A.                  | To learn about optimization techniques                                                                                                                                                                              |            |
| B.                  | To understand the concepts of functional approximations                                                                                                                                                             |            |
| C.                  | To know about algebraic eigenvalue problems                                                                                                                                                                         |            |
| D.                  | To gain knowledge on integral equations                                                                                                                                                                             |            |
| E.                  | To gain familiarity with the numerical solutions of partial differental equations                                                                                                                                   |            |
| L                   |                                                                                                                                                                                                                     |            |
| Cou                 | rse Outcomes                                                                                                                                                                                                        |            |
| Afte                | r the completion of this course, students will be:                                                                                                                                                                  |            |
| 1.                  | Able to perform optimization via coding                                                                                                                                                                             |            |
| 2.                  | Able to do construct programs on functional approximations                                                                                                                                                          |            |
| 3.                  | Solving eigenvalue problems numerically                                                                                                                                                                             |            |
| 4.                  | Comfortable in dealing with integral equations                                                                                                                                                                      |            |
| 5.                  | Numerically able to solve partial differential equations                                                                                                                                                            |            |
| Module              | 1 Optimization                                                                                                                                                                                                      | [10]       |
|                     | Golden Section Search, Brent's Method, Methods Using Derivative, Minimization in Several Dimensions, Quasi-Newton Methods, Direction Set Methods, Linear Programming                                                |            |
| Module              | 2 Functional Approximations                                                                                                                                                                                         | [10]       |
|                     | Choice of Norm and Model, Linear Least Squares, Nonlinear Least Squares, Discrete Fourier<br>Transform, Fast Fourier Transform (FFT), FFT in Two or More Dimensions, Functional<br>Approximations                   |            |
| Module              | 3 Algebraic Eigenvalue Problems                                                                                                                                                                                     | [10]       |
|                     | Introduction, Power Method, Inverse Iteration, Eigenvalue Problem for a Real Symmetric Matrix, QL Algorithm for a Symmetric Tridiagonal Matrix, Algebraic Eigenvalue Problem                                        |            |
| Module              | 4 Integral Equations                                                                                                                                                                                                | [10]       |
|                     | Introduction, Fredholm Equations of the Second Kind, Expansion Methods, Eigenvalue<br>Problem, Fredholm Equations of the First Kind, Volterra Equations of the Second Kind,<br>Volterra Equations of the First Kind |            |

| Module-5                    | Partial Differential Equations                                                                                                                                                                                                                           | [10]      |  |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
|                             | Wave Equation in Two Dimensions, General Hyperbolic Equations, Elliptic Equations,<br>Successive Over-Relaxation Method, Alternating Direction Method, Fourier Transform Method,<br>Finite Element Methods, Algorithms for Vector and Parallel Computers |           |  |  |  |  |
| References                  |                                                                                                                                                                                                                                                          |           |  |  |  |  |
| 1. "Numeric                 | al methods for Scientists and Engineers" by H. M. Antia, Springer Science and Business Media.                                                                                                                                                            |           |  |  |  |  |
| 2. "Numeric                 | cal Recipes in C" by William H. Press, Saul A. Teukolsky, William T. Vetterling & Brian P.                                                                                                                                                               | Flannery, |  |  |  |  |
| Cambridge University Press. |                                                                                                                                                                                                                                                          |           |  |  |  |  |
| 3. "Program                 | ming in C# A Primer" by E Balagurusamy, McGraw Hill Education.                                                                                                                                                                                           |           |  |  |  |  |

### **Course Assessment tools & Evaluation procedure**

| Direct Assessment         |                                     |
|---------------------------|-------------------------------------|
| Assessment Tool           | % Contribution during CO Assessment |
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

#### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

| Assessment Compoents | CO1 | CO2 | CO3 | CO4 | CO5 |
|----------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination  |     |     |     |     |     |
| Marks                |     |     |     |     |     |
| End Sem Examination  |     |     |     |     |     |
| Marks                |     |     |     |     |     |
| Quiz I               |     |     |     |     |     |
| Quiz II              |     |     |     |     |     |

#### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | 5 |
|-------------------|---|---|---|---|---|
| А                 | Η | L | - | - | - |
| В                 | М | Н | L | - | М |
| С                 | М | L | Н | - | М |
| D                 | М | L | L | Н | М |
| E                 | М | L | L | L | Н |

| Course Outcome # | Program Outcomes |   |   |   |   |   |  |
|------------------|------------------|---|---|---|---|---|--|
|                  | a                | b | c | d | e | f |  |
| 1                | L                | Μ | Μ | Μ | L | Μ |  |
| 2                | L                | Μ | Μ | Μ | L | Μ |  |
| 3                | L                | Н | Μ | Μ | L | Μ |  |
| 4                | L                | Н | Μ | Μ | Н | Μ |  |
| 5                | L                | Н | Μ | Μ | Н | Μ |  |

| Week                | Lect | Tentati | Ch. | Topics to be covered             | Text                             | Cos | Actual  | Methodolo | Remar   |
|---------------------|------|---------|-----|----------------------------------|----------------------------------|-----|---------|-----------|---------|
| No.                 | No.  | ve      | No. | •                                | Book /                           | map | Content | gyused    | ks by   |
|                     |      | Date    |     |                                  | Referenc                         | ped | covered | 80        | faculty |
|                     |      |         |     |                                  | es                               | I   |         |           | if any  |
| 1                   | L1-  |         |     | Golden Section Search, Brent's   | T1,T2,T3                         | 1   |         | Board,    |         |
|                     | L3   |         |     | Method, Methods Using            | , ,                              |     |         | Computers |         |
|                     |      |         |     | Derivative                       |                                  |     |         | 1         |         |
| 2                   | L4-  |         |     | inimization in Several           | T1,T2,T3                         | 1   |         | Board,    |         |
|                     | L6   |         |     | Dimensions, Quasi-Newton         |                                  |     |         | Computers |         |
|                     |      |         |     | Methods                          |                                  |     |         | •         |         |
| 3                   | L7-  |         |     | Direction Set Methods, Linear    | T1,T2,T3                         | 1   |         | Board,    |         |
|                     | L9   |         |     | Programming                      |                                  |     |         | Computers |         |
| 4                   | L10- |         |     | Choice of Norm and Model,        | T1,T2,T3                         | 2   |         | Board,    |         |
|                     | L12  |         |     | Linear Least Squares, Nonlinear  |                                  |     |         | Computers |         |
|                     |      |         |     | Least Squares                    |                                  |     |         |           |         |
| 5                   | L13- |         |     | Discrete Fourier Transform, Fast | T1,T2,T3                         | 2   |         | Board,    |         |
|                     | L15  |         |     | Fourier Transform (FFT),         |                                  |     |         | Computers |         |
| 6                   | L16- |         |     | FFT in Two or More               | T1,T2,T3                         | 2   |         | Board,    |         |
|                     | L18  |         |     | Dimensions, Functional           |                                  |     |         | Computers |         |
|                     |      |         |     | Approximations                   |                                  |     |         |           |         |
| 7                   | L19- |         |     | Introduction,Power Method,       | T1,T2,T3                         | 3   |         | Board,    |         |
|                     | L21  |         |     | Inverse Iteration,               |                                  |     |         | Computers |         |
| 8                   | L22- |         |     | Eigenvalue Problem for a Real    | T1,T2,T3                         | 3   |         | Board,    |         |
|                     | L24  |         |     | Symmetric Matrix , QL            |                                  |     |         | Computers |         |
|                     |      |         |     | Algorithm for a Symmetric        |                                  |     |         |           |         |
|                     |      |         |     | Tridiagonal Matrix               |                                  |     |         |           |         |
| 9                   | L25- |         |     | Algebraic Eigenvalue Problem     | T1,T2,T3                         | 3   |         | Board,    |         |
|                     | L27  |         |     |                                  |                                  |     |         | Computers |         |
| 10                  | L28- |         |     | Introduction, Fredholm           | T1,T2,T3                         | 4   |         | Board,    |         |
|                     | L30  |         |     | Equations of the Second Kind,    |                                  |     |         | Computers |         |
|                     |      |         |     | Expansion Methods                |                                  |     |         |           |         |
| 11                  | L31- |         |     | Eigenvalue Problem, Fredholm     | T1,T2,T3                         | 4   |         | Board,    |         |
|                     | L33  |         |     | Equations of the First Kind      |                                  |     |         | Computers |         |
| 12                  | L34- |         |     | Volterra Equations of the        | T1,T2,T3                         | 4   |         | Board,    |         |
|                     | L36  |         |     | Second Kind, Volterra            |                                  |     |         | Computers |         |
| <b>T</b> 1 <b>T</b> |      |         |     | Equations of the First Kind      |                                  |     |         |           |         |
| 1311,1              | L37- |         |     | Wave Equation in Two             | T1,T2,T3                         | 5   |         | Board,    |         |
| 2,13                | L39  |         |     | Dimensions, General              |                                  |     |         | Computers |         |
|                     |      |         |     | Hyperbolic Equations, Elliptic   |                                  |     |         |           |         |
|                     |      |         |     | Equations                        |                                  |     |         |           |         |
| 14                  | L40- |         |     | Successive Over-Relaxation       | T1,T2,T3                         | 5   |         | Board,    |         |
|                     | L42  |         |     | Method, Alternating Direction    |                                  |     |         | Computers |         |
|                     |      |         |     | Method, Fourier Transform        |                                  |     |         |           |         |
| 1.7                 | T 10 |         |     | Method                           | <b>T</b> 1 <b>T</b> 2 <b>T</b> 2 | -   |         |           |         |
| 15                  | L43- |         |     | Finite Element Methods,          | 11,12,13                         | 5   |         | Board,    |         |
| 1                   | L45  |         |     | Algorithms for Vector and        | 1                                |     |         | Computers | 1       |

| Parallel Computers |  |  |  |
|--------------------|--|--|--|

Course code: PH 505 Course title: Theory of Solids Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: 4L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

Group A

**Option 3** 

| Code:                                                                                                                       | Title: Theory of Solids                                                                                         |           |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
| PH 505                                                                                                                      |                                                                                                                 |           |  |  |  |  |
| Course Ob                                                                                                                   | jectives : This course enables the students                                                                     |           |  |  |  |  |
| <u>A.</u>                                                                                                                   | A. To become familiar with classification of solids using band theory.                                          |           |  |  |  |  |
| В.                                                                                                                          | B. To be familiarized with the change in density of states as a function of physical dimension of sol           |           |  |  |  |  |
| C. To become familiar with the electrical behaviour of dielectric materials and understand the field induced by dielectrics |                                                                                                                 |           |  |  |  |  |
| D                                                                                                                           | To become familiar with the theory behind the magnetic properties of materials                                  |           |  |  |  |  |
| E D.                                                                                                                        | To become familiar with the theory benind the magnetic properties of materials.                                 |           |  |  |  |  |
| L.                                                                                                                          | To understand the unrefent optical processes and photophysical properties of solids.                            |           |  |  |  |  |
| Course Ou                                                                                                                   | tcomes : After the completion of this course, students will be                                                  |           |  |  |  |  |
| 1.                                                                                                                          | Able to classify materials as metals, insulators and semiconductors and sketch the band diagram                 | for each. |  |  |  |  |
| 2.                                                                                                                          | Able to classify material as 0D, 1D, 2D and 3D on the basis of density of states and correlate the              | physical  |  |  |  |  |
|                                                                                                                             | properties with physical dimensions.                                                                            |           |  |  |  |  |
| 3.                                                                                                                          | Able to describe the different dielectric properties and be familiar with the experimental methods              | s for     |  |  |  |  |
|                                                                                                                             | investigation of dielectrics.                                                                                   |           |  |  |  |  |
| 4.                                                                                                                          | Able to apply the theories to estimate the magnetic properties of materials.                                    |           |  |  |  |  |
| 5.                                                                                                                          | Able to correlate the results of different optical experiments with the theory.                                 |           |  |  |  |  |
| Module-1                                                                                                                    | Band Theory                                                                                                     | [8]       |  |  |  |  |
|                                                                                                                             | Review of Concepts: (Bloch theorem and Bloch function, Kronig Pennev model),                                    | [0]       |  |  |  |  |
|                                                                                                                             | Construction of Brillouin zones (1 and 2 dimensions), Extended, reduced and periodic zone                       |           |  |  |  |  |
|                                                                                                                             | scheme, Effective mass of an electron, Nearly free electron model, Tight binding                                |           |  |  |  |  |
|                                                                                                                             | approximation, Orthogonalized plane wave method, Pseudo-potential method,                                       |           |  |  |  |  |
|                                                                                                                             | Classification of conductor, semiconductor and insulators.                                                      |           |  |  |  |  |
| Module-2                                                                                                                    | Electron Statistics                                                                                             | [6]       |  |  |  |  |
|                                                                                                                             | Fermi-Dirac distribution, Fermi energy, Density of States, Classification of solids (0D, 1D,                    |           |  |  |  |  |
|                                                                                                                             | 2D, 3D) on the basis of density of states and k-space, effect of temperature on Fermi                           |           |  |  |  |  |
|                                                                                                                             | distribution function.                                                                                          |           |  |  |  |  |
| Module-3                                                                                                                    | Dielectrics                                                                                                     | [10]      |  |  |  |  |
|                                                                                                                             | Matter in a.c. field, Propagation of e.m. wave in matter on the basis of Maxwell's equation,                    |           |  |  |  |  |
|                                                                                                                             | Relaxations and resonances, Kramer's-Kronig relation, Mechanical analogue of relaxation,                        |           |  |  |  |  |
|                                                                                                                             | Debye relation, Argand diagram, Influence of local field and d.c. conductivity and multiple                     |           |  |  |  |  |
|                                                                                                                             | relaxation times, Special diagram (cole-cole arc), Heterogeneous dielectrics (Maxwell-                          |           |  |  |  |  |
|                                                                                                                             | Wagner effect), Dipole relaxation of defects in crystal lattices, Space charge polarization                     |           |  |  |  |  |
|                                                                                                                             | and relaxation, Resonances: Linear oscillator model and one dimensional polar lattices,                         |           |  |  |  |  |
|                                                                                                                             | Ferroelectricity, Microscopic theory of Ferroelectricity, Phase transition of ferroelectrics                    |           |  |  |  |  |
|                                                                                                                             | (1 <sup>st</sup> , 2 <sup>st</sup> and relaxor kind), Hysteresis loop, Recoverable energy, Piezoelectricity and |           |  |  |  |  |
|                                                                                                                             | transducers.                                                                                                    | [0]       |  |  |  |  |
| woulde-4                                                                                                                    | Magnetis interactions. Evolutions distance interaction Direct evolutions. Indirect evolutions Devolution        | [8]       |  |  |  |  |
|                                                                                                                             | avalance Helicol order Emutration Spin classes London theory of formers and                                     |           |  |  |  |  |
|                                                                                                                             | Heisenberg and Ising models. Excitations, Magnons, Bloch T <sup>3/2</sup> law Measurement of spin               |           |  |  |  |  |
|                                                                                                                             | waves Magnetism of the electron gas Spin density waves Kondo effect                                             |           |  |  |  |  |
|                                                                                                                             | waves, magnetism of the election gas, spin defisity waves, Kondo enect.                                         |           |  |  |  |  |

| Module-5  | Optical properties                                                                            | [8] |
|-----------|-----------------------------------------------------------------------------------------------|-----|
|           | Classification of optical process, optical coefficient, complex refractive index, propagation |     |
|           | of light in a dense optical medium, atomic oscillator, vibrational oscillator, free electron  |     |
|           | oscillator, dipole oscillator model, inter band absorptions, excitons, concept of excitons,   |     |
|           | free excitons, free excitons in external field, luminescence, light emission from solids,     |     |
|           | interband luminescence, photoluminescence, electroluminescence, luminescence centres,         |     |
|           | phonons, optical properties of metals.                                                        |     |
| Text book |                                                                                               |     |

#### Text book

- 1. Introduction to Solid State Physics 8<sup>th</sup>Edition, Charles Kittel, John Wiley and Sons, 2005.
- 2. Solid State Physics, Neil W. Ashcroft, N. David Mermin, Saunders College Publishing, 1976

#### **References:**

- 1. Optical properties of Solids: Anthony Mark Fox, Oxford Master Series in Physics, Oxford University Press (2001).
- 2. Magnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4, Stephen Blundell, Oxford University Press (2001).

| Course Delivery methods                           |     |
|---------------------------------------------------|-----|
| Lecture by use of boards/LCD projectors/OHP       | Yes |
| projectors                                        |     |
| Tutorials/Assignments                             | Yes |
| Seminars                                          | Yes |
| Mini projects/Projects                            | No  |
| Laboratory experiments/teaching aids              | No  |
| Industrial/guest lectures                         | No  |
| Industrial visits/in-plant training               | No  |
| Self- learning such as use of NPTEL materials and | Yes |
| internets                                         |     |
| Simulation                                        | No  |

#### **Course Assessment tools & Evaluation procedure**

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination Marks | Yes | Yes | Yes | No  | No  |
| End Sem Examination Marks | Yes | Yes | Yes | Yes | Yes |
| Assignment                | Yes | Yes | Yes | Yes | Yes |

#### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

#### **Mapping between Objectives and Outcomes**

#### **Mapping of Course Outcomes onto Program Outcomes**

| Course Outcome # | Program Outcomes |
|------------------|------------------|
|                  |                  |
|   | а | b | c | d | e | f |
|---|---|---|---|---|---|---|
| 1 | Н | М | М | L | М | L |
| 2 | Н | М | М | L | L | L |
| 3 | М | Н | Н | L | М | М |
| 4 | Н | Н | Н | L | М | М |
| 5 | М | Н | Н | L | М | М |

| Course Outcome # | Course Objectives |   |   |   |   |  |  |  |
|------------------|-------------------|---|---|---|---|--|--|--|
|                  | a                 | b | с | d | e |  |  |  |
| 1                | Н                 | М | L | L | М |  |  |  |
| 2                | М                 | Н | L | L | L |  |  |  |
| 3                | L                 | L | Н | L | М |  |  |  |
| 4                | L                 | L | L | Н | L |  |  |  |
| 5                | M                 | L | М | М | Н |  |  |  |

|     | Mapping Between COs and Course Delivery (CD) methods        |  |         |                  |  |  |  |  |  |
|-----|-------------------------------------------------------------|--|---------|------------------|--|--|--|--|--|
|     |                                                             |  | C       | Comme Delineer   |  |  |  |  |  |
| CD  | Course Delivery methods                                     |  | Course  | Course Denvery   |  |  |  |  |  |
| CD  | Course Delivery methods                                     |  | Outcome | Method           |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      |  | CO1     | CD1, CD2 and CD8 |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       |  | CO2     | CD1, CD2 and CD8 |  |  |  |  |  |
| CD3 | Seminars                                                    |  | CO3     | CD1, CD2 and CD8 |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      |  | CO4     | CD1, CD2 and CD8 |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        |  | CO5     | CD1, CD2 and CD8 |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |  |         |                  |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |  |         |                  |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |  |         |                  |  |  |  |  |  |
| CD9 | Simulation                                                  |  |         |                  |  |  |  |  |  |

| Week | Lect. | Tent          | Modul    | Topics to be covered                                                            | Text             | COs        | Actual  | Methodology                       | Remarks          |
|------|-------|---------------|----------|---------------------------------------------------------------------------------|------------------|------------|---------|-----------------------------------|------------------|
| No.  | No.   | ative<br>Date | e<br>No. |                                                                                 | Book /<br>Refere | mappe<br>d | Content | used                              | by<br>faculty if |
|      |       | Dutt          |          |                                                                                 | nces             | u          | coverea |                                   | any              |
| 1    | L1-L2 |               | Ι        | Review of Concepts: (Bloch theorem and Bloch function,                          | T1, T2           | 1, 2       |         | PPT Digi<br>Class/Chalk<br>-Board |                  |
| 1    | L3    |               |          | KronigPenneymodel)ConstructionofBrillouinzones(1and2dimensions)                 | T1, T2           |            |         | PPT Digi<br>Class/Chalk<br>-Board |                  |
| 1    | L4-L5 |               |          | Extended, reduced and<br>periodic zone scheme<br>Effective mass of an electron, | T1, T2           |            |         | PPT Digi<br>Class/Chalk<br>-Board |                  |
| 2    | L6    |               |          | Nearly free electron model                                                      | T1, T2           |            |         | PPT Digi<br>Class/Chalk<br>-Board |                  |

| 2   | L7     |     | Tight binding approximation                           | T1, T2 | PPT Digi    |
|-----|--------|-----|-------------------------------------------------------|--------|-------------|
|     |        |     |                                                       |        | Class/Chalk |
|     |        |     |                                                       |        | -Board      |
| 2   | L8-L9  |     | Orthogonalized plane wave                             | T1, T2 | PPT Digi    |
|     |        |     | method,Pseudo-potential                               |        | Class/Chalk |
|     |        |     | method                                                |        | -Board      |
| 3   | L10    |     | Classification of conductor,                          | T1, T2 | PPT Digi    |
|     |        |     | semiconductor and insulators                          |        | Class/Chalk |
|     |        |     |                                                       |        | -Board      |
| 4   | L11    | II  | Fermi-Dirac distribution                              | T1, T2 | PPT Digi    |
|     |        |     |                                                       |        | Class/Chalk |
|     |        |     |                                                       |        | -Board      |
| 4   | L12-13 |     | Fermi energy                                          | T1, T2 | PPT Digi    |
|     |        |     |                                                       |        | Class/Chalk |
|     |        |     |                                                       |        | -Board      |
| 5   | L14-16 |     | Density of States,                                    | T1, T2 | PPT Digi    |
|     |        |     | Classification of solids (0D,                         |        | Class/Chalk |
|     |        |     | 1D, 2D, 3D) on the basis of                           |        | -Board      |
|     |        |     | density of states                                     |        |             |
| 5   | L17    |     | k-space                                               | T1, T2 | PPT Digi    |
|     |        |     |                                                       |        | Class/Chalk |
|     |        |     |                                                       |        | -Board      |
| 6-7 | L18-20 |     | Effect of temperature on                              | T1, T2 | PPT Digi    |
|     |        |     | Fermi distribution function.                          |        | Class/Chalk |
|     |        |     |                                                       |        | -Board      |
|     | L21    | III | Matter in a.c. field,                                 | T1, T2 | PPT Digi    |
|     |        |     | Propagation of e.m. wave in                           |        | Class/Chalk |
|     |        |     | matter on the basis of                                |        | -Board      |
|     |        |     | Maxwell's equation                                    |        |             |
|     | L22    |     | Relaxations and resonances                            | T1, T2 | PPT Digi    |
|     |        |     |                                                       |        | Class/Chalk |
|     |        |     |                                                       |        | -Board      |
|     | L23    |     | Kramer's-Kronig relation,                             | T1, T2 | PPT Digi    |
|     |        |     | Mechanical analogue of                                |        | Class/Chalk |
|     |        |     | relaxation                                            |        | -Board      |
|     | L24    |     | Debye relation, Argand                                | T1, T2 | PPT Digi    |
|     |        |     | diagram                                               |        | Class/Chalk |
|     |        |     | -                                                     |        | -Board      |
|     | L25    |     | Influence of local field and                          | T1, T2 | PPT Digi    |
|     |        |     | d.c. conductivity and multiple                        |        | Class/Chalk |
|     |        |     | relaxation times                                      |        | -Board      |
|     | L26    |     | Special diagram (cole-cole                            | T1, T2 | PPT Digi    |
|     |        |     | arc), Heterogeneous                                   |        | Class/Chalk |
|     |        |     | dielectrics (Maxwell-Wagner                           |        | -Board      |
|     |        |     | effect)                                               |        |             |
|     | L27    | —   | Ferroelectricity, Microscopic                         | T1, T2 | PPT Digi    |
|     |        |     | theory of Ferroelectricity                            |        | Class/Chalk |
|     |        |     |                                                       |        | -Board      |
|     | L28    |     | Phase transition of                                   | T1, T2 | PPT Digi    |
|     |        |     | ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup> and |        | Class/Chalk |
|     |        |     | relaxor kind),                                        |        | -Board      |
| L   | 1      |     |                                                       | 1      |             |

|   | L29                  |    | Hysteresis loop, Recoverable       | T1, T2                        | PPT Digi     |
|---|----------------------|----|------------------------------------|-------------------------------|--------------|
|   |                      |    | energy,                            |                               | Class/Chalk  |
|   |                      |    |                                    |                               | -Board       |
|   | L30                  |    | Piezoelectricity and               | T1, T2                        | PPT Digi     |
|   |                      |    | transducers.                       |                               | Class/Chalk  |
|   |                      |    |                                    |                               | -Board       |
|   | L31                  | IV | Magnetic interactions,             | T1, T2,                       | PPT Digi     |
|   |                      |    | Exchange interaction               | R2                            | Class/Chalk  |
|   |                      |    | C C                                |                               | -Board       |
|   | L32                  |    | Direct exchange, Indirect          | T1, T2,                       | PPT Digi     |
|   |                      |    | exchange                           | R2                            | Class/Chalk  |
|   |                      |    |                                    |                               | -Board       |
|   | L33-34               |    | Double exchange, Helical           | T1, T2,                       | PPT Digi     |
|   |                      |    | order. Frustration. Spin           | R2                            | Class/Chalk  |
|   |                      |    | glasses                            |                               | -Board       |
|   | I 35                 |    | Landau theory of                   | T1 T2                         | PPT Digi     |
|   | 133                  |    | ferromagnetism                     | P2                            | Class/Chalk  |
|   |                      |    | ienomagnetism,                     | 112                           | -Board       |
|   | I 36-37              |    | Heisenberg and Ising models        | Т1 Т2                         | PPT Digi     |
|   | L30-37               |    | Excitations                        | D2                            | Class/Chalk  |
|   |                      |    | Excitations,                       | K2                            | -Board       |
|   | I 38                 |    | Magnons Bloch T <sup>3/2</sup> law | Т1 Т2                         | PPT Digi     |
|   | L30                  |    | Magnons, Dioen 1 law,              | D2                            | Class/Chalk  |
|   |                      |    |                                    | <b>K</b> 2                    | -Board       |
|   | I 30                 |    | Measurement of spin waves          | Т1 Т2                         | PPT Digi     |
|   | 1.57                 |    | Weasurement of spin waves          | D2                            | Class/Chalk  |
|   |                      |    |                                    | K2                            | -Board       |
|   | I 40                 |    | Spin density wayes Kondo           | Т1 Т2                         | PPT Digi     |
|   | LTU                  |    | affact                             | D2                            | Class/Chalk  |
|   |                      |    | chicet.                            | <b>K</b> 2                    | -Board       |
|   | I 41                 | V  | Classification of optical          | Т1 Т2                         | PPT Digi     |
|   | LTI                  | v  | process optical coefficient        | R1                            | Class/Chalk  |
|   |                      |    | process, optical coefficient       | IXI                           | -Board       |
|   | 142                  |    | complex refractive index           | T1 T2                         | PPT Digi     |
|   | 112                  |    | propagation of light in a          | R1                            | Class/Chalk  |
|   |                      |    | danse enticel medium               | IXI                           | -Board       |
|   | I 42                 |    |                                    | T1 T2                         |              |
|   | L45                  |    | atomic oscillator, vibrational     | 11, 12, 12, 11                | Class/Challe |
|   |                      |    | oscillator                         |                               | Roard        |
|   | T 44 45              |    | fras alastrar assillator dirala    | T1 T2                         |              |
|   | L/ <del>1</del> 4-43 |    | nee electron oscillator, dipole    | [11, 12, 0]                   | Class/Challr |
|   |                      |    | oscillator model                   | KI                            | Board        |
|   | I 46                 |    | inter hand                         | T1 T2                         |              |
|   | L40                  |    | inter Dand                         | $\mathbf{P}_{1}^{11, 12, 12}$ | Class/Challz |
|   |                      |    | absorptions, excitons, concept     | KI .                          | Board        |
|   |                      |    | of excitons, free excitons,        |                               | -Doald       |
|   |                      |    | tree excitons in external field    |                               |              |
|   | L47                  |    | luminescence, light emission       | Т1, Т2,                       | PPT Digi     |
|   |                      |    | from solids                        | RI                            | Class/Chalk  |
|   |                      |    |                                    |                               | -Board       |
|   | L48                  |    | interband luminescence,            | T1, T2,                       | PPT Digi     |
|   |                      |    | photoluminescence                  | RI                            | Class/Chalk  |
| 1 |                      |    |                                    |                               | -Board       |

| L49 |  | electroluminescence,luminesc<br>ence centres | T1, T2,<br>R1 |  | PPT Digi<br>Class/Chalk<br>-Board |  |
|-----|--|----------------------------------------------|---------------|--|-----------------------------------|--|
| L50 |  | phonons, optical properties of metals.       | T1, T2,<br>R1 |  | PPT Digi<br>Class/Chalk<br>-Board |  |

#### Group B- Condensed Matter Physics:

1. Theory of Solids

2. Functional Materials

#### **COURSE INFORMATION SHEET**

Course code: PH 505 Course title: Theory of Solids Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: 4 L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

**Group B** 

Option 1

Same given As above( in Group A)

#### **COURSE INFORMATION SHEET**

Course code: PH 506 Course title: Functional Materials Pre-requisite(s): Condensed Matter Physics Co- requisite(s): Credits: 4L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

**Option 2** 

| Group :  | В                                                                                                  |           |
|----------|----------------------------------------------------------------------------------------------------|-----------|
| Code:    | Title: Functional Materials                                                                        | L-T-P-C   |
| PH 506   |                                                                                                    | [4-0-0-4] |
| Module-1 | Introduction to Metals, Alloys, Ceramics, Polymers and Composites, Phase rules Fe-C phase          | [8]       |
|          | diagram, Steels, cold, hot working of metals, recovery, recrystallization and grain growth,        |           |
|          | Structure, properties.                                                                             |           |
| Module-2 | Processing and applications of ceramics. Classification of polymers, polymerization,               | [12]      |
|          | structure, properties, additives, products, processing and applications. Quasicrystals,            |           |
|          | Conducting Polymers; Properties and applications composites.                                       |           |
| Module-3 | Advanced Materials: Smart materials, ferroelectric, piezoelectric, biomaterials (some basic        | [10]      |
|          | information), superalloys, aerospace materials, shape memory alloys, optoelectronic                |           |
|          | materials, Materials for photodiode, light emitting diode (LED), Photovoltaic/Solar cell and       |           |
|          | meta materials                                                                                     |           |
| Module-4 | Nanostructured Materials: Nanomaterials classification (Gleiter's Classification)-property         | [8]       |
|          | changes done to size effects, Quantum dot, wire and well, synthesis of nanomaterials, ball         |           |
|          | milling.                                                                                           |           |
| Module-5 | Liquid state processing -Sol-gel process, Vapour state processing -CVD, MBE, Aerosol               | [12]      |
|          | processing, fullerene and tubules, formation and characterization of fullerenes and tubules,       |           |
|          | single wall and multiwall carbon tubules, electronic properties of tubules, applications:          |           |
|          | optical lithography, MOCVD, super hard coating.                                                    |           |
| Text boo | oks:                                                                                               |           |
| 1. T1: S | Structure and properties of engineering materials, fifth edition, Henkel and Pense, McGraw Hill, 2 | 2002      |

2. T2: Biomaterials Science, An Introduction to Materials in Medicine , Edited by B.D. Ratner, A.S.

Hoffman, F.J. Sckoen, and J.E.L Emons, Academic Press, second edition, 2004

| _Course Delivery methods                                    |     |
|-------------------------------------------------------------|-----|
| Lecture by use of boards/LCD projectors/OHP projectors      | Yes |
| Tutorials/Assignments                                       | Yes |
| Seminars                                                    | Yes |
| Mini projects/Projects                                      | No  |
| Laboratory experiments/teaching aids                        | No  |
| Industrial/guest lectures                                   | No  |
| Industrial visits/in-plant training                         | No  |
| Self- learning such as use of NPTEL materials and internets | Yes |
| Simulation                                                  | No  |

#### Course Assessment tools & Evaluation procedure

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

#### Indirect Assessment –

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

| Assessment Components     | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Quizes                    | Yes | Yes | Yes | Yes | Yes |
| End Sem Examination Marks | Yes | Yes | Yes | Yes | Yes |
| Assignment                |     |     |     |     |     |

## **Mapping between Objectives and Outcomes**

#### Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # | Program Outcomes |   |   |   |   |   |  |  |
|------------------|------------------|---|---|---|---|---|--|--|
|                  | а                | b | с | d | e | f |  |  |
| 1                | Н                | Н | Н | L | М | L |  |  |
| 2                | М                | Н | Н | L | L | L |  |  |
| 3                | Н                | М | М | М | М | М |  |  |
| 4                | М                | Н | М | М | Н | М |  |  |
| 5                | Н                | Н | Н | L | Н | L |  |  |

| Course Outcome # | Course Objectives |   |   |   |   |  |  |  |  |
|------------------|-------------------|---|---|---|---|--|--|--|--|
|                  | А                 | В | С | D | E |  |  |  |  |
| 1                | Н                 | М | М | М | М |  |  |  |  |
| 2                | L                 | Н | L | L | М |  |  |  |  |
| 3                | L                 | М | Н | М | М |  |  |  |  |
| 4                | Н                 | L | Н | Н | L |  |  |  |  |
| 5                | Н                 | М | M | L | Н |  |  |  |  |

|     | Mapping Between COs and Course Delivery (CD) methods        |  |         |                               |  |  |  |  |  |
|-----|-------------------------------------------------------------|--|---------|-------------------------------|--|--|--|--|--|
| CD  | Course Delivery methods                                     |  | Course  | <b>Course Delivery Method</b> |  |  |  |  |  |
|     |                                                             |  | Outcome |                               |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      |  | CO1     | CD1, CD2 and CD8              |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       |  | CO2     | CD1, CD2 and CD8              |  |  |  |  |  |
| CD3 | Seminars                                                    |  | CO3     | CD1, CD2 and CD8              |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      |  | CO4     | CD1, CD2 and CD8              |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        |  | CO5     | CD1, CD2 and CD8              |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |  |         |                               |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |  |         |                               |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |  |         |                               |  |  |  |  |  |
| CD9 | Simulation                                                  |  |         |                               |  |  |  |  |  |

| Week | Lect. | <b>Fentativ</b> | Modu | Fopics to be covered | Гext   | COs    | Actual  | Methodology | Remarks    |
|------|-------|-----------------|------|----------------------|--------|--------|---------|-------------|------------|
| No.  | No.   | e               | le.  |                      | Book / | mapped | Content | used        | by         |
|      |       | Date            | No.  |                      | Refere |        | covered |             | faculty if |
|      |       |                 |      |                      | nces   |        |         |             | any        |

| 1   | L1    | Ι      | Introduction to Metals, Alloys       | T1     |     | PPT Digi   |   |
|-----|-------|--------|--------------------------------------|--------|-----|------------|---|
|     |       |        |                                      |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 1   | L2    |        | Ceramics                             | T1, T2 |     | PPT Digi   |   |
|     |       |        |                                      |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 1   | L3-   |        | Polymers and Composites, Phase       | T1. T2 |     | PPT Digi   |   |
| _   | 14    |        | rules                                | ,      |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 2   | L5    | -      | Fe-C phase diagram                   | T1     |     | PPT Digi   |   |
| -   | 20    |        |                                      |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 2   | L6-   | -      | Steels, cold, hot working of metals. | T1     |     | PPT Digi   |   |
| -   | 18    |        | recovery recrystallization and grain | 11     |     | Class/Chal |   |
|     |       |        | growth Structure properties          |        |     | k-Board    |   |
| 2   | IO    |        | Broassing and applications of        | T1     |     |            |   |
| 2   | L9-   |        | Processing and applications of       | 11     |     | Class/Chal |   |
|     | L10   |        | ceramics.                            |        |     | Lass/Chai  |   |
| 2   | T 1 1 |        | Classification of nolumons           | TT 1   |     | K-Board    |   |
| 3   | LII-  |        | Classification of polymers,          | 11     |     | PPT Digi   |   |
|     | L13   |        | polymerization, structure,           |        |     | Class/Chai |   |
|     |       | II     | properties                           |        |     | K-Board    |   |
| 3   | L14-  |        | additives, products, processing and  | T1     |     | PPT Digi   |   |
|     | L16   |        | applications.                        |        |     | Class/Chal |   |
|     |       | <br>_  |                                      |        |     | k-Board    |   |
| 3   | L17-  |        | Quasicrystals                        | T1     |     | PPT Digi   |   |
|     | L18   |        |                                      |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 4   | L19-  |        | Conducting Polymers; Properties      | T1     |     | PPT Digi   |   |
|     | L20   |        | and applications composites.         |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 4   | L21-  |        | Advanced Materials: Smart            | T1     |     | PPT Digi   |   |
|     | 22    |        | materials,                           |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 5   | L23-  |        | Ferroelectric, piezoelectric,        | T1     |     | PPT Digi   |   |
|     | 24    |        |                                      |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 5   | L25-  |        | Biomaterials (some basic             | T2     |     | PPT Digi   |   |
|     | L26   | ш      | information), superalloys,           |        |     | Class/Chal |   |
|     |       | 111    |                                      |        |     | k-Board    |   |
| 6   | L27-  |        | Aerospace materials, shape memory    | T1     |     | PPT Digi   |   |
|     | L28   |        | alloys,                              |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
| 6-7 | L29-  |        | Optoelectronic materials, Materials  | T1     |     | PPT Digi   |   |
|     | L30   |        | for photodiode, light emitting diode |        |     | Class/Chal |   |
|     |       |        | (LED), Photovoltaic/Solar cell and   |        |     | k-Board    |   |
|     |       |        | meta materials                       |        |     |            |   |
|     | L31-  | <br>IV | Nanostructured Materials:            | T1     |     | PPT Digi   |   |
|     | L32   |        | Nanomaterials classification         |        |     | Class/Chal |   |
|     |       |        | (Gleiter's Classification)           |        |     | k-Board    |   |
|     | L33-  | <br>1  | Property changes done to size        | T1     |     | PPT Digi   |   |
|     | 1.35  |        | effects.                             |        |     | Class/Chal |   |
|     |       |        |                                      |        |     | k-Board    |   |
|     | L36-  | <br>1  | Ouantum dot, wire and well.          | T1     |     | PPT Digi   |   |
| 1   |       | 1      |                                      |        | 1 1 |            | 1 |

| L38  |   |                                     |        | Class/Chal |  |
|------|---|-------------------------------------|--------|------------|--|
|      |   |                                     |        | k-Board    |  |
| L39- |   | synthesis of nanomaterials, ball    | T2     | PPT Digi   |  |
| L40  |   | milling.                            |        | Class/Chal |  |
|      |   |                                     |        | k-Board    |  |
| L41- |   | Liquid state processing -Sol-gel    | T1, T2 | PPT Digi   |  |
| L43  |   | process, electronic properties of   |        | Class/Chal |  |
|      |   | tubules, applications               |        | k-Board    |  |
| L44- |   | Vapour state processing -CVD,       | T1     | PPT Digi   |  |
| L46  | V | MBE                                 |        | Class/Chal |  |
|      |   |                                     |        | k-Board    |  |
| L47- |   | Aerosol processing, fullerene and   | T1     | PPT Digi   |  |
| L48  |   | tubules,                            |        | Class/Chal |  |
|      |   |                                     |        | k-Board    |  |
| L49- |   | Formation and characterization of   | T1     | PPT Digi   |  |
| L50  |   | fullerenes and tubules, single wall |        | Class/Chal |  |
|      |   | and multiwall carbon tubules        |        | k-Board    |  |

- Group C <u>Photonics:</u> 1. Fiber and Integrated Optics 2. Quantum & Nonlinear Optics

|       |                                                                                           |       | COURSE INFORMATION SHEET                                                              |              |        |  |  |
|-------|-------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|--------------|--------|--|--|
| Cour  | se cod                                                                                    | le: P | PH 507                                                                                |              |        |  |  |
| Cour  | se titl                                                                                   | e: F  | iber and Integrated Optics                                                            |              |        |  |  |
| Pre-r | requisi                                                                                   | te(s  | ): Waves and Optics                                                                   |              |        |  |  |
| Co-r  | requisi                                                                                   | te(s) |                                                                                       |              |        |  |  |
|       | its:                                                                                      |       | 4L:4 1:0 P:0                                                                          |              |        |  |  |
| Class | sched                                                                                     |       | per week:                                                                             |              |        |  |  |
| Class | 5: 1.IVI.                                                                                 | SC.   |                                                                                       |              |        |  |  |
| Seme  | ester /                                                                                   | Leve  | el: PE V                                                                              |              |        |  |  |
| Bran  | ch: Pl                                                                                    | 115   |                                                                                       |              |        |  |  |
| Nam   | e of 1                                                                                    | each  | ier:                                                                                  |              |        |  |  |
|       |                                                                                           |       | Group C Option : 1                                                                    |              |        |  |  |
| C     | ode:                                                                                      |       | Title: Fiber and Integrated Optics                                                    | L-T-P-C      |        |  |  |
| F     | PH 507                                                                                    | 7     |                                                                                       | [4-0-0-4]    |        |  |  |
| Cour  | se Ob                                                                                     | jecti | ives : This course enables the students:                                              |              |        |  |  |
|       | Α.                                                                                        | T     | o understand the light propagation phenomenon through fiber optic cable               |              |        |  |  |
|       | В.                                                                                        | Т     | o understand various loss mechanism of signal while travelling through an optical     | fiber.       |        |  |  |
|       | C.                                                                                        | Т     | o understand the basic working principle of waveguides and its design parameters.     |              |        |  |  |
|       | D.                                                                                        | Т     | o identify waveguides for applications in fiber optics communication systems          |              |        |  |  |
|       | Е                                                                                         | Т     | o understand the principle of working of fiber based sensors for various application  | purposes.    |        |  |  |
| Com   | rse Oi                                                                                    | itcoi | mes: After the completion of this course, students will be                            |              |        |  |  |
| cou   | 1                                                                                         | A     | ble to illustrate the principle of fiber optics communications                        |              |        |  |  |
|       | 2 Able to distinguish between various loss mechanism in fiber optics communication system |       |                                                                                       |              |        |  |  |
|       | 3                                                                                         | A     | ble to utilize the idea of waveguide for different application purpose                | jetenn       |        |  |  |
|       | 4.                                                                                        | A     | ble to categorise different waveguides for the utilization in optics communication    | system       |        |  |  |
|       | 5.                                                                                        | A     | ble to interpret different fiber sensors and their respective application and ca      | n recommen   | d this |  |  |
|       |                                                                                           | te    | chnique for other new application.                                                    |              |        |  |  |
|       |                                                                                           |       |                                                                                       |              |        |  |  |
| Modu  | ıle-1                                                                                     | Prir  | nciple of light propagation in fibers, step-index and graded index fibers; sir        | ngle mode,   | 5      |  |  |
|       |                                                                                           | mu    | ltimode and W-profile fibers. Ray optics representation, meridional and skew rays.    | Numerical    |        |  |  |
|       |                                                                                           | ape   | rture and acceptance angle.                                                           |              |        |  |  |
| Modu  | ıle-2                                                                                     | Dis   | persion, combined effects of material and other dispersions - RMS pulse v             | widths and   | 10     |  |  |
|       |                                                                                           | free  | quency response, birefringence. Attenuation in optical fibers. Material disp          | ersion and   |        |  |  |
|       |                                                                                           | way   | veguide dispersion in single-mode fibers, Inter and intramodal dispersion in gr       | aded-index   |        |  |  |
|       |                                                                                           | fibe  | ers                                                                                   |              |        |  |  |
| Modu  | ıle-3                                                                                     | The   | eory of optical waveguides, planar, rectangular, symmetric and asymmetric w           | vaveguides,  | 12     |  |  |
|       |                                                                                           | cha   | nnel and strip loaded waveguides. Anisotropic and segmented waveguides. Step          | -index and   |        |  |  |
|       |                                                                                           | gra   | ded index waveguides, guided and radiation modes. Arrayed waveguide devices.          | Fabrication  |        |  |  |
|       | of integrated optical waveguides and devices.                                             |       |                                                                                       |              |        |  |  |
| Modu  | ıle-4                                                                                     | Wa    | ave guide couplers, transverse couplers, grating couplers, tapered couplers, prisr    | n couplers,  | 13     |  |  |
|       |                                                                                           | fibe  | er to waveguide couplers. Multilayer planar waveguide couplers, dual channel          | directional  |        |  |  |
|       |                                                                                           | cou   | plers, Butt coupled ridge waveguides, Branching waveguide couplers. Directiona        | d couplers,  |        |  |  |
|       |                                                                                           | opt   | ical switch; phase and amplitude modulators, filters, etc. Y-junction, power splitter | s            |        |  |  |
| Modu  | ıle-5                                                                                     | Fib   | er optics sensors, intensity modulation, phase modulation sensors, fiber Bra          | gg grating   | 12     |  |  |
|       |                                                                                           | sen   | sors. Measurement of current, pressure, strain, temperature, refractive index, liqui  | d level etc. |        |  |  |
|       |                                                                                           | Tin   | ne domain and frequency domain dispersion measurement, fibre lasers and fibre gy      | roscone      |        |  |  |

#### Text books:

- T1: Introduction to Fiber Optics: A.K. Ghatak and K. Thayagarajan, Cambridge University press
- T2: Integrated Optics: Theory and Technology; R. G. Hunsperger; Springer
- T3: Optical Fiber Sensors, John Dakin and Brain Culshaw, Arctech House Inc Reference books: R1:

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | Ν |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

#### **Course Assessment tools & Evaluation procedure**

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2          | CO3          | CO4          | CO5          |
|---------------------------|--------------|--------------|--------------|--------------|--------------|
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Quiz I                    |              |              | $\checkmark$ | $\checkmark$ |              |
| Quiz II                   |              |              |              | $\checkmark$ | $\checkmark$ |

#### Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

## **Mapping between Objectives and Outcomes**

#### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | 5 |  |  |  |
|-------------------|---|---|---|---|---|--|--|--|
| Α                 | Н | М | М | Μ | L |  |  |  |
| В                 | М | Н | М | Μ |   |  |  |  |
| С                 | М | М | Н | Μ | L |  |  |  |
| D                 | L | М | Н | Н | М |  |  |  |
| Е                 | М | М | Н | Н | Н |  |  |  |

| Mapping of Course Outcomes onto Program Outcomes |                  |  |  |  |  |
|--------------------------------------------------|------------------|--|--|--|--|
| Course                                           | Program Outcomes |  |  |  |  |

| Outcome # | а | b | С | d | e | f |
|-----------|---|---|---|---|---|---|
| 1         | М | Н | Н |   | L | Н |
| 2         | М | Н | М |   | М | Н |
| 3         | М | Н | Н | L | L | М |
| 4         | М | М | Н | L | М | М |
| 5         | М | М | М | L | Н | Н |

|     | Mapping Between COs and Course Delivery (CD) methods        |         |                 |  |  |  |  |  |  |
|-----|-------------------------------------------------------------|---------|-----------------|--|--|--|--|--|--|
|     |                                                             | Course  | Course Delivery |  |  |  |  |  |  |
| CD  | Course Delivery methods                                     | Outcome | Method          |  |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1     | CD1 and CD2     |  |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       | CO2     | CD1 and CD2     |  |  |  |  |  |  |
| CD3 | Seminars                                                    | CO3     | CD1 and CD2     |  |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      | CO4     | CD1 and CD2     |  |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        | CO5     | CD1 and CD2     |  |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |         |                 |  |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |         |                 |  |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |         |                 |  |  |  |  |  |  |
| CD9 | Simulation                                                  |         |                 |  |  |  |  |  |  |

| Week | Lect. | <b>Fentativ</b> | Ch. | <b>Fopics to be covered</b> | Гext       | Cos    | Actual  | Methodolog | Remark    |
|------|-------|-----------------|-----|-----------------------------|------------|--------|---------|------------|-----------|
| No.  | No.   | e               | No. |                             | Book/      | mapped | Content | y used     | s by      |
|      |       | Date            |     |                             | References |        | covered |            | aculty if |
|      |       |                 |     |                             |            |        |         |            | any       |
|      | L1-L2 |                 |     | Principle of light          | T1, T2     | CO1    |         | PPT Digi   |           |
|      |       |                 |     | propagation in fibers,      |            |        |         | Class/Choc |           |
|      |       |                 |     | step-index and graded       |            |        |         | k-oard     |           |
|      |       |                 |     | index fibers; single mode,  |            |        |         |            |           |
|      |       |                 |     | multimode and W-profile     |            |        |         |            |           |
|      |       |                 |     | fibers                      |            |        |         |            |           |
|      | L3-L5 |                 |     | Ray optics representation,  | T1, T2     | CO1    |         | PPT Digi   |           |
|      |       |                 |     | meridional and skew rays.   |            |        |         | Class/Choc |           |
|      |       |                 |     | Numerical aperture and      |            |        |         | k-Board    |           |
|      |       |                 |     | acceptance angle.           |            |        |         |            |           |
|      | L6-L7 |                 |     | Dispersion, combined        | T1, T2     | CO2    |         | PPT Digi   |           |
|      |       |                 |     | effects of material and     |            |        |         | Class/Choc |           |
|      |       |                 |     | other dispersions           |            |        |         | k-Board    |           |
|      | L8-   |                 |     | RMS pulse widths and        | T1, T2     | CO2    |         | PPT Digi   |           |
|      | L11   |                 |     | frequency response,         |            |        |         | Class/Choc |           |
|      |       |                 |     | birefringence. Attenuation  |            |        |         | k-oard     |           |
|      |       |                 |     | in optical fibers.          |            |        |         |            |           |
|      | L12-  |                 |     | Material dispersion and     | T1, T2     | CO2    |         | PPT Digi   |           |
|      | L15   |                 |     | waveguide dispersion in     |            |        |         | Class/Choc |           |
|      |       |                 |     | single-mode fibers, Inter   |            |        |         | k-Board    |           |
|      |       |                 |     | and intramodal dispersion   |            |        |         |            |           |
|      |       |                 |     | in graded-index fibers      |            |        |         |            |           |
|      | L16-  |                 |     | Theory of optical           | T1, T2     | CO3    |         | PPT Digi   |           |

| <br>     |                           |        |            |            |
|----------|---------------------------|--------|------------|------------|
| L19      | waveguides, planar,       |        |            | Class/Choc |
|          | rectangular, symmetric    |        |            | K-Board    |
|          | and asymmetric            |        |            |            |
|          | waveguides, channel and   |        |            |            |
|          | strip loaded waveguides   |        | ~~~        |            |
| L20-     | Anisotropic and           | T1, T2 | CO3        | PPT Digi   |
| L23      | segmented waveguides.     |        |            | Class/Choc |
|          | Step-index and graded     |        |            | K-Board    |
|          | index waveguides, guided  |        |            |            |
|          | and radiation modes       |        | ~~~        |            |
| L24-     | Arrayed waveguide         | T1, T2 | CO3        | PPT Digi   |
| L27      | devices. Fabrication of   |        |            | Class/Choc |
|          | integrated optical        |        |            | K-DOald    |
|          | waveguides and devices.   |        | ~~         |            |
| L28-     | Wave guide couplers,      | 11, 12 | CO4        | PPT Digi   |
| L31      | transverse couplers,      |        |            | k Board    |
|          | grating couplers, tapered |        |            | K-Doald    |
|          | couplers, prism couplers, |        |            |            |
|          | fiber to waveguide        |        |            |            |
| 1.22     | Couplers                  | T1 T2  | <u>CO4</u> |            |
| L32-     | Multilayer planar         | 11, 12 | 04         | PPT Digi   |
| L33      | waveguide couplers, dual  |        |            | k-Board    |
|          | channel directional       |        |            | K Doard    |
|          | couplers, Butt coupled    |        |            |            |
|          | Regenerating waveguides , |        |            |            |
|          | Branching waveguide       |        |            |            |
| 1.36     | Directional couplers      | T1 T2  | <u>CO4</u> |            |
| 1 30     | optical switch: phase and | 11, 12 | 04         | Class/Choc |
|          | amplitude modulators      |        |            | k-Board    |
| <br>I 40 | filters Y-iunction power  | T1 T2  | CO4        | PPT Digi   |
|          | splitters                 | 11, 12 |            | Class/Choc |
|          | spinters                  |        |            | k-Board    |
| L41-     | Fiber optics sensors,     | Т3     | CO5        | PPT Digi   |
| L44      | intensity modulation,     |        |            | Class/Choc |
|          | phase modulation sensors, |        |            | k-Board    |
|          | fiber Bragg grating       |        |            |            |
|          | sensors                   |        |            |            |
| L45-     | Measurement of current,   | T3     | CO5        | PPT Digi   |
| L48      | pressure, strain,         |        |            | Class/Choc |
|          | temperature, refractive   |        |            | k-Board    |
|          | index, liquid level etc.  |        |            |            |
| L49-     | Time domain and           | T3     | CO5        | PPT Digi   |
| L52      | frequency domain          |        |            | Class/Choc |
|          | dispersion measurement,   |        |            | k-Board    |
|          | fibre lasers and fibre    |        |            |            |
|          | gyroscope.                |        |            |            |

#### **COURSE INFORMATION SHEET**

Course code: PH 508 **Course title: Quantum and Nonlinear Optics Pre-requisite**(s): Waves and Optics **Co- requisite(s):** Credits: **4**L: 4 T: 0 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level: PE V **Branch: PHYSICS** Name of Teacher Group C

Option 2

| C        | ourse        | Delivery                                                                       | methods                                                                |                      | ]          |  |  |  |
|----------|--------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|------------|--|--|--|
| Co<br>PH | de:<br>[ 508 |                                                                                | Titles: Quantum and Nonlinear Optics I                                 | L-T-P-C<br>[4-0-0-4] |            |  |  |  |
| This c   | ourse        | enables the                                                                    | e students:                                                            |                      |            |  |  |  |
|          | A.           | To identif                                                                     | y the phenomenon of the nonlinear optical interaction of light with    | matter               |            |  |  |  |
|          | B.           | To examine higher harmonic generations, two-photon absorption and stimulated s |                                                                        |                      |            |  |  |  |
|          |              | phenomer                                                                       | ion                                                                    |                      |            |  |  |  |
|          | C.           | To formul                                                                      | ate nonlinear optics in two-level approximations                       |                      |            |  |  |  |
|          | D.           | To analys                                                                      | e intensity dependent phenomenon                                       |                      |            |  |  |  |
|          | E            | To identif                                                                     | y nonlinear optical phenomenon for applications in optical devices     |                      |            |  |  |  |
| Cours    | se Out       | comes Aft                                                                      | er the completion of this course, students will be:                    |                      |            |  |  |  |
| Γ        | 1.           | Able to ju                                                                     | dge non-linear optical phenomenon                                      |                      |            |  |  |  |
|          | 2.           | Apply kn                                                                       | owledge of nonlinear optical phenomena in higher harmonic              | generations,         | two-photoi |  |  |  |
|          |              | absorption                                                                     | n and stimulated scattering phenomenon                                 |                      |            |  |  |  |
|          | 3.           | To solve                                                                       | nonlinear optical interaction problem in two-level system              |                      |            |  |  |  |
|          | 4.           | To evalua                                                                      | te intensity dependent material properties like refractive indices and | l self-focussing     |            |  |  |  |
|          | 5.           | To design                                                                      | non-linear optical devices                                             |                      |            |  |  |  |
| Modul    | e-1          | Non                                                                            | linear Optical Phenomena: Introduction to nonlinear optics, d          | escription of        | 10         |  |  |  |
|          |              | nonl                                                                           | inear optical interaction, phenomenological theory of nonlineari       | ty, nonlinear        |            |  |  |  |
|          |              | optio                                                                          | cal susceptibilities. Sum and difference frequency generation, second  | ond harmonic         |            |  |  |  |
|          |              | gene                                                                           | eration, coupled wave equation                                         |                      |            |  |  |  |
| Modul    | e-2          | Man                                                                            | ley-Rowe relations, phase matching of SHG, quasi phase matching        | hing, electric       | 10         |  |  |  |
|          |              | field                                                                          | induced SHG ( EIFISH), optical parametric amplification, th            | ird harmonic         |            |  |  |  |
|          |              | gene                                                                           | ration, two-photon absorption. Stimulated Raman scattering an          | nd stimulated        |            |  |  |  |
|          |              | Brill                                                                          | ouin scattering.                                                       |                      |            |  |  |  |
| Modul    | e-3          | Two                                                                            | level atoms: nonlinear optics in two level approximations, de          | ensity matrix        | 10         |  |  |  |
|          |              | equa                                                                           | ition, closed and open two-level atoms, steady state response in mo    | onochromatic         |            |  |  |  |
|          |              | field                                                                          | , Rabi oscillations, dressedatomic state, optical wave mixing          | in two level         |            |  |  |  |
|          |              | syste                                                                          | ems, photon echo, sen-induced transparency, optical nutation, in       | ree induction        |            |  |  |  |
| Modul    | a 1          | tonsit                                                                         | y.<br>y dapandant phanomana: intansity dapandant rafractiva inday      | alf focusing         | 12         |  |  |  |
| Modul    | 6-4          | solf                                                                           | phase modulation spectral broadening optical continuum general         | tion by short        | 14         |  |  |  |
|          |              | onti                                                                           | phase modulation, spectral broadening, optical continuum general       | l processing         |            |  |  |  |
|          |              | Self.                                                                          | induced transparency spatial and temporal solitons, solitons in        | Kerr media           |            |  |  |  |
|          |              | phot                                                                           | orefractive and quadratic solitons. Soliton pulses optical vo          | rtices Pulse         |            |  |  |  |
|          |              | com                                                                            | pression.                                                              | ruces. ruise         |            |  |  |  |
| Modul    | e-5          | Non                                                                            | linear guided wave optical devices: nonlinear planar waveguid          | le, nonlinear        | 8          |  |  |  |
|          |              | chan                                                                           | inel waveguide, nonlinear directional coupler, nonlinear mode sor      | ter, nonlinear       | -          |  |  |  |
|          |              | Mac                                                                            | h-Zehnder interferometer and logic gate, Nonlinear loop mirror         |                      |            |  |  |  |
| Bo       | ok:          |                                                                                |                                                                        | I                    |            |  |  |  |
| T1       | . Fund       | amentals of                                                                    | Nonlinear Optics; P.E.Powers, CRC Press Francis and Taylor (201        | 1)                   |            |  |  |  |
| T2       | . Princ      | iples of No                                                                    | nlinear Optics; Y.R.Shen                                               |                      |            |  |  |  |
| Т3       | . Nonli      | inear Optics                                                                   | s: Robert Boyd, Academic press                                         |                      |            |  |  |  |
| R1       | . Physi      | ics of Nonli                                                                   | nar Optics: Guang- Sheng –He and §9 ng-Hao Lin; World scientifi        | с.                   |            |  |  |  |

R2. Two Level Resonances in Atoms; Allen and J.H. Emberly, John Wiley.

| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
|-------------------------------------------------------------|---|
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | N |
| Mini projects/Projects                                      | N |
|                                                             |   |
| Laboratory experiments/teaching aids                        | Ν |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

## **Course Assessment tools & Evaluation procedure**

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Components     | CO1 | CO2 | CO3          | CO4 | CO5 |
|---------------------------|-----|-----|--------------|-----|-----|
| Mid Sem Examination Marks |     |     | $\checkmark$ |     |     |
| End Sem Examination Marks |     |     |              |     |     |
| Quiz I                    |     |     | $\checkmark$ |     |     |
| Quiz II                   |     |     |              |     |     |

#### Indirect Assessment –

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

## **Mapping between Objectives and Outcomes**

#### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | <u>5</u> |
|-------------------|---|---|---|---|----------|
| Α                 | Н | Μ | Μ | L | М        |
| В                 | Μ | Η | Μ | L | L        |
| С                 | L | L | Н | L | L        |
| D                 | - | L | L | Η | L        |
| Е                 | L | М | L | L | Н        |

### Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # | Program Outcomes |   |   |   |   |   |  |
|------------------|------------------|---|---|---|---|---|--|
|                  | а                | b | с | d | e | f |  |
| 1                | Н                | Н | Н | Н | L | Н |  |
| 2                | Н                | Н | Н | Н | М | Н |  |
| 3                | Н                | Н | Н | М | L | М |  |
| 4                | Н                | М | Н | Н | L | Μ |  |
| 5                | М                | Н | Н | Н | Н | Н |  |

## Mapping Between COs and Course Delivery (CD) methods

| CD  | Course Delivery methods                           | Course<br>Outcome | Course Delivery<br>Method |
|-----|---------------------------------------------------|-------------------|---------------------------|
|     | Lecture by use of boards/LCD projectors/OHP       |                   |                           |
| CD1 | projectors                                        | CO1               | CD1 and CD2               |
| CD2 | Tutorials/Assignments                             | CO2               | CD1 and CD2               |
| CD3 | Seminars                                          | CO3               | CD1 and CD2               |
| CD4 | Mini projects/Projects                            | CO4               | CD1 and CD2               |
| CD5 | Laboratory experiments/teaching aids              | CO5               | CD1 and CD2               |
| CD6 | Industrial/guest lectures                         | -                 | -                         |
| CD7 | Industrial visits/in-plant training               | -                 | -                         |
|     | Self- learning such as use of NPTEL materials and |                   |                           |
| CD8 | internets                                         | -                 | -                         |
| CD9 | Simulation                                        | -                 | -                         |

| Week<br>No. | Lect.<br>No. | Tentativ<br>e<br>Date | Ch.<br>No | Topics to be covered                                                                                                                                                                                                                                                                                                        | Text<br>Book /<br>Refere<br>Nces | COs<br>mappe<br>d | Actual<br>Conte<br>nt<br>cover<br>ed | Methodolog<br>y<br>used           | Remark<br>s by<br>faculty<br>if any |
|-------------|--------------|-----------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|--------------------------------------|-----------------------------------|-------------------------------------|
| 1           | L1-L10       |                       | 1         | Nonlinear Optical<br>Phenomena:<br>Introduction to<br>nonlinear optics,<br>description of nonlinear<br>optical interaction,<br>phenomenological<br>theory of nonlinearity,<br>nonlinear optical<br>susceptibilities. Sum and<br>difference frequency<br>generation, second<br>harmonic generation,<br>coupled wave equation | T1, T2,                          | 1,2               |                                      | PPT Digi<br>Class/Chock<br>-Board |                                     |
|             | L11-<br>L20  |                       |           | Manley-Rowe relations,<br>phase matching of SHG,<br>quasi phase matching,<br>electric field induced                                                                                                                                                                                                                         |                                  | 2                 |                                      | Digi<br>Class/Chock<br>-Board     |                                     |

|             | SHG ( EIFISH), optical<br>parametric<br>amplification, third<br>harmonic generation,<br>two-photon absorption.<br>Stimulated Raman<br>scattering and<br>stimulated Brillouin<br>scattering.                                                                                                                                                                                                                                                                                                      |   |                               |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------|--|
| L21-<br>L30 | Two level atoms:<br>nonlinear optics in two<br>level approximations,<br>density matrix equation,<br>closed and open two-<br>level atoms, steady state<br>response in<br>monochromatic field,<br>Rabi oscillations,<br>dressed<br>atomic state, optical<br>wave mixing in two<br>level systems, photon<br>echo, self-induced<br>transparency, optical<br>nutation, free induction<br>decay                                                                                                        | 3 | Digi<br>Class/Chock<br>-Board |  |
| L31-<br>L42 | Intensity dependent<br>phenomena: intensity<br>dependent refractive<br>index, self-focusing,<br>self-phase modulation,<br>spectral broadening,<br>optical continuum<br>generation by short<br>optical pulse. Optical<br>phase conjugation,<br>application of OPC in<br>signal processing. Self-<br>induced transparency,<br>spatial and temporal<br>solitons, solitons in Kerr<br>media, photorefractive<br>and quadratic solitons,<br>Soliton pulses, optical<br>vortices. Pulse<br>compression | 4 | Digi<br>Class/Chock<br>-Board |  |
| L43-<br>L50 | Nonlinear guided wave<br>optical devices:<br>nonlinear planar<br>waveguide, nonlinear<br>channel waveguide,<br>nonlinear directional<br>coupler, nonlinear mode<br>sorter, nonlinear Mach-<br>Zehnder interferometer<br>and logic gate,<br>Nonlinear loop mirror                                                                                                                                                                                                                                 | 5 | Digi<br>Class/Chock<br>-Board |  |

#### Group D – <u>Electronics:</u>

1. Instrumentation and Control

Option 1

2. Physics of Low dimensional Semiconductors

#### **COURSE INFORMATION SHEET**

Course code: PH 509 Course title: Instrumentation and Control Pre-requisite(s): Co- requisite(s): Credits: 4 L: 4 T:0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher: Dr. Dilip Kumar Singh

Group : D

Code: **Title: Instrumentation and Control** L-T-P-C PH 509 4-0-0-4 **Course Objectives** This course enables the students: Course on Instrumentation and control intends to impart knowledge of A. measurement, data acquisition and control for experiments. The first module of the course addresses basics of measurements like range, Β. resolution, reproducibility, accuracy and precision. C. Module-2 of the course introduces various types of sensors and their working to record changes in the different physical parameters. The techniques of signal conditioning and noise reductions for acquired data D. are subject of Module-3. Last two units covers working and theory of different types of correction and E. regulating elements used in control systems. **Course Outcomes** After the completion of this course, students will be: Learners would develop understanding of various experimental parameters of 1. measurements like range, resolution, reproducibility and precision. 2. Through this course, students would develop an insight into fundamentals of sensors / transducers, data acquisition and processing, noise minimization and control systems for automation. 3. This course is expected to enable students to design and understand hardwares used for developing equipment for data acquisition, data conditioning and control. 4. Course would enable students to grasp understanding of instrumentation for automation of various physical process monitoring and control. Module-1 **Measurement basics:** 5 Range, resolution, linearity, hysteresis, reproducibility and drift, calibration, accuracy and precision. 10 Module-2 Sensors Sensor Systems, characteristics, Instrument Selection, Measurement Issues and Criteria, Acceleration, Shock and Vibration Sensors,

|              | Interfacing and Designs, Capacitive and Inductive Displacement<br>Sensors, Magnetic Field Sensors, Flow and Level Sensors, Load |        |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|--------|
|              | Sensors, Strain gauges, Humidity Sensors, Accelerometers,                                                                       |        |
|              | Photosensors, Thermal Infrared Detectors, Contact and Non-contact                                                               |        |
|              | Position sensors, Motion Sensors, Piezoresistive and Piezoelectric                                                              |        |
|              | Pressure Sensors, Sensors for Mechanical Shock, Temperature Sensors                                                             |        |
|              | (contact and non-contact)                                                                                                       |        |
| Module-3     | Signal conditioning                                                                                                             | 15     |
|              | Types of signal conditioning, Amplification, Isolation, Filtering,                                                              |        |
|              | Linearization, Classes of signal conditioning, Sensor Signal                                                                    |        |
|              | Conditioning, Conditioning Bridge Circuits, D/A and A/D converters                                                              |        |
|              | for signal conditioning, Signal Conditioning for high impedance sensors                                                         |        |
|              | Grounded and floating signal sources, single-ended and differential                                                             |        |
|              | measurement, measuring grounded signal sources, ground loops, signal                                                            |        |
|              | circuit isolation, measuring ungrounded signal sources, system isolation                                                        |        |
|              | techniques, errors, noise and interference in measurements, types of                                                            |        |
|              | noise, noise minimization techniques                                                                                            |        |
| Module-4     | Actuators                                                                                                                       | 4      |
|              | Correction and regulating elements used in control systems, pneumatic,                                                          |        |
|              | hydraulic and electric correction elements.                                                                                     |        |
| Module-5     | Control System                                                                                                                  | 16     |
|              | Open loop and closed loop (feedback) systems and stability analysis of                                                          |        |
|              | these systems, Signal flow graphs and their use in determining transfer                                                         |        |
|              | functions of systems; transient and steady state analysis of linear time                                                        |        |
|              | invariant (LTI) control systems and frequency response. Tools and                                                               |        |
|              | techniques for LTI control system analysis: root loci, Routh-Hurwitz                                                            |        |
|              | criterion, Bode and Nyquist plots. Control system compensators:                                                                 |        |
|              | elements of lead and lag compensation, elements of Proportional-                                                                |        |
|              | Integral-Derivative (PID) control. State variable representation and                                                            |        |
|              | solution of state equation of LTI control systems.                                                                              |        |
| Text books   | :                                                                                                                               |        |
| T1. Electron | nic Instrumentation -H. S. Kalsi, Tata McGraw-Hill Education, 2010                                                              |        |
| T2. Electron | nic Instrumentation -W. Bolton                                                                                                  |        |
| T3. Instrum  | nentation: Electrical and Electronic Measurements and Instrumentation                                                           | -A. K. |
| Sawhney,     |                                                                                                                                 |        |
|              |                                                                                                                                 |        |
|              |                                                                                                                                 |        |

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Y |
| Laboratory experiments/teaching aids                        | Ν |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

## Course Assessment tools & Evaluation procedure

| Direct Assessment |                                     |
|-------------------|-------------------------------------|
| Assessment Tool   | % Contribution during CO Assessment |

| Assignment                | 10            |
|---------------------------|---------------|
| Seminar before a commitee | 10            |
| Three Quizzes             | 30 (10+10+10) |
| End Sem Examination Marks | 50            |

| Assessment Compoents      | CO1          | CO2 | CO3          | CO4 | CO5 |
|---------------------------|--------------|-----|--------------|-----|-----|
| Mid Sem Examination Marks | $\checkmark$ |     | $\checkmark$ |     |     |
| End Sem Examination Marks | $\checkmark$ |     | $\checkmark$ |     |     |
| Quiz I                    | $\checkmark$ |     | $\checkmark$ |     |     |
| Quiz II                   |              |     |              |     |     |

#### Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

## Mapping between Objectives and Outcomes

#### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 |
|-------------------|---|---|---|---|
| А                 | Н | Н | Н | Н |
| В                 | Н | Н | L | L |
| С                 | Н | Н | Н | L |
| D                 | Н | L | Н | L |
| Е                 | Н | Н | Н | L |
| F                 | Н | L | L | Н |

#### **Mapping of Course Outcomes onto Program Outcomes**

| Course Outcome # | Program Outcomes |   |   |   |   |   |
|------------------|------------------|---|---|---|---|---|
|                  | а                | b | с | d | e | f |
| 1                | Н                | Н | Н | L | Н | Н |
| 2                | Н                | Н | Н | L | Н | Н |
| 3                | Н                | Н | Н | L | Н | Н |
| 4                | Н                | Н | Н | L | Н | М |

### Mapping Between COs and Course Delivery (CD) methods

| PI  | The pring Detriven Cost and Course Denvery (CD) methods |                |                        |  |  |  |
|-----|---------------------------------------------------------|----------------|------------------------|--|--|--|
| CD  | Course Delivery methods                                 | Course Outcome | <b>Course Delivery</b> |  |  |  |
|     |                                                         |                | Method                 |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors  | CO1            | CD1 and CD2            |  |  |  |
| CD2 | Tutorials/Assignments                                   | CO2            | CD1 and CD2            |  |  |  |
| CD3 | Seminars                                                | CO3            | CD1 and CD2            |  |  |  |
| CD4 | Mini projects/Projects                                  | CO4            | CD1 and CD2            |  |  |  |
| CD5 | Laboratory experiments/teaching aids                    | CO5            | CD1 and CD2            |  |  |  |
| CD6 | Industrial/guest lectures                               | CO6            | CD1 and CD2            |  |  |  |
| CD7 | Industrial visits/in-plant training                     | -              | -                      |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and       | -              | -                      |  |  |  |
|     | internets                                               |                |                        |  |  |  |
| CD9 | Simulation                                              | -              | -                      |  |  |  |

| Week | Lect.    | Tentative | Ch | Topics to be covered             | Text            | Cos    | Actual  | Method | Remarks    |
|------|----------|-----------|----|----------------------------------|-----------------|--------|---------|--------|------------|
|      | No.      | Date      | No |                                  | Book /          | mapped | Content | ology  | by faculty |
| No.  |          |           |    |                                  | Refere          |        | covered | used   | if any     |
|      |          |           |    |                                  | nces            |        |         |        |            |
| 1    | L1       |           |    | Measurement basics: Range,       | ,T1, T4         |        |         |        |            |
|      | 1.2      |           |    | resolution, linearity,           | T1, T4          |        |         |        |            |
|      | L2<br>L3 |           | -  | hysteresis, reproducibility      | Т1. Т4          |        |         |        |            |
|      | I.4      |           |    | drift calibration                | T1 T4           |        |         |        |            |
|      | 1.5      |           |    | accuracy and precision           | Т1, Т4<br>Т1 Т4 |        |         |        |            |
|      | 16       |           |    | Sensors Sensor Systems           | Т1, Т4<br>Т1 Т4 |        |         |        |            |
|      | 20       |           |    | characteristics.                 | , ,             |        |         |        |            |
|      | L7       |           |    | Instrument Selection.            | T1, T4          |        |         |        |            |
|      |          |           |    | Measurement Issues and           |                 |        |         |        |            |
|      |          |           |    | Criteria,                        |                 |        |         |        |            |
|      | L8       |           |    | Acceleration, Shock and          | T1, T4          |        |         |        |            |
|      |          |           |    | Vibration Sensors, Interfacing   | r<br>S          |        |         |        |            |
|      |          |           |    | and Designs,                     |                 |        |         |        |            |
|      | L9       |           |    | Capacitive and Inductive         | T1, T4          |        |         |        |            |
|      |          |           |    | Displacement Sensors,            | ,               |        |         |        |            |
|      |          |           |    | Magnetic Field Sensors,          |                 |        |         |        |            |
|      | L10      |           |    | Flow and Level Sensors, Load     | T1, T4          |        |         |        |            |
|      |          |           |    | Sensors, Strain gauges,          | ,               |        |         |        |            |
|      |          |           |    | Humidity Sensors,                | ,               |        |         |        |            |
|      |          |           |    | Accelerometers,                  |                 |        |         |        |            |
|      | L11      |           |    | Photosensors, Thermal Infrared   | T1, T4          |        |         |        |            |
|      |          |           |    | Detectors,                       |                 |        |         |        |            |
|      | L12      |           |    | Contact and Non-contact          | T1, T4          |        |         |        |            |
|      |          |           |    | Position sensors, Motion         |                 |        |         |        |            |
|      |          |           |    | Sensors,                         |                 |        |         |        |            |
|      | L13      |           |    | Piezoresistive and Piezoelectric | T1, T4          |        |         |        |            |
|      | L14      |           |    | Pressure Sensors, Sensors for    | T1, T4          |        |         |        |            |
|      |          |           |    | Mechanical Shock,                |                 |        |         |        |            |
|      | L15      |           |    | Temperature Sensors (contact     | T1, T4          |        |         |        |            |
|      |          |           |    | and non-contact)                 |                 |        |         |        |            |
|      | L16      |           |    | Signal conditioning Types of     | T1, T4          |        |         |        |            |
|      | L17      |           |    | signal conditioning,             | T1, T4          |        |         |        |            |
|      | L18      |           |    | Amplification, Isolation,        | T1, T4          |        |         |        |            |
|      | L19      |           |    |                                  | T1, T4          |        |         |        |            |
|      | L20      |           |    | Filtering, Linearization,        | T1, T4          |        |         |        |            |
|      | L21      |           |    | Classes of signal conditioning,  | T1, T4          |        |         |        |            |
|      |          |           |    | Sensor Signal Conditioning,      |                 |        |         |        |            |
|      | L22      |           | ]  | Conditioning Bridge Circuits,    | T1, T4          |        |         |        |            |
|      | L23      |           |    | D/A converters                   | T1, T4          |        |         |        |            |
|      | L24      |           | 1  | and A/D converters for signal    | T1, T4          |        |         |        |            |
|      | 1.05     |           | -  | conditioning,                    |                 |        |         |        |            |
|      | L25      |           |    | Signal Conditioning for high     | 11, 14          |        |         |        |            |
|      |          |           |    | and floating signal sources      | L               |        |         |        |            |
|      | 1.26     |           | -  | and mouning signal sources,      | <b>Т1 Т</b> 4   |        |         |        |            |
|      | L20      |           |    | single choca and anticicilital   | 1 · · · · · ·   |        |         |        |            |

|       |                | measurement,                      |                                     |  |      |
|-------|----------------|-----------------------------------|-------------------------------------|--|------|
| L27   |                | measuring grounded signal         | T1, T4                              |  |      |
|       |                | sources, ground loops, signal     |                                     |  |      |
|       |                | circuit isolation,                |                                     |  |      |
| L28   |                | measuring ungrounded signal       | T1, T4                              |  |      |
|       |                | sources,                          |                                     |  |      |
| L29   |                | system isolation techniques.      | T1, T4                              |  |      |
|       |                | errors, noise and interference in |                                     |  |      |
|       |                | measurements,                     |                                     |  |      |
| L30   |                | types of noise, noise             | T1, T4                              |  |      |
|       |                | minimization techniques           | ,                                   |  |      |
| L31   |                | Actuators                         | T1, T4                              |  |      |
|       |                | Correction and regulating         |                                     |  |      |
| L32   |                | elements used in control          | T1, T4                              |  |      |
| 1.22  |                | systems,                          | T1 T4                               |  |      |
|       |                | electric correction elements      | 11, 14<br>T1 T4                     |  |      |
| L34   |                |                                   | 11, 14                              |  |      |
| L35   |                | Control System                    | T1, T4                              |  |      |
|       |                | (feedback) systems                |                                     |  |      |
| L 36  |                | stability analysis of these       | Т1 Т4                               |  |      |
| 150   |                | systems.                          | 11, 11                              |  |      |
| L37   |                | Signal flow graphs and their use  | T1, T4                              |  |      |
|       |                | in determining transfer           |                                     |  |      |
|       |                | functions of systems;             |                                     |  | <br> |
| L38   |                | transient and steady state        | T1, T4                              |  |      |
|       |                | analysis of linear time invariant | T1, T4                              |  |      |
| L39   |                | (L11) control systems and         |                                     |  |      |
| 1.40  |                | Tools and techniques for LT       | Т1 Т4                               |  |      |
|       |                | control system analysis: root     | T1, T4                              |  |      |
| L42   | <u>├</u> ────┤ | loci, Routh-Hurwitz criterion     | T1, T4<br>T1 T4                     |  |      |
| I / 2 | <u> </u>       | Bode and Nyquist plots            | ті, т <del>і</del><br>Ті т <i>і</i> |  |      |
|       |                | Bode and hyquist piots.           | 11, 14<br>T1 T4                     |  |      |
|       | <u> </u>       | Control avetom commencet          | 11, 14<br>T1 T4                     |  |      |
|       |                | elements of lead and lag          | 11, 14<br>T1 T4                     |  |      |
|       |                | compensation                      | 11, 14<br>T1 T4                     |  |      |
|       | <u> </u>       |                                   | 11, 14                              |  |      |
|       |                | elements of Proportional-         | 11, 14                              |  |      |
|       |                | control.                          | 11, 14                              |  |      |
| L50   |                | State variable representation     | T1, T4                              |  | <br> |
|       |                | and solution of state equation of | Í                                   |  |      |
|       |                | LTI control systems.              |                                     |  |      |

#### **COURSE INFORMATION SHEET**

Course code: PH 510 Course title: Physics of Low dimensional Semiconductors Devices Pre-requisite(s): Co- requisite(s): Credits: 4L: 4 T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher: Group : D

| 0 | ption | 2 |
|---|-------|---|
|   |       |   |

| Code:                | Title: Physics of Low dimensional Semiconductors<br>Devices | L-T-P-C |
|----------------------|-------------------------------------------------------------|---------|
| PH 510               |                                                             | 4-0-0-4 |
| <b>Course Object</b> | ives                                                        |         |

This course enables the students:

| Course on "Physics of Low dimensional Semiconductors" contains information about functionality and working of devices with miniaturized size. |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
| The first module includes introduction to various types of semiconductor nanostructures and effect of dimension on their properties.          |
| The properties, growth and band-engineering of heterostrcutres is planned to be covered in Unit-2.                                            |
| Unit-3 contains Quantum wells and Low-dimensional systems, while Unit-4 addresses physics of Tunneling transport and Low-dimensional systems. |
| The electronic and optical properties of Two-dimensional electron gas (2DEG) and their applications is subject of Unit-5.                     |

#### **Course Outcomes**

After the completion of this course, students will be:

|          | 1.   | Learners would gain knowledge about working and application<br>Semiconductors                                                                                                                                                                                                             | of various Low-dimensional                                       |  |  |  |  |  |  |  |
|----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|
|          | 2.   | An understanding about Heterostructures, Quantum wells: Low-dimensional systems, Tunneling transport, Quantum-Hall effect and their electronic and optical applications would update learners with recent electronic and optical technologies in use.                                     |                                                                  |  |  |  |  |  |  |  |
|          | 3.   | Knowledge about Physics and applications of Two-dimensional electron<br>them to grasp the pace of advancing field of 2D-Semiconductors and<br>devices.                                                                                                                                    | ron gas (2-DEG) would enable<br>their applications for ultrathin |  |  |  |  |  |  |  |
| Modu     | le-1 | Introduction to Semiconductor Nanostructures<br>Introduction, Semiconductor quantum dot and quantum wire,<br>Density of states for 0-D, 1D and 2D nanostructures. Two-<br>dimensional semiconductors.                                                                                     | 6                                                                |  |  |  |  |  |  |  |
| Module-2 |      | Hetrostructures<br>General properties and growth of hetrostructures, Band<br>engineering, Layered structures, Quantum wells and barriers,<br>Doped hetrostructures, Wires and dots, Optical confinement,<br>Effective mass approximation and Effective mass theory in<br>hetrostructures. | 8                                                                |  |  |  |  |  |  |  |

| Module-3                    | Quantum wells and Low-Dimensional Systems                                   | 12                          |
|-----------------------------|-----------------------------------------------------------------------------|-----------------------------|
|                             | Infinite deep square well, square well of finite depth, parabolic           |                             |
|                             | well, triangular well, Low-dimensional systems, Occupation of               |                             |
|                             | subbands, Quantum wells in hetrostructures.                                 |                             |
| Module-4                    | Tunneling transport and Quantum Hall effect                                 | 12                          |
|                             | Potential step, T-Matrices, Resonant tunneling, Superlattices and           |                             |
|                             | minibands, Coherent transport in many channels, Tunneling in                |                             |
|                             | hetrostructures, Schrodinger equation with electric and magnetic            |                             |
|                             | fields, Quantum hall effect                                                 |                             |
| Module-5                    | Two-Dimensional electron gas (2DEG)                                         | 12                          |
|                             | Revision of approximate methods, scattering rates: the golden               |                             |
|                             | rule, Absorption in a quantum well, Electronic structure of a               |                             |
|                             | 2DEG, Optical properties of quantum wells: Kane model, bands in             |                             |
|                             | a quantum well, Interband and intersubband transitions in a                 |                             |
|                             | quantum well, Optical gain and lasers, Excitons                             |                             |
|                             |                                                                             |                             |
| Text Book                   |                                                                             |                             |
| [T1] John H. I              | Davies, The Physics of Low-Dimensional Semiconductors an Introduc           | ction, Cambridge University |
| Press.                      |                                                                             |                             |
| [T2] Thomas                 | Heinzel, Mesoscopic electronics in solid state nanostructures, Wiley-V      | VCH                         |
| [T3] Jan G. H<br>Engineers. | Korvink, Andreas Greiner, Semiconductors for micro and Nanotechne Wiley-VCH | ology – An Introduction for |

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | N |
| Mini projects/Projects                                      | Y |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | Ν |

## **Course Assessment tools & Evaluation procedure**

## **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizzes             | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents | CO1          | CO2          | CO3          | CO4          | CO5          |
|----------------------|--------------|--------------|--------------|--------------|--------------|
| Quiz1                | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Quiz II              |              |              |              | $\checkmark$ |              |
| Assignment           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| End Sem Examination  | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |              |

Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

# <u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | 5 |
|-------------------|---|---|---|---|---|
| Α                 | Η | Η | Η | Η | Н |
| В                 | Н | Η | Η | L | L |
| С                 | Н | Η | L | Η | Н |

#### **Mapping of Course Outcomes onto Program Outcomes**

| Course    | Program Outcomes |   |   |   |   |   |  |
|-----------|------------------|---|---|---|---|---|--|
| Outcome # | a                | b | с | d | e | f |  |
| 1         | Н                | Н | Н | Μ | Н | Н |  |
| 2         | Η                | Н | Н | Μ | Н | Н |  |
| 3         | Η                | Н | Η | М | Н | Η |  |

|     | Mapping Between COs and Course Delivery (CD) methods        |                   |                                      |  |  |  |  |  |
|-----|-------------------------------------------------------------|-------------------|--------------------------------------|--|--|--|--|--|
| CD  | Course Delivery methods                                     | Course<br>Outcome | Course       Delivery         Method |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1 and CD2                          |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       | CO2               | CD1 and CD2                          |  |  |  |  |  |
| CD3 | Seminars                                                    | CO3               | CD1 and CD2                          |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      | CO4               | CD1 and CD2                          |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        | CO5               | CD1 and CD2                          |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   | -                 | -                                    |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         | -                 | -                                    |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets | -                 | -                                    |  |  |  |  |  |
| CD9 | Simulation                                                  | -                 | -                                    |  |  |  |  |  |

| Week | Lect. | <b>Fentative</b> | Ch. | Fopics to be covered          | Гext    | Cos    | Actual  | Method | Remarks    |
|------|-------|------------------|-----|-------------------------------|---------|--------|---------|--------|------------|
|      | No.   | Date             | No. |                               | Book /  | mapped | Content | ology  | by faculty |
| No.  |       |                  |     |                               | Refere  |        | covered | used   | f any      |
|      |       |                  |     |                               | nces    |        |         |        |            |
| 1    | L1    |                  | Ch1 | Introduction to               |         |        |         |        |            |
|      |       |                  |     | Semiconductor                 | T1, T2, |        |         |        |            |
|      | L2    |                  |     | Nanostructures                | T3      |        |         |        |            |
|      |       |                  |     | Introduction, Semiconductor   |         |        |         |        |            |
|      |       |                  |     | quantum dot and quantum wire, |         |        |         |        |            |
|      |       |                  |     |                               |         |        |         |        |            |
|      |       |                  |     |                               |         |        |         |        |            |
|      |       |                  |     |                               |         |        |         |        |            |
|      |       |                  |     |                               |         |        |         |        |            |
|      | L3    |                  |     | Density of states for 0-D, 1D | T1, T2, |        |         |        |            |
|      |       |                  |     | and 2D nanostructures.        | T3      |        |         |        |            |
|      | L4    |                  |     |                               |         |        |         |        |            |
|      |       |                  |     |                               |         |        |         |        |            |
|      | L5    |                  | 1   | Two-dimensional               | T1, T2, |        |         |        |            |
|      |       |                  |     | semiconductors.               | Т3      |        |         |        |            |

|   |         | 7   |                                 |                            |   |  |  |
|---|---------|-----|---------------------------------|----------------------------|---|--|--|
|   | L6      |     |                                 |                            |   |  |  |
|   | L7      | Ch2 | Hetrostructures                 | T1. T2.                    |   |  |  |
|   |         |     |                                 | T3                         |   |  |  |
|   |         |     | General properties and growth   | 10                         |   |  |  |
|   |         |     | of hetrostructures              |                            |   |  |  |
|   | L8      |     | Band engineering                | T1. T2.                    |   |  |  |
|   | 20      |     |                                 | T3                         |   |  |  |
| - | IO      | -   | Lovered structures              | т <u>л</u> т2              |   |  |  |
|   | L9      |     | Layered structures              | 11, 12,                    |   |  |  |
|   |         | _   |                                 | 13                         |   |  |  |
|   | L10     |     | Quantum wells and barriers      | T1, T2,                    |   |  |  |
|   |         |     |                                 | T3                         |   |  |  |
|   | L11     |     | Doped                           | T1, T2,                    |   |  |  |
|   |         |     |                                 | T3                         |   |  |  |
|   |         |     | hetrostructures, Wires and dots |                            |   |  |  |
|   | L12     |     | Optical confinement,            | T1, T2,                    |   |  |  |
|   |         |     |                                 | Т3                         |   |  |  |
|   | L13     |     | Effective mass approximation    | T1, T2.                    |   |  |  |
|   | ┨ ┣━━━━ | -   | and Effective mass theory in    | T3                         |   |  |  |
|   | L14     |     | hetrostructures.                | 10                         |   |  |  |
|   |         |     |                                 |                            |   |  |  |
|   |         |     |                                 |                            |   |  |  |
|   | L15     | Ch3 | Quantum wells and Low-          |                            |   |  |  |
|   |         |     | Dimensional Systems             | Т1 Т2                      |   |  |  |
|   | I 16    |     | Dimensional Systems             | T1, 12,                    |   |  |  |
|   | 210     |     | Infinite deep square well       | 15                         |   |  |  |
|   | L17     |     | square well of finite depth     | Т1 Т2                      |   |  |  |
|   | 217     |     | square wen of finite depui,     | T3                         |   |  |  |
|   |         |     |                                 | 15                         |   |  |  |
|   | I 18    | -   | parabolic well                  | Т1 Т2                      |   |  |  |
|   |         | -   | parabone wen,                   | T1, 12,                    |   |  |  |
|   | T 10    |     |                                 | 15                         |   |  |  |
|   |         | -   | trion gulor yuall               | T1 T2                      |   |  |  |
|   | L20     | -   | ulangulai well,                 | 11, 12,                    |   |  |  |
|   | 1.01    |     |                                 | 13                         |   |  |  |
|   | L21     | -   |                                 | <b>T</b> 1 <b>T</b> 2      |   |  |  |
|   | L22     | _   | <b>T</b> 1 <b>T</b>             | 11, 12,                    |   |  |  |
|   | L23     | _   | Low-dimensional systems,        | 13                         |   |  |  |
|   | 1.24    |     | Occupation of subbands,         |                            |   |  |  |
|   | L24     | _   |                                 |                            |   |  |  |
|   | L25     |     | Quantum wells in                | T1, T2,                    |   |  |  |
|   |         |     | hetrostructures.                | T3                         |   |  |  |
|   | L26     |     |                                 |                            |   |  |  |
|   | L27     | Ch4 | Tunneling transport and         | T1, T2,                    |   |  |  |
|   |         |     | Quantum Hall effect Potential   | T3                         |   |  |  |
|   |         |     | step                            |                            |   |  |  |
|   | L28     |     | T-Matrices                      | T1, T2,                    |   |  |  |
|   |         |     |                                 | T3                         |   |  |  |
|   | L29     | 1   | Resonant tunneling              | T1, T2.                    |   |  |  |
|   |         |     |                                 | T3                         |   |  |  |
|   | 1.30    | -   | Superlattices and minibands     | Т1 Т2                      | 1 |  |  |
|   | 1.50    |     | Superfactices and minibalius    | $\mathbf{T}_{2}^{11, 12},$ |   |  |  |
|   |         |     |                                 | 13                         |   |  |  |

|  | L31  |      | Coherent transport in many channels | T1, T2,               |  |  |
|--|------|------|-------------------------------------|-----------------------|--|--|
|  | L32  |      | chamiers                            | 15                    |  |  |
|  | L33  |      | Tunneling in hetrostructures        | T1, T2,               |  |  |
|  |      |      |                                     | T3                    |  |  |
|  | L34  |      |                                     |                       |  |  |
|  | L35  |      | Schrodinger equation with           | T1, T2,               |  |  |
|  | L36  |      | electric and magnetic fields        | 13                    |  |  |
|  | L37  |      | Quantum hall effect                 | T1, T2,               |  |  |
|  | 1 38 |      |                                     | T3                    |  |  |
|  | 130  | Ch5  | Two Dimonsional electron gas        |                       |  |  |
|  | L39  | CIIJ | (2DEG)                              |                       |  |  |
|  |      |      |                                     |                       |  |  |
|  |      |      | Revision of approximate             |                       |  |  |
|  | - 10 |      | methods                             |                       |  |  |
|  | L40  |      | scattering rates: the golden rule   | T1, T2,               |  |  |
|  | L41  |      |                                     | 13                    |  |  |
|  | L42  |      | Absorption in a quantum well        | T1, T2,               |  |  |
|  |      |      |                                     | Т3                    |  |  |
|  | L43  |      |                                     |                       |  |  |
|  | L44  |      | Electronic structure of a 2DEG,     | T1, T2,               |  |  |
|  | T 45 |      | Optical properties of quantum       | T3                    |  |  |
|  | L4J  |      | wells: Kane model                   |                       |  |  |
|  | L46  |      | bands in a quantum well             | T1, T2,               |  |  |
|  |      |      |                                     | Т3                    |  |  |
|  | L47  |      | Interband and intersubband          | T1, T2,               |  |  |
|  | T 40 |      | transitions in a quantum well       | T3                    |  |  |
|  | L48  |      |                                     | <b>T</b> 1 <b>T</b> 2 |  |  |
|  | L49  |      | Optical gain and lasers,            | T1, T2,               |  |  |
|  | C    |      | Excitons                            | 13                    |  |  |
|  | 0    |      |                                     |                       |  |  |

#### **Group E- Plasma Sciences:**

- 1. Introduction to Plasma Physics
- 2. Plasma Processing of Materials

#### **COURSE INFORMATION SHEET**

Course code: PH 511 **Course title: Introduction to Plasma Physics Pre-requisite**(s): **Co- requisite(s):** Credits: **4** L:4 T: 0 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level:PE V **Branch: PHYSICS** Name of Teacher:

**Group** : **E Option 1** 

| Code:<br>PH 511          | ode: Title: Introduction to Plasma Physics<br>H 511                                                                                                                                                                                                 |   |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| Module                   | Course Objective:                                                                                                                                                                                                                                   | - |  |  |  |  |
| 1.                       | To impart the knowledge about the fundamental and basics of Plasma Physics.                                                                                                                                                                         | 1 |  |  |  |  |
| 2.                       | To learn about the charged particle motion in electric and magnetic field.                                                                                                                                                                          | 1 |  |  |  |  |
| 3.                       | To provide the knowledge about the ionization process and diffusion.                                                                                                                                                                                | 1 |  |  |  |  |
| 4.                       | To learn about the basic Plasma Diagnostic Methods.                                                                                                                                                                                                 | 1 |  |  |  |  |
| 5.                       | To learn how to use plasma for various application.                                                                                                                                                                                                 | - |  |  |  |  |
| Module                   | Course Outcome                                                                                                                                                                                                                                      | - |  |  |  |  |
| 1.                       | Will have an idea about the basis of Plasma (Fourth State of Matter).                                                                                                                                                                               | 1 |  |  |  |  |
| 2.                       | Will be able to visualize the motion of charged particles in electric and magnetic field.                                                                                                                                                           |   |  |  |  |  |
| 3.                       | 3. Will have knowledge about the ionization and diffusion of Plasma.                                                                                                                                                                                |   |  |  |  |  |
| 4.                       | 4. Will be able to measure the different plasma parameters.                                                                                                                                                                                         |   |  |  |  |  |
| 5.                       | 5. Will be familiar with different applications of Plasma.                                                                                                                                                                                          |   |  |  |  |  |
| Module-1                 | Module-1 The fourth state of matter, collective behavior, charge neutrality, space and time so concept of plasma temperature, Classification of Plasma, Debye shielding, Debye len plasma frequency plasma parameters and criteria for plasma state |   |  |  |  |  |
| Module-2                 | e-2 Single particle dynamics, charged particle motion in electric field, magnetic field and in combined electric and magnetic field, Basics of E × B drift, Drift of guiding centre, gradient drift, curvature drift and magnetic mirror.           |   |  |  |  |  |
| Module-3                 | 3 Ionization by collision, Townsends theory of collision ionization, The breakdown potential,<br>Thermal ionization and excitation, concepts of diffusion, mobility and electrical conductivity,<br>Ambipolar diffusion.                            |   |  |  |  |  |
| Module-4                 | odule-4 Basic plasma diagnostics, Single probe method, Double probe method, Optical emission spectroscopy (basic idea), Abel inversion.                                                                                                             |   |  |  |  |  |
| Module-5                 | Module-5Controlled Thermonuclear fusion, Tokamak, Laser Fusion, MHD Generator, Industrial<br>applications of plasma.[8]                                                                                                                             |   |  |  |  |  |
| Referen1. Introd2. Funda | <b>Ices:</b><br>uction to Plasma Physics and Controlled Fusion, Francis, F. Chen, Plenum Press, 1984<br>mental of Plasma Physics, L.A. Bittencourt, Springer, Verlag, New York Inc. 2004                                                            |   |  |  |  |  |

attencourt, Springer-V erlag New Y

3. The Fourth State of Matter- Introduction to Plasma Science, S. Eliezer and Y. Eliezer, IoP Publishing Ltd., 2001.

4. Elementary Plasma Physics, L. A. Arzimovich, Blaisdell Publishing Company, 1965

5. Plasmas- The Fourth State of Matter, D. A. Frank- Kamenetskii, Macmillan Press, 1972

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

#### **Course Assessment tools & Evaluation procedure**

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2          | CO3 | CO4          | CO5          |
|---------------------------|--------------|--------------|-----|--------------|--------------|
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ |     |              |              |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ |     | $\checkmark$ | $\checkmark$ |
| Quiz I                    |              |              |     | $\checkmark$ |              |
| Quiz II                   |              |              |     |              |              |

#### Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

## **Mapping between Objectives and Outcomes**

## Mapping between Course Objectives and Course Outcomes

| <b>Course Objectives</b> | 1 | 2 | 3 | 4 | <u>5</u> |
|--------------------------|---|---|---|---|----------|
| Α                        | Н | М | L | Μ | L        |
| В                        | М | Н | L | L | L        |
| С                        | М | L | Н | L | L        |
| D                        | М | L | L | Η | L        |
| Е                        | L | L | L | L | Н        |

#### Mapping of Course Outcomes onto Program Outcomes

| Course    |   | Program Outcomes |   |   |   |   |   |   |   |   |   |   |
|-----------|---|------------------|---|---|---|---|---|---|---|---|---|---|
| Outcome # | a | В                | С | d | e | f | g | h | Ι | j | k | 1 |
| 1         | Μ | Н                | Μ | Μ | Μ | Η |   |   |   |   |   |   |
| 2         | М | Н                | Μ | Μ | Μ | Η |   |   |   |   |   |   |
| 3         | Μ | Н                | Μ | Μ | Μ | Η |   |   |   |   |   |   |
| 4         | Μ | Н                | Μ | Μ | Μ | Η |   |   |   |   |   |   |
| 5         | M | Н                | L | Μ | Μ | Н |   |   |   |   |   |   |

| Mapping Between COs and Course Delivery (CD) methods |                         |  |         |                        |  |  |  |
|------------------------------------------------------|-------------------------|--|---------|------------------------|--|--|--|
|                                                      |                         |  | Course  | <b>Course Delivery</b> |  |  |  |
| CD                                                   | Course Delivery methods |  | Outcome | Method                 |  |  |  |

| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1 | CD1 CD2 |
|-----|-------------------------------------------------------------|-----|---------|
| CD2 | Tutorials/Assignments                                       | CO2 | CD1 CD2 |
| CD3 | Seminars                                                    | CO3 | CD1 CD2 |
| CD4 | Mini projects/Projects                                      | CO4 | CD1 CD2 |
| CD5 | Laboratory experiments/teaching aids                        | CO5 | CD1 CD2 |
| CD6 | Industrial/guest lectures                                   |     |         |
| CD7 | Industrial visits/in-plant training                         |     |         |
| CD8 | Self- learning such as use of NPTEL materials and internets |     |         |
| CD9 | Simulation                                                  |     |         |

| Week | Lect. | Tentat | Ch. | Topics to be covered                   | Text   | COs    | Actual  | Methodolo | Remarks |
|------|-------|--------|-----|----------------------------------------|--------|--------|---------|-----------|---------|
| No.  | No.   | ive    | No. | _                                      | Book / | mapped | Content | gy used   | by      |
|      |       | Date   |     |                                        | Refere |        | covered |           | faculty |
|      |       |        |     |                                        | nces   |        |         |           | if any  |
| 1    | L1-   |        |     | The fourth state of matter,            | T1 R1  |        |         |           |         |
|      | L2    |        |     | collective behavior, charge            |        |        |         |           |         |
|      |       |        |     | neutrality,                            |        |        |         |           |         |
|      | L3-   |        |     | space and time scale, concept          | T1 R1  |        |         |           |         |
|      | L4    |        |     | of plasma temperature,                 |        |        |         |           |         |
|      | L5-   |        |     | Classification of Plasma,              | T1 R1  |        |         |           |         |
|      | L6    |        |     | Debye shielding, Debye                 |        |        |         |           |         |
|      |       |        |     | length,                                |        |        |         |           |         |
|      | L7-   |        |     | plasma frequency, plasma               | T1 R1  |        |         |           |         |
|      | L8    |        |     | parameters and criteria for            |        |        |         |           |         |
|      |       |        |     | plasma state.                          |        |        |         |           |         |
|      | L9-   |        |     | Single particle dynamics,              | T1T2   |        |         |           |         |
|      | L10   |        |     | charged particle motion in             | R1     |        |         |           |         |
|      |       |        |     | electric field,                        |        |        |         |           |         |
|      | L11-  |        |     | magnetic field and in                  | T1T2   |        |         |           |         |
|      | L12   |        |     | combined electric and                  | R1     |        |         |           |         |
|      |       |        |     | magnetic field,                        |        |        |         |           |         |
|      | L13-  |        |     | Basics of $E \times B$ drift, Drift of | T1T2   |        |         |           |         |
|      | L14   |        |     | guiding centre,                        | R1     |        |         |           |         |
|      | L15-  |        |     | Basics of $E \times B$ drift, Drift of | T1T2   |        |         |           |         |
|      | L16   |        |     | guiding centre,                        | R1     |        |         |           |         |
|      | L17-  |        |     | Ionization by collision,               | T2 R1  |        |         |           |         |
|      | L20   |        |     | Townsends theory of collision          |        |        |         |           |         |
|      |       |        |     | ionization, The breakdown              |        |        |         |           |         |
|      |       |        |     | potential,                             |        |        |         |           |         |
|      | L21-  |        |     | Thermal ionization and                 | T2 R1  |        |         |           |         |
|      | L24   |        |     | excitation, concepts of                |        |        |         |           |         |
|      |       |        |     | diffusion, mobility and                |        |        |         |           |         |
|      |       |        |     | electrical conductivity,               |        |        |         |           |         |
|      |       |        |     | Ambipolar diffusion                    |        |        |         |           |         |
|      | L25-  |        |     | Basic plasma diagnostics,              | T2 R1  |        |         |           |         |
|      | L28   |        |     | Single probe method, Double            |        |        |         |           |         |
|      |       |        |     | probe method,                          |        |        |         |           |         |
|      | L29-  |        |     | Optical emission spectroscopy          | T2 R1  |        |         |           |         |
|      | L32   |        |     | (basic idea), Abel inversion           |        |        |         |           |         |
|      | L33-  |        |     | Controlled Thermonuclear               | T1 R1  |        |         |           |         |
|      | L36   |        |     | fusion, Tokamak,                       |        |        |         |           |         |

| L37- | Laser Fusio | n, MHD Genera | ator, | T1 R1 |  |  |
|------|-------------|---------------|-------|-------|--|--|
| L40  | Industrial  | applications  | of    |       |  |  |
|      | plasma.     |               |       |       |  |  |

#### **COURSE INFORMATION SHEET**

Course code: PH 512 Course title: Plasma Processing of Materials Course code: SAP Course title: Plasma Processing of Materials Pre-requisite(s): Co- requisite(s): Credits: 4 L: 4 T: 0 P: 0 Class schedule per week: 0x Class: I.M.Sc. / M.Sc. Semester / Level: Branch: Physics Name of Teacher: Dr. Sanat Kr. Mukherjee

#### Group : E Option 2

| Code:<br>PH 512 | Title: Plasma Processing of Materials                                                                                                                               |           |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|
| Course (        | bjectives                                                                                                                                                           |           |  |  |  |  |
| This cour       | e enables the students to:                                                                                                                                          |           |  |  |  |  |
| A               | Defineplasma and its parameters                                                                                                                                     |           |  |  |  |  |
| В               | Outline the design principles of high and low-pressure plasma torches.                                                                                              |           |  |  |  |  |
| C               | Identify the processes of measurement of plasma parameters.                                                                                                         |           |  |  |  |  |
| D               | Outline the industrial applications of low temperature plasma                                                                                                       |           |  |  |  |  |
| E.              | Explain arc plasma-based systems and illustrate their industrial applications                                                                                       |           |  |  |  |  |
| Course (        | utcomes                                                                                                                                                             |           |  |  |  |  |
| After the       | completion of this course, students will be able to:                                                                                                                |           |  |  |  |  |
| 1.              | Define plasma, classify it into various types in terms of the plasma parameters and explain the v types of reactions involved in a plasma.                          | arious    |  |  |  |  |
| 2.              | Demonstrate the construction and working of high and low-pressure plasma torches.                                                                                   |           |  |  |  |  |
| 3.              | Illustrate the various processes of measurement of plasma parameters.                                                                                               |           |  |  |  |  |
| 4               | Outlinevarious plasma processes, such as, plasma etching, plasma ashing, plasma polymerization and their associated techniques such as, sputtering, nitriding, etc. | on, etc., |  |  |  |  |
| 5.              | 5. Illustrate arc plasma based applications like, plasma spraying, plasma waste processing, plasma cutting,                                                         |           |  |  |  |  |
|                 | etc.                                                                                                                                                                |           |  |  |  |  |
| Module-         | Plasma-the fourth state of matter, Plasma Parameters, Debye length, Plasma oscillations &                                                                           | [8]       |  |  |  |  |
|                 | frequency, Plasma Sheath, Interaction of electromagnetic wave with plasma, Concept about                                                                            |           |  |  |  |  |
|                 | plasma equilibrium, Industrial Plasmas, Cold and thermal plasma, Plasma Chemistry,                                                                                  |           |  |  |  |  |
|                 | Homogeneous and Heterogeneous reaction, Reaction rate coefficients, Plasma Surface interaction.                                                                     |           |  |  |  |  |
| Module-         | Design principles and construction of plasma torches and thermal plasma reactors, Efficiency                                                                        | [8]       |  |  |  |  |
|                 | of plasma torches in converting electrical energy in to thermal energy, Designing aspects of low pressure plasma reactors                                           |           |  |  |  |  |
| Module-         | Measurements of Plasma parameters. Electrical probes. Single and double I anomuir probe                                                                             | [8]       |  |  |  |  |
| module          | Magnetic probe, Calorimetric measurements, Enthalpy Probes, Spectroscopic techniques.                                                                               | [U]       |  |  |  |  |
| Module-         | Plasma Etching Anisotropic etching plasma cleaning surfactants removal plasma ashing                                                                                | [15]      |  |  |  |  |
| mouule          | plasma polymerization. Plasma sputtering and PECVD Thin film coatings, magnetron                                                                                    |           |  |  |  |  |
|                 | sputtering, RF PECVD, MW PECVD, plasma nitriding.                                                                                                                   |           |  |  |  |  |
| Module-         | Module 5: Plasma Spraving Non-transferred plasma torches powder feeder optimization of                                                                              | [6]       |  |  |  |  |
| iniouulo .      | spraying processes spherodization Arc plasmas Plasma torches plasma waste processing                                                                                | [0]       |  |  |  |  |
|                 | Synthesis of materials and metallurgy in arc plasmas, Plasma cutting and Welding.                                                                                   |           |  |  |  |  |
| Text            | books:                                                                                                                                                              |           |  |  |  |  |

- 1. Introduction to Plasma Physics and Controlled Fusion, Francis, F. Chen, Plenum Press, 1984
- 2. Fundamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 2004
- 3. The Fourth State of Matter- Introduction to Plasma Science, S. Eliezer and Y. Eliezer, IoP Publishing Ltd.,, 2001.

#### **Reference books:**

- 1. Elementary Plasma Physics, L. A. Arzimovich, Blaisdell Publishing Company, 1965
- 2. Plasmas- The Fourth State of Matter, D. A. Frank- Kamenetskii, Macmillan Press, 1972

| Course Delivery methods                                     |     |
|-------------------------------------------------------------|-----|
| Lecture by use of boards/LCD projectors/OHP projectors      | Yes |
| Tutorials/Assignments                                       | Yes |
| Seminars                                                    | No  |
| Mini projects/Projects                                      | No  |
| Laboratory experiments/teaching aids                        | No  |
| Industrial/guest lectures                                   | No  |
| Industrial visits/in-plant training                         | No  |
| Self- learning such as use of NPTEL materials and internets | Yes |
| Simulation                                                  | No  |

#### **Course Assessment tools & Evaluation procedure**

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| AssessmentCompoents       | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination Marks | Yes | Yes | Yes | No  | No  |
| End Sem Examination Marks | Yes | Yes | Yes | Yes | Yes |
| Assignment                | Yes | Yes | Yes | Yes | Yes |

#### Indirect Assessment –

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

## **Mapping between Objectives and Outcomes**

#### Mapping of Course Outcomes onto Program Outcomes

| Course    | Program Outcomes |   |   |   |   |   |  |  |
|-----------|------------------|---|---|---|---|---|--|--|
| Outcome # | a                | b | с | d | e | f |  |  |
| 1         | Н                | Н | Н | L | М | L |  |  |
| 2         | Н                | Н | М | L | L | L |  |  |
| 3         | Н                | М | М | L | L | L |  |  |
| 4         | Н                | М | М | L | L | L |  |  |
| 5         | Н                | Н | Н | L | Н | L |  |  |

| Course    | Course Objectives |   |   |   |   |  |  |
|-----------|-------------------|---|---|---|---|--|--|
| Outcome # | а                 | b | с | d | e |  |  |

| 1 | Н | М | М | М | L |
|---|---|---|---|---|---|
| 2 | М | Н | М | М | L |
| 3 | М | М | Н | L | L |
| 4 | М | М | Н | L | L |
| 5 | М | М | L | L | Н |

|     | Mapping Between COs and Course Delivery (CD) methods |         |                  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------|---------|------------------|--|--|--|--|--|--|--|
| CD  | Course Delivery methods                              | Course  | Course Delivery  |  |  |  |  |  |  |  |
|     |                                                      | Outcome | Method           |  |  |  |  |  |  |  |
|     | Lecture by use of boards/LCD projectors/OHP          |         |                  |  |  |  |  |  |  |  |
| CD1 | projectors                                           | CO1     | CD1, CD2 and CD8 |  |  |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                | CO2     | CD1, CD2 and CD8 |  |  |  |  |  |  |  |
| CD3 | Seminars                                             | CO3     | CD1, CD2 and CD8 |  |  |  |  |  |  |  |
| CD4 | Mini projects/Projects                               | CO4     | CD1, CD2 and CD8 |  |  |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                 | CO5     | CD1, CD2 and CD8 |  |  |  |  |  |  |  |
| CD6 | Industrial/guest lectures                            |         |                  |  |  |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                  |         |                  |  |  |  |  |  |  |  |
|     | Self- learning such as use of NPTEL materials and    |         |                  |  |  |  |  |  |  |  |
| CD8 | internets                                            |         |                  |  |  |  |  |  |  |  |
| CD9 | Simulation                                           |         |                  |  |  |  |  |  |  |  |

| Week No. | Lect. | <b>Fentat</b> | ModuleNo. | <b>Fopics to be covered</b> | Гext   | Cos    | Actual  | Methodology | Remarks   |
|----------|-------|---------------|-----------|-----------------------------|--------|--------|---------|-------------|-----------|
|          | No.   | ive           |           |                             | Book / | mapped | Content | used        | byfaculty |
|          |       | Date          |           |                             | Refere |        | covered |             | f any     |
|          |       |               |           |                             | nces   |        |         |             |           |
|          |       |               |           |                             |        |        |         |             |           |
| 1-2      | L1-2  |               | Ι         | Plasma-the fourth state of  | T2     | CO-1   |         | PPT Digi    |           |
|          |       |               |           | matter, Plasma              |        |        |         | Class/Chal  |           |
|          |       |               |           | Parameters, Debye length    |        |        |         | k-Board     |           |
|          | L3-4  |               |           | Plasma oscillations &       | T2     | CO-1   |         | PPT Digi    |           |
|          |       |               |           | frequency, Plasma Sheath,   |        |        |         | Class/Chal  |           |
|          |       |               |           | Interaction of              |        |        |         | k-Board     |           |
|          |       |               |           | electromagnetic wave with   |        |        |         |             |           |
|          |       |               |           | plasma, Concept about       |        |        |         |             |           |
|          |       |               |           | plasma equilibrium          |        |        |         |             |           |
| 2        | L5    |               |           | Industrial Plasmas, Cold    | T1     | CO-1   |         | PPT Digi    |           |
|          |       |               |           | and thermal plasma,         |        |        |         | Class/Chal  |           |
|          |       |               |           | _                           |        |        |         | k-Board     |           |
| 2-3      | L6    |               |           | Plasma Chemistry,           | T1     | CO-1   |         | PPT Digi    |           |
|          |       |               |           | Homogeneous and             |        |        |         | Class/Chal  |           |
|          |       |               |           | Heterogeneous reaction      |        |        |         | k-Board     |           |
| 3        | L7-8  |               |           | Reaction rate coefficients, |        | CO-1   |         | PPT Digi    |           |
|          |       |               |           | Plasma Surface interaction  |        |        |         | Class/Chal  |           |
|          |       |               |           |                             |        |        |         | k-Board     |           |
| 4        | L9-12 |               | II        | Design principles and       | T3     | CO-2   |         | PPT Digi    |           |
|          |       |               |           | construction of plasma      |        |        |         | Class/Chal  |           |
|          |       |               |           | torches and thermal         |        |        |         | k-Board     |           |
|          |       |               |           | plasma reactors             |        |        |         |             |           |
| 5        | L13-  |               |           | Efficiency of plasma        | T1     | CO-2   |         | PPT Digi    |           |

|       | 14   |     | torches in converting      |            |          | Class/Chal |
|-------|------|-----|----------------------------|------------|----------|------------|
|       |      |     | electrical energy in to    |            |          | k-Board    |
|       |      |     | thermal energy             |            |          |            |
| 5.6   | I 15 | ш   | Massuraments of Dissma     | Т1         | $CO_{2}$ | DDT Digi   |
| 5-0   | L15- | 111 | Weasurements of Flasma     | 11         | 0-5      | Class/Chal |
|       | 10   |     | parameters                 |            |          |            |
| 7     | I 17 |     |                            |            |          | K-Board    |
| /     | LI/- |     | Electrical probes, Single  |            | CO-3     | PPT Digi   |
|       | 18   |     | and double Langmuir        |            |          | Class/Chal |
|       |      |     | probe                      |            |          | k-Board    |
| 8     | L19- |     | Magnetic probe,            | T2         | CO-3     | PPT Digi   |
|       | 20   |     | Calorimetric               |            |          | Class/Chal |
|       | _    |     | measurements Enthalny      |            |          | k-Board    |
|       |      |     | Drohas                     |            |          |            |
| 0.0   | 1.01 |     |                            | <b>T</b> 1 |          |            |
| 8-9   | L21- |     | Spectroscopic techniques.  | 11,        | CO-3     | PPT Digi   |
|       | 22   |     |                            | Τ2,        |          | Class/Chal |
|       |      |     |                            |            |          | k-Board    |
| 9-10  | L23- | IV  | Plasma Etching             | T1,        | CO-4     | PPT Digi   |
|       | 25   |     | Anisotropic etching        | Τ2,        |          | Class/Chal |
|       |      |     |                            |            |          | k-Board    |
| 10-11 | L26- |     | plasma cleaning,           | T1,        | CO-4     | PPT Digi   |
|       | 28   |     | surfactants removal        | Τ2,        |          | Class/Chal |
|       |      |     |                            |            |          | k-Board    |
| 11-12 | L29- |     | plasma ashing, plasma      | T1,        | CO-4     | PPT Digi   |
|       | 31   |     | polymerization             | Τ2,        |          | Class/Chal |
|       |      |     |                            |            |          | k          |
|       |      |     |                            |            |          |            |
|       |      |     |                            |            |          | -Board     |
| 12    | L32- |     | Plasma sputtering and      | T1         | CO-4     | PPT Digi   |
|       | 33   |     | PECVD Thin film            | T2         |          | Class/Chal |
|       | 55   |     |                            | 12,        |          | k-Board    |
| 10    | 1.24 |     | coatings                   | <b>T</b> 1 |          |            |
| 13    | L34- |     | magnetron sputtering       | Π,         | CO-4     | PPT Digi   |
|       | 35   |     |                            | Τ2,        |          | Class/Chal |
|       |      |     |                            |            |          | k-Board    |
| 13    | L36  |     | , RF PECVD, MW             | T1,        | CO-4     | PPT Digi   |
|       |      |     | PECVD                      | Τ2,        |          | Class/Chal |
|       |      |     |                            |            |          | k-Board    |
| 14    | L37  |     | plasma nitriding           | T1,        | CO-4     | PPT Digi   |
|       |      |     |                            | Τ2,        |          | Class/Chal |
|       |      |     |                            |            |          | k-Board    |
| 14    | L40  | V   | Plasma Spraying Non-       | T1,        | CO-5     | PPT Digi   |
|       |      |     | transferred plasma torches | Τ2,        |          | Class/Chal |
|       |      |     |                            |            |          | k-Board    |
| 14    | L41  |     | powder feeder,             | T2         | CO-5     | PPT Digi   |
|       |      |     | optimization of spraying   |            |          | Class/Chal |
|       |      |     | processes                  |            |          | k-Board    |
| 15    | 142  |     | spherodization Are         | T1         | CO-5     | PPT Digi   |
| 1.5   |      |     | plasma Diama tarahas       | т <u>э</u> |          | Class/Chal |
|       |      |     | piasilias, Piasma torcnes  | 12,        |          | k Roard    |
| 15    | I 42 |     | plaama waata areeeei       | T)         | CO 5     |            |
| 13    | L43- |     | plasma waste processing,   | 12         | 0-5      |            |
|       | 44   |     | Synthesis of materials and |            |          |            |
|       |      |     | metallurgy in arc plasmas  |            |          | K-Board    |
| 16    | L45  |     | Plasma cutting and         | T2         | CO-5     | PPT Digi   |

|  | Welding |  | Class/Chal |  |
|--|---------|--|------------|--|
|  |         |  | k-Board    |  |
# **PE-VI to VII**

# **Group A- Theoretical and Computational Physics:**

- 1. Theoretical and Computational Fluid Dynamics
- 2. Theoretical and Computational Condensed Matter Physics
- 3. Nonlinear Dynamics and Chaos

#### **COURSE INFORMATION SHEET**

| Course code: PH 514                                               |
|-------------------------------------------------------------------|
| <b>Course title: Theoretical and Computational Fluid Dynamics</b> |
| Pre-requisite(s):                                                 |
| Co- requisite(s):                                                 |
| <b>Credits: 4</b> L: 2 T: 0 P: 4                                  |
| Class schedule per week:                                          |
| Class: I.M.Sc.                                                    |
| Semester / Level: PE VI//VII                                      |
| Branch: PHYSICS                                                   |
| Name of Teacher:                                                  |
| Group : A Option 1                                                |

| 01000    |                                                                        |             |
|----------|------------------------------------------------------------------------|-------------|
| Code:    | Title: Theoretical and Computational Fluid Dynamics                    | L-T-P-C     |
| PH 514   | Theory & Programming using C for solving problems on following topics: |             |
|          |                                                                        | [2- 0-4- 4] |
| Course ( | Dbjectives                                                             |             |

| This cour | se enables the students:                                                                              |
|-----------|-------------------------------------------------------------------------------------------------------|
| А.        | To learn the techniques of model atomic and molecular systems.                                        |
| B.        | To receive explanation of methods to deal with the different ensembles used in Statistical Mechanics. |
| C.        | To obtain training on numerical methods used for integrations in Fluid Dynamics.                      |
| D.        | To discuss ways to analyze the accuracy of correlation functions and equilibrium averages.            |

#### **Course Outcomes**

After the completion of this course, students will be:

|           | ······                                                                                                           |       |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| 1.        | Learning about common models used to describe atoms and molecules                                                |       |  |  |  |  |
| 2.        | Able to prepare codes for transforming between different ensembles.                                              |       |  |  |  |  |
| 3.        | Develop a good handle on relevant numerical integrations.                                                        |       |  |  |  |  |
| 4.        | Achieve competence in the estimation of errors involved in computing correlation functions equilibrium averages. | s and |  |  |  |  |
|           |                                                                                                                  |       |  |  |  |  |
| Module-1  | Model systems and interaction potentials: Atomic systems, Molecular systems, Lattice                             | [11]  |  |  |  |  |
|           | systems, Calculating the potential, Constructing an intermolecular potential, Studying small                     |       |  |  |  |  |
|           | systems: periodic and spherical boundary conditions.                                                             |       |  |  |  |  |
| Module-2  | Statistical Mechanics: Statistical ensembles, Transformation between ensembles,                                  | [9]   |  |  |  |  |
|           | Fluctuations, Time correlations, Transport coefficients.                                                         |       |  |  |  |  |
| Module-3  | Molecular dynamics: Finite difference methods, Verlet algorithm, Linear and nonlinear [7]                        |       |  |  |  |  |
|           | molecules, Checks on accuracy.                                                                                   |       |  |  |  |  |
| Module-4  | Monte Carlo methods: Monte Carlo integration, Importance sampling, Metropolis method,                            | [9]   |  |  |  |  |
|           | Molecular liquids.                                                                                               |       |  |  |  |  |
| Module-5  | Analyzing results: Time correlation functions, Fast Fourier transform, Estimation of errors in                   | [9]   |  |  |  |  |
|           | equilibrium averages and fluctuations, Errors in time correlation functions.                                     |       |  |  |  |  |
| Referen   | <u>ces:</u>                                                                                                      |       |  |  |  |  |
| 1. "Comp  | uter Simulation of Liquids" by Allen and Tildesley, Oxford Science Publications .                                |       |  |  |  |  |
| 2. "The A | rt of Molecular Dynamics Simulation" by D. C. Rappaport, Cambridge University Press.                             |       |  |  |  |  |

| Direct Assessment         |                                     |  |  |  |  |  |  |
|---------------------------|-------------------------------------|--|--|--|--|--|--|
| Assessment Tool           | % Contribution during CO Assessment |  |  |  |  |  |  |
| Assignment                | 10                                  |  |  |  |  |  |  |
| Seminar before a commitee | 10                                  |  |  |  |  |  |  |
| Three Quizes              | 30 (10+10+10)                       |  |  |  |  |  |  |
| End Sem Examination Marks | 50                                  |  |  |  |  |  |  |

| Assessment Components | CO1 | CO2 | CO3 | CO4 | CO5 |
|-----------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination   |     |     |     |     |     |
| Marks                 |     |     |     |     |     |
| End Sem Examination   |     |     |     |     |     |
| Marks                 |     |     |     |     |     |
| Quiz I                |     |     |     |     |     |
| Quiz II               |     |     |     |     |     |

#### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 |
|-------------------|---|---|---|---|
| А                 | Н | М | М | М |
| В                 | М | Н | М | М |
| С                 | М | L | Н | М |
| D                 | L | М | Н | Н |

# Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # | Program Outcomes |   |   |   |   |   |  |
|------------------|------------------|---|---|---|---|---|--|
|                  | а                | b | с | d | e | f |  |
| 1                | Н                | Н | М | М | Н | М |  |
| 2                | L                | Н | М | М | Н | М |  |
| 3                | L                | Н | Н | М | Н | М |  |
| 4                | L                | Н | Н | М | Н | М |  |

| Week<br>No | Lect.<br>No. | Tent<br>ative<br>Date | Ch.<br>No | Topics to be covered                                                                  | Text<br>Book /<br>Referen<br>ces | Cos<br>map<br>ped | Actual<br>Content<br>covered | Met<br>hodo<br>logy<br>used | Remark<br>s by<br>faculty<br>if any |
|------------|--------------|-----------------------|-----------|---------------------------------------------------------------------------------------|----------------------------------|-------------------|------------------------------|-----------------------------|-------------------------------------|
| 1          | L1-L3        |                       |           | Model systems and interaction<br>potentials: Atomic systems,<br>Molecular systems     | T1,T2                            | 1                 |                              |                             |                                     |
| 2          | L4-L6        |                       |           | Lattice systems, Calculating the potential, Constructing an intermolecular potential, | T1,T2                            | 1                 |                              |                             |                                     |
| 3          | L7-L9        |                       |           | Studying small systems: periodic and spherical boundary conditions                    | T1,T2                            | 1                 |                              |                             |                                     |
| 4          | L10-<br>L12  |                       |           | Statistical Mechanics: Statistical ensembles                                          | T1,T2                            | 2                 |                              |                             |                                     |
| 5          | L13-         |                       |           | Transformation between ensembles,                                                     | T1,T2                            | 2                 |                              |                             |                                     |

|    | L15    | Fluctuations                          |       |   |  |  |
|----|--------|---------------------------------------|-------|---|--|--|
| 6  | L16-   | Time correlations, Transport          | T1,T2 | 2 |  |  |
|    | L18    | coefficients.                         |       |   |  |  |
| 7  | L19-   | Molecular dynamics: Finite            | T1,T2 | 3 |  |  |
|    | L21    | difference methods, Verlet            |       |   |  |  |
|    |        | algorithm                             |       |   |  |  |
| 8  | L22-   | Linear and nonlinear molecules,       | T1,T2 | 3 |  |  |
|    | L24    | Checks on accuracy.                   |       |   |  |  |
| 9  | L25-   | Monte Carlo methods: Monte Carlo      | T1,T2 | 4 |  |  |
|    | L27    | integration                           |       |   |  |  |
| 10 | L28-   | Importance sampling, Metropolis       | T1,T2 | 4 |  |  |
|    | L30    | method                                |       |   |  |  |
| 11 | L31-   | Molecular liquids.                    | T1,T2 | 4 |  |  |
|    | L33    |                                       |       |   |  |  |
| 12 | L34-   | Analyzing results: Time correlation   | T1,T2 | 5 |  |  |
|    | L36    | functions, Fast Fourier transform     |       |   |  |  |
| 13 | L37-   | Estimation of errors in equilibrium   | T1,T2 | 5 |  |  |
|    | L39    | averages and fluctuations             |       |   |  |  |
| 14 | L40L42 | Errors in time correlation functions. | T1,T2 | 5 |  |  |

Course code: PH 515 Course title: Theoretical and Computational Condensed Matter Physics Pre-requisite(s): Co- requisite(s): Credits: 4L: 2 T: 0 P:4 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher:

Group : A Option 2

| Code:Title: Theoretical and Computational Condensed Matter PhysicsPH 515Theory & Programming using C for solving problems on following topics: |                                                                                                                      |                                                                                                                                                                                                                                                                  |             |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Course                                                                                                                                         | e Obje                                                                                                               | ctives:                                                                                                                                                                                                                                                          |             |  |  |  |  |  |
| The co                                                                                                                                         | The course aims to give students the basic concepts of condensed matter physics and to prepare them to formulate the |                                                                                                                                                                                                                                                                  |             |  |  |  |  |  |
| probler                                                                                                                                        | ms in c                                                                                                              | condensed matter physics so that these can be solved on a computer. The main objectives of the co                                                                                                                                                                | ourse are   |  |  |  |  |  |
| 1.                                                                                                                                             | To te                                                                                                                | ach how Monte-Carlo techniques can be used to solve various physical systems.                                                                                                                                                                                    |             |  |  |  |  |  |
| 2.                                                                                                                                             | To gi<br>mode                                                                                                        | ve concepts of first order phase transitions, second order phase transitions and mean field theory el.                                                                                                                                                           | using Ising |  |  |  |  |  |
| 3.                                                                                                                                             | To te                                                                                                                | ach the equilibrium properties and time evolution of simple fluids.                                                                                                                                                                                              |             |  |  |  |  |  |
| 4.                                                                                                                                             | To p                                                                                                                 | ovide the concept on computation of free energies of solids and how to obtain them numerically.                                                                                                                                                                  | ,           |  |  |  |  |  |
| 5.                                                                                                                                             | To in                                                                                                                | troduce the method of dissipative particle dynamics.                                                                                                                                                                                                             |             |  |  |  |  |  |
| Progra                                                                                                                                         | am Ou                                                                                                                | tcomes:                                                                                                                                                                                                                                                          |             |  |  |  |  |  |
| After ta                                                                                                                                       | aking t                                                                                                              | he course the student should be able to                                                                                                                                                                                                                          |             |  |  |  |  |  |
| 1.                                                                                                                                             | Use I                                                                                                                | Monte-Carlo simulation to obtain the equilibrium configuration of a physical system.                                                                                                                                                                             |             |  |  |  |  |  |
| 2.                                                                                                                                             | Diffe                                                                                                                | rentiate between first order and second order phase transitions and appreciate the efficiency of m                                                                                                                                                               | ean field   |  |  |  |  |  |
|                                                                                                                                                | theor                                                                                                                | y.                                                                                                                                                                                                                                                               |             |  |  |  |  |  |
| 3.                                                                                                                                             | Calcu                                                                                                                | alate transport coefficients and space-time correlation function of simple fluids.                                                                                                                                                                               |             |  |  |  |  |  |
| 4.                                                                                                                                             | Com                                                                                                                  | pute the free energy of perfect or imperfect solids numerically.                                                                                                                                                                                                 |             |  |  |  |  |  |
| 5.                                                                                                                                             | Unde                                                                                                                 | erstand the fundamentals of dissipative particle dynamics technique.                                                                                                                                                                                             |             |  |  |  |  |  |
| Modul                                                                                                                                          | e-1                                                                                                                  | Random Systems                                                                                                                                                                                                                                                   | [10]        |  |  |  |  |  |
|                                                                                                                                                |                                                                                                                      | Generation of Random Numbers, Introduction to Monte Carlo Methods: Integration, Random Walks, Self-Avoiding Walks, Random Walks and Diffusion, Diffusion, Entropy, and the Arrow of Time, Cluster Growth Models, Fractal Dimensionalities of Curves, Percolation |             |  |  |  |  |  |
| Modul                                                                                                                                          | e-2                                                                                                                  | Statistical Mechanics, Phase Transitions, and the Ising Model                                                                                                                                                                                                    | [10]        |  |  |  |  |  |
|                                                                                                                                                |                                                                                                                      | The Ising Model and Statistical Mechanics, Mean-Field Theory, The Monte Carlo Method,                                                                                                                                                                            |             |  |  |  |  |  |
|                                                                                                                                                |                                                                                                                      | The Ising Model and Second-Order Phase Transitions, First-Order Phase Transitions                                                                                                                                                                                |             |  |  |  |  |  |
| Modul                                                                                                                                          | e-3                                                                                                                  | Equilibrium and Dynamical properties of simple fluids                                                                                                                                                                                                            | [10]        |  |  |  |  |  |
|                                                                                                                                                |                                                                                                                      | Thermodynamic measurements, Structure, Packing studies, Cluster analysis, Transport                                                                                                                                                                              |             |  |  |  |  |  |
| M - 11                                                                                                                                         | - 4                                                                                                                  | coefficients Measuring transport coefficients, Space-time correlation functions                                                                                                                                                                                  | [10]        |  |  |  |  |  |
| Modul                                                                                                                                          | e-4                                                                                                                  | Free Energies of Solids                                                                                                                                                                                                                                          | [10]        |  |  |  |  |  |
|                                                                                                                                                |                                                                                                                      | Vacancies and Interstitials, Numerical Calculations                                                                                                                                                                                                              |             |  |  |  |  |  |
| Module 5                                                                                                                                       |                                                                                                                      | Dissinative Particle Dynamics                                                                                                                                                                                                                                    | [10]        |  |  |  |  |  |
| Wiodule-5                                                                                                                                      |                                                                                                                      | Justification of the Method, Implementation of the Method, DPD and Energy Conservation                                                                                                                                                                           |             |  |  |  |  |  |
| Text h                                                                                                                                         | ooks                                                                                                                 |                                                                                                                                                                                                                                                                  |             |  |  |  |  |  |
| T1:                                                                                                                                            | : "Con                                                                                                               | nputation Physics" by Nicholas J. Giordano, Pearson Addison-Wesley                                                                                                                                                                                               |             |  |  |  |  |  |
| T2:                                                                                                                                            | : "The                                                                                                               | Art of Molecular Dynamics Simulation" by D. C. Rappaport, Cambridge University Press.                                                                                                                                                                            |             |  |  |  |  |  |
| Refere                                                                                                                                         | ence b                                                                                                               | ooks:                                                                                                                                                                                                                                                            |             |  |  |  |  |  |

R1: "Understanding Molecular Simulation" by Daan Frenkel, Academic Press.

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | Ν |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | Y |

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1 | CO2 | CO3 | CO4 | C05 |
|---------------------------|-----|-----|-----|-----|-----|
| End Sem Examination Marks |     |     |     |     |     |
| Quiz 1                    |     |     |     |     |     |
| Quiz 2                    |     |     |     |     |     |
| Quiz 3                    |     |     |     |     |     |

#### Indirect Assessment –

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

# Mapping of Course Objectives onto Course Outcomes

| Course Outcome # | Program Outcomes |   |   |   |   |  |  |
|------------------|------------------|---|---|---|---|--|--|
|                  | а                | b | с | d | e |  |  |
| 1                | Η                | L | L | L | L |  |  |
| 2                | L                | Н | L | L | L |  |  |
| 3                | L                | L | Н | L | L |  |  |
| 4                | L                | L | L | Н | L |  |  |
| 5                | L                | L | L | L | Н |  |  |

| Course Outcome # | Program Outcomes |   |   |   |   |   |
|------------------|------------------|---|---|---|---|---|
|                  | а                | b | с | d | e | f |
| 1                | Η                | Η | Η | М | Н | Н |
| 2                | Η                | Η | Η | М | Н | Н |
| 3                | Η                | Η | Η | М | Н | Н |
| 4                | Η                | Η | Η | М | Н | Н |
| 5                | Н                | Н | Н | М | Н | Н |

| Mapping Between COs and Course Delivery (CD) methods |                                                             |                   |                          |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------|-------------------|--------------------------|--|--|--|--|
|                                                      |                                                             | Comme             | Corres Dalianes          |  |  |  |  |
| CD                                                   | Course Delivery methods                                     | Course<br>Outcome | Course Denvery<br>Method |  |  |  |  |
| CD1                                                  | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1, CD2 and CD9         |  |  |  |  |
| CD2                                                  | Tutorials/Assignments                                       | CO2               | CD1, CD2and CD9          |  |  |  |  |
| CD3                                                  | Seminars                                                    | CO3               | CD1, CD2 and CD9         |  |  |  |  |
| CD4                                                  | Mini projects/Projects                                      | CO4               | CD1, CD2 and CD9         |  |  |  |  |
| CD5                                                  | Laboratory experiments/teaching aids                        | CO5               | CD1, CD2 and CD9         |  |  |  |  |
| CD6                                                  | Industrial/guest lectures                                   |                   |                          |  |  |  |  |
| CD7                                                  | Industrial visits/in-plant training                         |                   |                          |  |  |  |  |
| CD8                                                  | Self- learning such as use of NPTEL materials and internets |                   |                          |  |  |  |  |
| CD9                                                  | Simulation                                                  |                   |                          |  |  |  |  |

| Week | Lect | Tenta | Ch. | Topics to be covered             | Text    | COs  | Actual  | Methodology | Remar   |
|------|------|-------|-----|----------------------------------|---------|------|---------|-------------|---------|
| No.  |      | tive  | No. |                                  | Book /  | mapp | Content | used        | ks by   |
|      | No.  | Date  |     |                                  | Refere  | ed   | covered |             | faculty |
|      |      |       |     |                                  | nces    |      |         |             | if any  |
| 1-3  | L1-  |       |     | Generation of Random             | T1, T2  | 1    |         | PPT Digi    |         |
|      | L10  |       |     | Numbers, Introduction to Monte   |         |      |         | Class/Chock |         |
|      |      |       |     | Carlo Methods: Integration,      |         |      |         | -Board      |         |
|      |      |       |     | Random Walks, Self-Avoiding      |         |      |         |             |         |
|      |      |       |     | Walks, Random Walks and          |         |      |         |             |         |
|      |      |       |     | Diffusion, Diffusion, Entropy,   |         |      |         |             |         |
|      |      |       |     | Growth Models Erected            |         |      |         |             |         |
|      |      |       |     | Dimensionalities of Curves       |         |      |         |             |         |
|      |      |       |     | Percolation                      |         |      |         |             |         |
| 3-5  | L11- |       |     | The Ising Model and Statistical  | T1, R1  | 2    |         |             |         |
|      | L20  |       |     | Mechanics, Mean-Field Theory,    |         |      |         |             |         |
|      |      |       |     | The Monte Carlo Method, The      |         |      |         |             |         |
|      |      |       |     | Ising Model and Second-Order     |         |      |         |             |         |
|      |      |       |     | Phase Transitions, First-Order   |         |      |         |             |         |
|      |      |       |     | Phase Transitions                |         |      |         |             |         |
| 6-8  | L21- |       |     | Thermodynamic measurements,      | T1, T2, | 3    |         |             |         |
|      | L30  |       |     | Structure, Packing studies,      | R1      |      |         |             |         |
|      |      |       |     | Cluster analysis, Transport      |         |      |         |             |         |
|      |      |       |     | coefficients Measuring transport |         |      |         |             |         |

|       |             | coefficients, Space-time correlation functions                                                                                                         |               |   |  |  |
|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|--|--|
| 8-10  | L31-<br>L40 | Thermodynamic Integration,<br>Free Energies of Solids, Free<br>Energies of Molecular Solids,<br>Vacancies and Interstitials,<br>Numerical Calculations | T1, T2        | 4 |  |  |
| 11-14 | L41-<br>L50 | Justification of the Method,<br>Implementation of the Method,<br>DPD and Energy Conservation                                                           | T1, T2,<br>R1 | 5 |  |  |

Course code: PH 516 Course title: Nonlinear Dynamics and Chaos Pre-requisite(s): Classical Dynamics Co- requisite(s): Credits: 4L: 2 T: 0 P: 4 Class schedule per week: Class: I.M.Sc. Semester / Level: PE V Branch: PHYSICS Name of Teacher:

| Code:<br>PH 516 |         | Title: Nonlinear Dynamics and Chaos                                                                                                                                                                                                                                                                       | L-T-P-C<br>2- 0-4- 4] |
|-----------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Course          | e Objo  | ectives: The objective of the course is to                                                                                                                                                                                                                                                                | <u> </u>              |
| 1.              | Traiı   | students to calculate fixed points and do stability analysis of various systems motivated from                                                                                                                                                                                                            |                       |
|                 | phys    | ics/biology.                                                                                                                                                                                                                                                                                              |                       |
| 2.              | Give    | a clear concept of bifurcation and some examples of the phenomenon.                                                                                                                                                                                                                                       |                       |
| 3.              | Teac    | h them to plot limit cycles of various differential equations on computer using C language.                                                                                                                                                                                                               |                       |
| 4.              | Teac    | h properties of limit cycles taking examples from physics.                                                                                                                                                                                                                                                |                       |
| 5.              | Trair   | students to solve problems on coevolution and the impact of environment on population growth                                                                                                                                                                                                              | using                 |
|                 | conc    | epts from physics.                                                                                                                                                                                                                                                                                        |                       |
| Course          | e Outo  | comes: The student should be able to                                                                                                                                                                                                                                                                      |                       |
| 1.              | Mod     | el physical or biological systems computationally and obtain their fixed points, saddle points, attr                                                                                                                                                                                                      | ractors, etc.         |
| 2.              | Com     | pute the evolution of phase space as various parameters are changed.                                                                                                                                                                                                                                      |                       |
| 3.              | Visu    | alize limit cycles of various nonlinear systems graphically.                                                                                                                                                                                                                                              |                       |
| 4.              | Solv    | e problems related to oscillators, viz., relaxation oscillators, weakly nonlinear oscillators, etc.                                                                                                                                                                                                       |                       |
| 5.              | Solv    | e simple models of population growth of multiple-species on computer.                                                                                                                                                                                                                                     |                       |
| Modul           | e-1     | Flows on the Line & Circle                                                                                                                                                                                                                                                                                | [12]                  |
|                 |         | Fixed Points and Stability, Population Growth, Linear Stability Analysis, Existence and<br>Uniqueness, Impossibility of Oscillations, Potentials, Solving Equations on the Computer,<br>Uniform Oscillator, Nonuniform Oscillator, Overdamped Pendulum, Fireflies,<br>Superconducting Josephson Junctions |                       |
| Modul           | e-2     | Bifurcations                                                                                                                                                                                                                                                                                              | [10]                  |
|                 |         | Saddle-Node Bifurcation, Transcritical Bifurcation, Laser Threshold, Pitchfork Bifurcation,                                                                                                                                                                                                               |                       |
|                 |         | Overdamped Bead on a Rotating Hoop, Imperfect Bifurcations and Catastrophes, Insect Outbreak, Chaos                                                                                                                                                                                                       |                       |
| Modul           | e-3     | Phase Plane                                                                                                                                                                                                                                                                                               | [10]                  |
|                 |         | Phase Portraits, Existence, Uniqueness, and Topological Consequences, Fixed Points and Linearization, Rabbits versus Sheep, Conservative Systems, Reversible Systems, Pendulum,                                                                                                                           |                       |
|                 |         | Index Theory                                                                                                                                                                                                                                                                                              | 503                   |
| Modul           | e-4     | Limit Cycles                                                                                                                                                                                                                                                                                              | [8]                   |
|                 |         | Oscillators Weakly Nonlinear Oscillators                                                                                                                                                                                                                                                                  |                       |
| Modul           | e-5     | Population Dynamics                                                                                                                                                                                                                                                                                       | [10]                  |
| Wiodul          | 05      | Multispecies model: limit cycles and time delays Randomly Fluctuating Environment Niche                                                                                                                                                                                                                   |                       |
|                 |         | Overlap and Limiting Similarity                                                                                                                                                                                                                                                                           |                       |
| Text b          | ooks    |                                                                                                                                                                                                                                                                                                           | <u>I</u>              |
| T1: No          | onlinea | ar dynamics and Chaos: with applications to physics, biology, chemistry, and engineering by                                                                                                                                                                                                               | Steven H.             |
| Strogat         | tz, CR  | C Press.                                                                                                                                                                                                                                                                                                  |                       |

T2: "Stability and Complexity in Model Ecosystems" by Robert M May, Princeton University Press.

| Course Delivery methods                                |   |
|--------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors | Y |
| Tutorials/Assignments                                  | Y |
| Seminars                                               | Ν |
| Mini projects/Projects                                 | Ν |
| Laboratory experiments/teaching aids                   | Ν |
| Industrial/guest lectures                              | Ν |
| Industrial visits/in-plant training                    | Ν |
| Self- learning such as use of NPTEL materials and      |   |
| internets                                              | Y |
| Simulation                                             | Y |

| Direct Assessment         |                                     |  |  |  |  |  |  |
|---------------------------|-------------------------------------|--|--|--|--|--|--|
| Assessment Tool           | % Contribution during CO Assessment |  |  |  |  |  |  |
| Assignment                | 10                                  |  |  |  |  |  |  |
| Seminar before a commitee | 10                                  |  |  |  |  |  |  |
| Three Quizes              | 30 (10+10+10)                       |  |  |  |  |  |  |
| End Sem Examination Marks | 50                                  |  |  |  |  |  |  |

| Assessment Compoents      | CO1 | CO2 | CO3 | CO4 | C05 |
|---------------------------|-----|-----|-----|-----|-----|
| End Sem Examination Marks |     |     |     |     |     |
| Quiz 1                    |     |     |     |     |     |
| Quiz 2                    |     |     |     |     |     |
| Quiz 3                    |     |     |     |     |     |

#### Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

# Mapping of Course Objectives onto Course Outcomes

| Course Outcome # | Program Outcomes |   |   |   |   |  |  |
|------------------|------------------|---|---|---|---|--|--|
|                  | а                | b | с | d | e |  |  |
| 1                | Н                | L | L | L | L |  |  |
| 2                | L                | Н | L | L | L |  |  |
| 3                | L                | L | Н | L | L |  |  |
| 4                | L                | L | L | Н | L |  |  |
| 5                | L                | L | L | L | Н |  |  |

| Course Outcome # | Program Outcomes |   |   |   |   |   |
|------------------|------------------|---|---|---|---|---|
|                  | а                | b | с | d | e | f |
| 1                | Η                | Η | Η | М | Н | Н |
| 2                | Η                | Η | Η | М | Н | Н |
| 3                | Η                | Η | Η | М | Н | Н |
| 4                | Η                | Η | Η | М | Н | Н |
| 5                | Н                | Η | Н | М | Η | Н |

| Mapping Between COs and Course Delivery (CD) methods |                                                             |         |                  |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------|---------|------------------|--|--|--|--|
|                                                      |                                                             |         |                  |  |  |  |  |
|                                                      |                                                             | Course  | Course Delivery  |  |  |  |  |
| CD                                                   | Course Delivery methods                                     | Outcome | Method           |  |  |  |  |
| CD1                                                  | Lecture by use of boards/LCD projectors/OHP projectors      | CO1     | CD1, CD2 and CD9 |  |  |  |  |
| CD2                                                  | Tutorials/Assignments                                       | CO2     | CD1, CD2and CD9  |  |  |  |  |
| CD3                                                  | Seminars                                                    | CO3     | CD1, CD2 and CD9 |  |  |  |  |
| CD4                                                  | Mini projects/Projects                                      | CO4     | CD1, CD2 and CD9 |  |  |  |  |
| CD5                                                  | Laboratory experiments/teaching aids                        | CO5     | CD1, CD2 and CD9 |  |  |  |  |
| CD6                                                  | Industrial/guest lectures                                   |         |                  |  |  |  |  |
| CD7                                                  | Industrial visits/in-plant training                         |         |                  |  |  |  |  |
| CD8                                                  | Self- learning such as use of NPTEL materials and internets |         |                  |  |  |  |  |
| CD9                                                  | Simulation                                                  |         |                  |  |  |  |  |

| Week | Lect. | Tent  | C  | Topics to be covered             | Text   | COs | Actual  | Methodol  | Remarks    |
|------|-------|-------|----|----------------------------------|--------|-----|---------|-----------|------------|
| No.  | No.   | ative | h. |                                  | Book / | map | Content | ogy       | by faculty |
|      |       | Date  | Ν  |                                  | Refere | ped | covered | used      | if any     |
|      |       |       | 0  |                                  | nces   |     |         |           |            |
| 1-3  | L1-   |       |    | Fixed Points and Stability,      | T1, T2 | 1   |         | PPT Digi  |            |
|      | L12   |       |    | Population Growth, Linear        |        |     |         | Class/Cho |            |
|      |       |       |    | Stability Analysis, Existence    |        |     |         | ck        |            |
|      |       |       |    | and Uniqueness, Impossibility    |        |     |         | -Board    |            |
|      |       |       |    | of Oscillations, Potentials,     |        |     |         |           |            |
|      |       |       |    | Solving Equations on the         |        |     |         |           |            |
|      |       |       |    | Computer, Uniform Oscillator,    |        |     |         |           |            |
|      |       |       |    | Nonuniform Oscillator,           |        |     |         |           |            |
|      |       |       |    | Overdamped Pendulum,             |        |     |         |           |            |
|      |       |       |    | Fireflies, Superconducting       |        |     |         |           |            |
|      |       |       |    | Josephson Junctions              |        |     |         |           |            |
| 4-6  | L13-  |       |    | Saddle-Node Bifurcation,         | T1, T2 | 2   |         |           |            |
|      | L22   |       |    | Transcritical Bifurcation, Laser |        |     |         |           |            |
|      |       |       |    | Threshold, Pitchfork             |        |     |         |           |            |
|      |       |       |    | Bifurcation, Overdamped Bead     |        |     |         |           |            |
|      |       |       |    | on a Rotating Hoop, Imperfect    |        |     |         |           |            |
|      |       |       |    | Bifurcations and Catastrophes,   |        |     |         |           |            |
|      |       |       |    | Insect Outbreak, Chaos           |        |     |         |           |            |
| 6-8  | L23-  |       |    | Phase Portraits, Existence,      | T1,T2  | 3   |         |           |            |
|      |       |       |    | Uniqueness, and Topological      |        |     |         |           |            |

|       | LL3<br>2    | Consequences, Fixed Points<br>and Linearization, Rabbits<br>versus Sheep, Conservative<br>Systems, Reversible Systems,<br>Pendulum, Index Theory |        |   |  |  |
|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|--|--|
| 9-10  | L33-<br>L40 | Ruling Out Closed Orbits,<br>Poincare-Bendixson Theorem,<br>Lienard Systems, Relaxation<br>Oscillators, Weakly Nonlinear<br>Oscillators          | T1,T2  | 4 |  |  |
| 11-14 | L41-<br>L50 | Multispecies model: limit<br>cycles and time delays,<br>Randomly Fluctuating<br>Environment, Niche Overlap<br>and Limiting Similarity            | T1, T2 | 5 |  |  |

Course code: PH 517

# Course title: Nonconventional Energy Materials

**Pre-requisite**(s):Student should qualify 'Solid State Physics' or similar paper

Co- requisite(s):Knowledge of Mathematical Physics, Quantum Mechanics, and Statistical Mechanics

Credits: 4L: 4 T: 0 P: 0 Class schedule per week:4 Class: I.M.Sc./ M.Sc. Semester / Level: X/IV Branch:Physics Name of Teacher:

| G      | roup   | : B <u>Option 1</u>                                                                                |           |
|--------|--------|----------------------------------------------------------------------------------------------------|-----------|
| Code:  | נ      | Title: Nonconventional Energy Materials                                                            | L-T-P-C   |
| PH 51  | 17     |                                                                                                    | [4-0-0-4] |
|        |        |                                                                                                    |           |
| Cours  | se Ob  | jectives                                                                                           |           |
|        |        | •                                                                                                  |           |
| This c | ourse  | enables the students:                                                                              |           |
|        | A.     | Todefine the current scenario of the conventional sources of energy and importance of              |           |
|        |        | sustainable energy sources.                                                                        |           |
|        | В.     | To explain the basic of PN Junction solar cell.                                                    |           |
|        | С.     | To define the solar cell characterization.                                                         |           |
|        | D.     | To illustrate the various solar cell technologies.                                                 |           |
|        | E.     | To explain the other nonconventional energy sources                                                |           |
|        |        |                                                                                                    |           |
| Cours  | se Ou  | itcomes                                                                                            |           |
|        | .1     |                                                                                                    |           |
| After  | the co | ompletion of this course, students will be able to:                                                |           |
|        | 1.     | Explain the current status of conventional sources of energy and list the various sustainable      |           |
|        | ~      | energy sources.                                                                                    |           |
|        | 2.     | Define various properties of the semiconducting materials, formation of PN junction and            |           |
|        | 2      | Demonstrate the measurement of solar cell peremeters and solar cell.                               |           |
|        | э.     | design for high Voc. design for high FE                                                            |           |
|        | 4      | Explain the fabrication of wafer based solar calls, thin film solar call, organic solar calls, dva |           |
|        | 4.     | sensitized solar cell. GaAs solar cells. Thermo-photovoltaics and multijunction solar cells.       |           |
|        | 5      | Discuss the concepts of wind energy bio energy tidal power fuel cells, and solar thermal           |           |
| Modu   | J.     | Energy sources and their availability conventional sources of energy. Fossil fuel Hydraulic        | [5]       |
| Wiodu  | 10-1   | energy Nuclear energy: nuclear fission nuclear fusion Environmental impact of conventional         | [5]       |
|        |        | sources of energy Need for sustainable energy sources Nonconventional energy sources               |           |
|        |        | Current status of renewable energy sources                                                         |           |
| Modu   | le-2   | Structure of solar cell materials direct and indirect hand gap semiconductor carrier               | [10]      |
| Modu   | 10 2   | concentration and distribution drift and diffusion current densities P-N Junction: space charge    | [10]      |
|        |        | region energy hand diagram carrier movements and current densities carrier concentration           |           |
|        |        | profile: P-N junction in non-equilibrium condition I-V Relation P-N Junction under                 |           |
|        |        | Illumination. Generation of photovoltage. Light generated current. I-V equation of solar cells.    |           |
| Modu   | le-3   | Solar Cell Characteristics and Cell parameters: Short circuit current open circuit voltage fill    | [10]      |
| 111044 |        | factor, efficiency: losses in solar cells. Solar Cell Design: design for high Isc. design for high | [10]      |
|        |        | Voc. design for high FF: Solar spectrum at the Earth's surface, solar simulator: I-V               |           |
|        |        | measurement, quantum efficiency measurement, minority carrier lifetime and diffusion length        |           |
|        |        | measurement.                                                                                       |           |
| Modu   | le-4   | Wafer-based Si solar cell fabrication: saw damage removal and surface texturing P-N Junction       | [15]      |
|        |        | formation, ARC and surface passivation, metal contacts—pattern defining and deposition. High       | [-•]      |
|        |        | efficiency solar cells, Thin Film Solar Cell Technologies: advantages of thin film technologies.   |           |
|        |        | thin films solar cell structures, thin film crystalline, microcrystalline, polycrystalline, and    |           |
|        |        | amorphous Si solar cells. Emerging solar cell technologies: working principle of organic solar     |           |

|          | cells, material properties and structure of organic solar cells; Dye-sensitized Solar Cell: working |      |
|----------|-----------------------------------------------------------------------------------------------------|------|
|          | principle, materials and their Properties; GaAs solar cells, Thermo-photovoltaics, multijunction    |      |
|          | solar cells.                                                                                        |      |
| Module-5 | Other nonconventional Energy Sources: Wind Energy: Classification of wind mills, advantages         | [10] |
|          | and disadvantage of wind energy; Bio Energy: Bio gas and its compositions, process of bio gas,      |      |
|          | generation - wet process, dry process, utilization and benefits of biogas technology. Tidal         |      |
|          | Power: Introduction, classification of tidal power plants, factors affecting the suitability of the |      |
|          | site for tidal power plant, advantages and disadvantages of tidal power plants. Fuel Cells:         |      |
|          | Introduction, working of fuel cell, types of fuel cells, advantages of fuel cell technology. Solar  |      |
|          | Thermal: Solar collectors, solar cookers, solar water heater.                                       |      |
| Text/Ref | erence Books:                                                                                       |      |

- 1. Solar cells: Operating principles, technology and system applications by Martin A Green, Prentice Hall Inc, Englewood Cliffs, NJ, USA, 1981.
- 2. Semiconductor for solar cells, H J Moller, Artech House Inc, MA, USA, 1993.
- 3. Solis state electronic device, Ben G Streetman, Prentice Hall of India Pvt Ltd., New Delhi 1995.
- 4. Direct energy conversion, M.A. Kettani, Addision Wesley Reading, 1970.
- 5. Hand book of Batteries and fuel cells, Linden, Mc Graw Hill, 1984.

| Course Delivery methods                                     |   |  |
|-------------------------------------------------------------|---|--|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |  |
| Tutorials/Assignments                                       | Y |  |
| Seminars                                                    | N |  |
| Mini projects/Projects                                      | N |  |
| Laboratory experiments/teaching aids                        | N |  |
| Industrial/guest lectures                                   | N |  |
| Industrial visits/in-plant training                         | N |  |
| Self- learning such as use of NPTEL materials and internets | Y |  |
| Simulation                                                  | N |  |
|                                                             |   |  |

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2          | CO3          | CO4          | CO5          |
|---------------------------|--------------|--------------|--------------|--------------|--------------|
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Quiz I                    | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| Quiz II                   |              |              |              | $\checkmark$ | $\checkmark$ |

#### Indirect Assessment -

- **1.** Student Feedback on Faculty
- 2. Student Feedback on Course Outcome
- **3.** Teacher's assessment

# **Mapping between Objectives and Outcomes**

#### Mapping between Course Objectives and Course Outcomes

| Course | 1 | 2 | 3 | 4 | 5 |  |
|--------|---|---|---|---|---|--|

| Objectives |   |   |   |   |   |
|------------|---|---|---|---|---|
| А          | Н | L | L | L | L |
| В          | Μ | Н | М | М | L |
| С          | М | Μ | Н | L | L |
| D          | М | L | L | Η | L |
| Е          | М | L | L | L | Н |

| Course    | Program Outcomes |   |   |   |   |   |  |  |  |
|-----------|------------------|---|---|---|---|---|--|--|--|
| Outcome # | а                | b | с | d | e | f |  |  |  |
| 1         | L                | L | М | Н | L | Н |  |  |  |
| 2         | М                | Н | М | Н | Н | Н |  |  |  |
| 3         | М                | Н | М | Н | Н | Н |  |  |  |
| 4         | М                | Н | М | Н | Н | Н |  |  |  |
| 5         | М                | Н | М | Н | Н | Н |  |  |  |

|     | Mapping Between COs and Course Delivery (CD) methods        |  |         |                        |  |  |  |  |  |
|-----|-------------------------------------------------------------|--|---------|------------------------|--|--|--|--|--|
|     |                                                             |  |         |                        |  |  |  |  |  |
|     | Course Delivery methods                                     |  | Course  | <b>Course Delivery</b> |  |  |  |  |  |
| CD  |                                                             |  | Outcome | Method                 |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      |  | CO1     | CD1 and CD2            |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       |  | CO2     | CD1 and CD2            |  |  |  |  |  |
| CD3 | Seminars                                                    |  | CO3     | CD1 and CD2            |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      |  | CO4     | CD1 and CD2            |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        |  | CO5     | CD1 and CD2            |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |  | -       | -                      |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |  | -       | -                      |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |  | -       | -                      |  |  |  |  |  |
| CD9 | Simulation                                                  |  | -       | -                      |  |  |  |  |  |

| Week | Lect. | Tentativ | Ch. | Topics to be covered         | Text     | Cos    | Actual  | Method | Remarks by |
|------|-------|----------|-----|------------------------------|----------|--------|---------|--------|------------|
| No.  | No.   | e Date   | No. |                              | Book /   | mapped | Content | ology  | faculty if |
|      |       |          |     |                              | Referenc |        | covered | used   | any        |
|      |       |          |     |                              | es       |        |         |        |            |
|      | L1    |          |     | World energy status, current | R1       |        |         |        |            |
|      |       |          |     | energy scenario in India,    |          |        |         |        |            |
|      |       |          |     | environmental aspects of     |          |        |         |        |            |
|      |       |          |     | energy utilization,          |          |        |         |        |            |
|      |       |          |     | Classification of energy,    |          |        |         |        |            |
|      |       |          |     | Energy Resources, need of    |          |        |         |        |            |
|      |       |          |     | renewable energy, non-       |          |        |         |        |            |
|      |       |          |     | conventional energy          |          |        |         |        |            |
|      |       |          |     | sources.                     |          |        |         |        |            |
|      | L2,   |          |     | An overview of               | R1       |        |         |        |            |
|      | L3    |          |     | developments in Offshore     |          |        |         |        |            |
|      |       |          |     | Wind Energy, Tidal Energy,   |          |        |         |        |            |
|      |       |          |     | Wave energy systems,         |          |        |         |        |            |
|      |       |          |     | Ocean energy,                |          |        |         |        |            |
|      |       |          |     |                              |          |        |         |        |            |

| I.A.         | Thermal Energy Conversion.     | R1                              |   |  |
|--------------|--------------------------------|---------------------------------|---|--|
| 1.5          | solar energy biomass           |                                 |   |  |
| 1.5          | biochemical conversion         |                                 |   |  |
|              | biogas generation              |                                 |   |  |
|              | goothermal energy tidal        |                                 |   |  |
|              | geotiletinal energy tidal      |                                 |   |  |
|              | Energy, Hydroelectricity.      |                                 |   |  |
|              | Energy conservation and        |                                 |   |  |
|              | storage.                       |                                 |   |  |
| L6-          | Solar energy, its importance,  | R1, R2                          |   |  |
| L10          | storage of solar energy,       | T1                              |   |  |
|              | solar pond, non-convective     |                                 |   |  |
|              | solar pond, applications of    |                                 |   |  |
|              | solar pond and solar energy,   |                                 |   |  |
|              | solar water heater, flat plate |                                 |   |  |
|              | collector, solar distillation, |                                 |   |  |
|              | solar cooker, solar green      |                                 |   |  |
|              | houses, solar cell             |                                 |   |  |
| L11-         | absorption air conditioning.   | R1, R2                          |   |  |
| L15          | Need and characteristics of    | T1                              |   |  |
|              | photovoltaic (PV) systems.     |                                 |   |  |
|              | PV models and equivalent       |                                 |   |  |
|              | circuits and sun tracking      |                                 |   |  |
|              | systems                        |                                 |   |  |
| I 16         | Wind Energy: Fundamentals      | R1 R2                           |   |  |
| L10-<br>L 10 | of Wind energy Wind            | $\mathbf{K}_{1},\mathbf{K}_{2}$ |   |  |
| L19          | Turbinos and different         |                                 |   |  |
|              | interest mashings in wind      |                                 |   |  |
|              | electrical machines in wind    |                                 |   |  |
|              | turbines, Power electronic     |                                 |   |  |
|              | interfaces, and grid           |                                 |   |  |
| 1.20         | interconnection topologies.    | D1 D0                           |   |  |
| L20-         | Ocean Energy, Potential        | R1, R2                          |   |  |
| L22          | against Wind and Solar,        |                                 |   |  |
|              | Wave Characteristics, Wave     |                                 |   |  |
|              | Energy Devices.                |                                 |   |  |
| L23-         | Tide characteristics and       | R1, R2                          |   |  |
| L25          | Statistics, Tide Energy        |                                 |   |  |
|              | Technologies, Ocean            |                                 |   |  |
|              | Thermal Energy, Osmotic        |                                 |   |  |
|              | Power, Ocean Bio-mass.         |                                 |   |  |
| L26-         | Biomass energy, resources,     | R1, R2                          |   |  |
| L30          | conversion, gasification,      |                                 |   |  |
|              | liquefaction, production,      |                                 |   |  |
|              | energy farming,                |                                 |   |  |
| L31-         | Geothermal Energy:             | R1, R2                          |   |  |
| L33          | Geothermal Resources,          |                                 |   |  |
|              | Geothermal Technologies.       |                                 |   |  |
| L34.         | small hydro resources.         | R1, R2                          |   |  |
| L35          | Lavout, water turbines.        | ,                               |   |  |
|              | classifications, generators,   |                                 |   |  |
|              | status.                        |                                 |   |  |
| L36-         | Direct Energy conversion:      | R1. R2                          |   |  |
| 1.38         | Thermoelectric effects         |                                 |   |  |
|              | generators Thermionic          |                                 |   |  |
|              | generators magneto hydro       |                                 |   |  |
|              | generators, magneto nyuro      | 1                               | 1 |  |

|   |             | dynamics generators, Fuel cells                                                                                                                                      |  |
|---|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ] | L39,<br>L40 | photovoltaic       generators,       R1, R2         electrostatic       mechanical         generators,       Thin film solar         cells,       nuclear batteries. |  |

Course code: PH 518 **Course title: Cryogenic Physics** Pre-requisite(s): **Co- requisite(s):** Credits: **4**L: 4 T: 0 P: 0 **Class schedule per week:** Class: I.M.Sc. Semester / Level:PE VI / VII **Branch: PHYSICS** Name of Teacher: Group : B

**Option 2** 

| Code:                |                                                                                                                                                | Title: Cryogenic Physics                                                                                                                                                                                                                                                                                                                                                           |            |  |  |  |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
|                      | 0<br>60 ()]                                                                                                                                    | iactives • This course enables the students                                                                                                                                                                                                                                                                                                                                        | [4-0-0-4]  |  |  |  |
| Cour                 | A.                                                                                                                                             | To become familiar with low temperature and the principles and methods to produce low temperature                                                                                                                                                                                                                                                                                  | ture.      |  |  |  |
|                      | В.                                                                                                                                             | To acquire basic understanding of the macroscopic manifestations of quantum phenomenon at low temperatures like superfluidity of He <sup>4</sup> , He <sup>3</sup> and superconductivity.                                                                                                                                                                                          | v          |  |  |  |
|                      | C. To acquire basic knowledge of the behaviour of various physical properties at low temperature.                                              |                                                                                                                                                                                                                                                                                                                                                                                    |            |  |  |  |
|                      | <ul> <li>D. To become aware of various special phenomena observed at low temperature and their manifestation i physical properties.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                    |            |  |  |  |
|                      | E                                                                                                                                              | Become conversant with the principles and methods to produce low temperature.                                                                                                                                                                                                                                                                                                      |            |  |  |  |
| Cour                 | se Oi                                                                                                                                          | <b>ter the completion of this course, students will be</b>                                                                                                                                                                                                                                                                                                                         |            |  |  |  |
|                      | 1.                                                                                                                                             | Able to explain the physics and production of low temperature.                                                                                                                                                                                                                                                                                                                     |            |  |  |  |
|                      | 2.                                                                                                                                             | Able to describe and analyze the macroscopic manifestations of quantum phenomenon at low temp                                                                                                                                                                                                                                                                                      | peratures. |  |  |  |
|                      | 3.                                                                                                                                             | Able to summarize and apply the knowledge of the behaviour of various physical properties at low temperature.                                                                                                                                                                                                                                                                      | 7          |  |  |  |
|                      | 4.                                                                                                                                             | Able to discuss and compare various special phenomena observed at low temperatures.                                                                                                                                                                                                                                                                                                |            |  |  |  |
|                      | 5.                                                                                                                                             | Compare different methods of producing low temperature.                                                                                                                                                                                                                                                                                                                            |            |  |  |  |
| Modu                 | ule-1                                                                                                                                          | <b>Quantum Fluids:</b> Introduction to low temperature physics; cryo-liquids; helium-general properties; superfluid <sup>4</sup> He, experimental observation, two-fluid model and Bose-Einstein condensation; normal-fluid and superfluid <sup>3</sup> He; mixtures of <sup>3</sup> He and <sup>4</sup> He.                                                                       | [8]        |  |  |  |
| Modu                 | ıle-2                                                                                                                                          | Solids at Low Temperature (Phonons and Electrons):                                                                                                                                                                                                                                                                                                                                 |            |  |  |  |
|                      |                                                                                                                                                | Specific heat of phonons-Debye model, significance of the Debye temperature; specific heat of conduction electrons in simple metals; electrical conductivity, relaxation-time approximation, Matthiessen's rule, electron-phonon scattering, electron-magnon scattering; thermal conductivity of metals; Kondo effect; Heavy Fermion Systems.                                      |            |  |  |  |
| Modu                 | ıle-3                                                                                                                                          | Solids at Low Temperature (Magnetic Moments, Spins): Paramagnetic systems-isolated                                                                                                                                                                                                                                                                                                 | [8]        |  |  |  |
|                      |                                                                                                                                                | spins, magnetic contribution to specific heat, Schottky anomaly; spin waves-magnons, ferromagnets, anti-ferromagnets.                                                                                                                                                                                                                                                              |            |  |  |  |
| Modu                 | ıle-4                                                                                                                                          | Solids at Low Temperature (Introduction to Superconductivity, Shubnikov-de Haas                                                                                                                                                                                                                                                                                                    | [8]        |  |  |  |
|                      |                                                                                                                                                | Oscillations, Colossal Magnetoresistance):<br>Transition temperature, Meissner effect, type-I and type-II superconductors;<br>phenomenological description, London equations; microscopic theory of superconductors;<br>flux quantization; Shubnikov-de Haas (SdH) oscillations, quantization of Bloch electrons in a<br>uniform magnetic field; colossal magnetoresistance (CMR). |            |  |  |  |
| Modu                 | ule-5                                                                                                                                          | <b>Refrigeration:</b> Liquefaction of gases, expansion engines, Joule-Thomson expansion; closed cycle refrigerators, Gifford Mc-Mahon coolers; simple-helium bath cryostats; <sup>3</sup> He- <sup>4</sup> He dilution refrigerator; Pomeranchuk cooling; refrigeration by adiabatic demagnetization of a paramagnetic salt and adiabatic nuclear demagnetization.                 | [8]        |  |  |  |
| <u>T</u><br>1.<br>2. | <u>extba</u><br>. Lo<br>. Ma                                                                                                                   | <u>oks:</u><br>w-Temperature Physics, Christian Enss and Siegfried Hunklinger, Springer 2005.<br>atter and Methods at Low Temperatures, Frank Pobell, Springer 2007.                                                                                                                                                                                                               |            |  |  |  |

#### **References:**

- 1. Introduction to Solid State Physics, Charles Kittel, 8<sup>th</sup> edition, John Wiley and Sons, 2005. (For SdH oscillations)
- 2. Solid State Physics, Neil W. Ashcroft and N. David Mermin, Harcourt College Publishers, 1976. (For SdH oscillations)

| Course Delivery methods                                     |     |
|-------------------------------------------------------------|-----|
| Lecture by use of boards/LCD projectors/OHP projectors      | Yes |
| Tutorials/Assignments                                       | Yes |
| Seminars                                                    | No  |
| Mini projects/Projects                                      | Yes |
| Laboratory experiments/teaching aids                        | Yes |
| Industrial/guest lectures                                   | No  |
| Industrial visits/in-plant training                         | No  |
| Self- learning such as use of NPTEL materials and internets | Yes |
| Simulation                                                  | No  |

## **Course Assessment tools & Evaluation procedure**

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| AssessmentCompoents       | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination Marks | Yes | Yes | Yes | No  | No  |
| End Sem Examination Marks | Yes | Yes | Yes | Yes | Yes |
| Assignment                | Yes | Yes | Yes | Yes | Yes |

#### Indirect Assessment –

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

#### **Mapping of Course Outcomes onto Program Outcomes**

| Course    | Program Outcomes |   |   |   |   |   |  |
|-----------|------------------|---|---|---|---|---|--|
| Outcome # | a                | b | С | d | e | f |  |
| 1         | L                | Н | Н | L | Н | М |  |
| 2         | М                | Н | Н | L | Н | М |  |
| 3         | М                | Н | Н | L | Н | М |  |
| 4         | L                | Н | Н | L | Н | Μ |  |
| 5         | L                | Н | Н | L | Н | М |  |

| Course    | Course Objectives |   |   |   |   |  |  |  |
|-----------|-------------------|---|---|---|---|--|--|--|
| Outcome # | a b               |   | С | d | e |  |  |  |
| 1         | Н                 | Н | Н | L | L |  |  |  |
| 2         | Μ                 | Н | Μ | Μ | L |  |  |  |

| 3 | М | М | Н | М | L |
|---|---|---|---|---|---|
| 4 | М | М | Н | Н | L |
| 5 | М | L | L | L | Н |

|     | Mapping Between COs and Course Delivery (CD) methods |  |                       |           |          |  |  |  |  |
|-----|------------------------------------------------------|--|-----------------------|-----------|----------|--|--|--|--|
|     |                                                      |  |                       |           |          |  |  |  |  |
|     |                                                      |  |                       | Course    | Delivery |  |  |  |  |
| CD  | Course Delivery methods                              |  | <b>Course Outcome</b> | Method    |          |  |  |  |  |
|     | Lecture by use of boards/LCD projectors/OHP          |  |                       | CD1, CD2, | CD4,CD5  |  |  |  |  |
| CD1 | projectors                                           |  | CO1                   | and CD8   |          |  |  |  |  |
|     |                                                      |  |                       | CD1, CD2, | CD4,CD5  |  |  |  |  |
| CD2 | Tutorials/Assignments                                |  | CO2                   | and CD8   |          |  |  |  |  |
|     |                                                      |  |                       | CD1, CD2, | CD4,CD5  |  |  |  |  |
| CD3 | Seminars                                             |  | CO3                   | and CD8   |          |  |  |  |  |
|     |                                                      |  |                       | CD1, CD2, | CD4,CD5  |  |  |  |  |
| CD4 | Mini projects/Projects                               |  | CO4                   | and CD8   |          |  |  |  |  |
|     |                                                      |  |                       | CD1, CD2, | CD4,CD5  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                 |  | CO5                   | and CD8   |          |  |  |  |  |
| CD6 | Industrial/guest lectures                            |  |                       |           |          |  |  |  |  |
| CD7 | Industrial visits/in-plant training                  |  |                       |           |          |  |  |  |  |
|     | Self- learning such as use of NPTEL materials        |  |                       |           |          |  |  |  |  |
| CD8 | and internets                                        |  |                       |           |          |  |  |  |  |
| CD9 | Simulation                                           |  |                       |           |          |  |  |  |  |

| Week | Lect. | Tentative | Module | Topics to be covered            | Text   | COs    | Actual  | Methodolo  | Remarks  |
|------|-------|-----------|--------|---------------------------------|--------|--------|---------|------------|----------|
| No.  | No.   | Date      | No.    |                                 | Book / | mapped | Content | gyused     | byfacult |
|      |       |           |        |                                 | Refere |        | covered |            | y if any |
|      |       |           |        |                                 | nces   |        |         |            |          |
| 1-2  | L1    |           | Ι      | Introduction to low             | T1-T2  | CO-1   |         | PPT Digi   |          |
|      |       |           |        | temperature physics,            |        |        |         | Class/Chal |          |
|      |       |           |        | course objectives,              |        |        |         | k-Board    |          |
|      |       |           |        | grading scheme                  |        |        |         |            |          |
|      | L2-   |           |        | Cryoliquids, general            | T1-T2  | CO-1   |         | PPT Digi   |          |
|      | L5    |           |        | properties of He,               |        |        |         | Class/Chal |          |
|      |       |           |        | Superfluid <sup>4</sup> He,     |        |        |         | k-Board    |          |
|      |       |           |        | Experimental                    |        |        |         |            |          |
|      |       |           |        | Observation, Two                |        |        |         |            |          |
|      |       |           |        | fluid model, Bose               |        |        |         |            |          |
|      |       |           |        | Einstein Condensation           |        |        |         |            |          |
| 2    | L6-7  |           |        | Superfluid and Normal           | T1-T2  | CO-1   |         | PPT Digi   |          |
|      |       |           |        | Fluid <sup>3</sup> He.          |        |        |         | Class/Chal |          |
|      |       |           |        |                                 |        |        |         | k-Board    |          |
| 2    | L8    |           |        | Mixtures of <sup>3</sup> He and | T1-T2  | CO-1   |         | PPT Digi   |          |
|      |       |           |        | <sup>4</sup> He.                |        |        |         | Class/Chal |          |
|      |       |           |        |                                 |        |        |         | k-Board    |          |
| 3    | L9-   |           | II     | Solids at Low                   | T1-T2  | CO-2   |         | PPT Digi   |          |
|      | L10   |           |        | Temperature: Phonons            |        |        |         | Class/Chal |          |
|      |       |           |        | and electrons, specific         |        |        |         | k-Board    |          |
|      |       |           |        | heat of Phonons,                |        |        |         |            |          |
|      |       |           |        | Debye model                     |        |        |         |            |          |
| 3    | L11   |           |        | Specific heat of                | T1-T2  | CO-2   |         | PPT Digi   |          |
|      |       |           |        | conduction electrons in         |        |        |         | Class/Chal |          |

|     |             |     | simple metals                                                                                                                                                                                                                                                                                                                                                      |                     |      | 1 | k-Board                           |  |
|-----|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|---|-----------------------------------|--|
| 3-4 | L11-<br>L13 |     | Electrical conductivity,<br>relaxation-time<br>approximation,<br>Matthiessen's rule,<br>electron-phonon<br>scattering, electron-<br>magnon scattering                                                                                                                                                                                                              | T1-T2               | CO-2 |   | PT Digi<br>Class/Chal<br>c-Board  |  |
| 4   | 16          |     | of metals; Kondo<br>effect; Heavy Fermion<br>Systems                                                                                                                                                                                                                                                                                                               | 11-12               | CO-2 | ] | Class/Chal<br>k-Board             |  |
| 5   | L17-<br>20  | III | Solids at Low<br>Temperature<br>(Magnetic Moments,<br>Spins) Paramagnetic<br>systems-isolated spins,<br>magnetic contribution<br>to specific heat,<br>Schottky anomaly                                                                                                                                                                                             | T1-T2               | CO-3 |   | PT Digi<br>Class/Chal<br>c-Board  |  |
| 6   | L21-<br>24  |     | Spin waves-magnons,<br>ferromagnets, anti-<br>ferromagnets                                                                                                                                                                                                                                                                                                         | T1-T2               | CO-3 | ] | PPT Digi<br>Class/Chal<br>k-Board |  |
| 7   | L25-<br>28  | IV  | Solids at Low<br>Temperature<br>(Introduction to<br>Superconductivity,<br>Shubnikov-de Haas<br>Oscillations , Colossal<br>Magnetoresistance)<br>Transition<br>temperature, Meissner<br>effect, type-I and type-<br>II superconductors;<br>phenomenological<br>description, London<br>equations; microscopic<br>theory of<br>superconductors; flux<br>quantization; | T1-T2               | CO-4 |   | PT Digi<br>Class/Chal<br>c-Board  |  |
| 8   | L29-<br>32  |     | Shubnikov-de Haas<br>(SdH) oscillations,<br>quantization of Bloch<br>electrons in a uniform<br>magnetic field;<br>colossal<br>magnetoresistance<br>(CMR).                                                                                                                                                                                                          | T1-<br>T2,<br>R1-R2 | CO-4 |   | 2PT Digi<br>Class/Chal<br>c-Board |  |
| 9   | L33-<br>34  | V   | Refrigeration:<br>Liquefaction of gases,<br>expansion engines,<br>Joule-Thomson<br>expansion                                                                                                                                                                                                                                                                       | T1-T2               | CO-5 |   | PPT Digi<br>Class/Chal<br>s-Board |  |

| 9  | L35- | Closed                           | cycle    | T1-T2 | CO-5 | PPT Digi   |  |
|----|------|----------------------------------|----------|-------|------|------------|--|
|    | 36   | refrigerators,                   | Gifford  |       |      | Class/Chal |  |
|    |      | Mc-Mahon                         | coolers; |       |      | k-Board    |  |
|    |      | simple-helium                    | h bath   |       |      |            |  |
|    |      | cryostats                        |          |       |      |            |  |
| 10 | L37- | <sup>3</sup> He- <sup>4</sup> He | dilution | T1-T2 | CO-5 | PPT Digi   |  |
|    | 40   | refrigerator;                    |          |       |      | Class/Chal |  |
|    |      | Pomeranchuk                      | cooling; |       |      | k-Board    |  |
|    |      | refrigeration                    | by       |       |      |            |  |
|    |      | adiabatic                        |          |       |      |            |  |
|    |      | demagnetizati                    | on of a  |       |      |            |  |
|    |      | paramagnetic                     | salt and |       |      |            |  |
|    |      | adiabatic                        | nuclear  |       |      |            |  |
|    |      | demagnetizati                    | on.      |       |      |            |  |

Course code: PH 519 Course title: Physics of Thin Films Pre-requisite(s): Co- requisite(s): Credits: 4L: 4 T: 0 P: 00 Class schedule per week: 0x Class: I.M.Sc. / M.Sc. Semester / Level:X / IV Branch: Physics Name of Teacher:

Group: B

Option 3

| Code   |         | Title: Physics of Thin Films                                                                     | L-T-P-C |
|--------|---------|--------------------------------------------------------------------------------------------------|---------|
| PH 51  | 19      |                                                                                                  | [4004]  |
| Cours  | se Obj  | ectives                                                                                          |         |
| This c | ourse e | enables the students to:                                                                         |         |
|        | А.      | Definevacuum and compare various vacuum pumps and gauges.                                        |         |
|        | В.      | Outline the thermodynamics of thin films.                                                        |         |
|        | C.      | Illustrate the mechanism of thin film formation.                                                 |         |
|        | D.      | Explain various techniques of thin film formation.                                               |         |
|        | E.      | Summarize various properties of thin films.                                                      |         |
| Cours  | so Out  | comes                                                                                            |         |
| After  | the cor | npletion of this course, students will be able to:                                               |         |
|        | 1.      | Demonstrate various types of pumps and gauges, inspect leak in vacuum and can design a           |         |
|        |         | vacuum system.                                                                                   |         |
|        | 2.      | Define the thermodynamical parameters of thin films and can outline interdiffusion in thin       |         |
|        |         | films.                                                                                           |         |
|        | 3.      | Demonstrate the stages of thin film formation and can outline the conditions for the             |         |
|        |         | formation of amorphous, crystalline and epitaxial films.                                         |         |
|        | 4       | Illustrate and compare physical vapour deposition (PVD) and chemical vapour deposition           |         |
|        | _       | (CVD) techniques.                                                                                |         |
|        | 5.      | Define various thin film properties and outline the techniques of their determination.           |         |
| Modu   | ıle-1   | Vacuum Science & Technology:                                                                     | [8]     |
|        |         | Classification of vacuum ranges, Kinetic theory of gases, gas transport and pumping,             |         |
|        |         | Conductance and Throughput, Classification of vacuum pumps, single stage and double stage        |         |
|        |         | rotary pump, diffusion pump, turbomolecular pump, cryopump and Classification of gauges,         |         |
|        |         | Mechanical gauges: McLeod gauge, Thermal conductivity gauges: Pirani gauge and                   |         |
|        |         | thermocouple gauge, Ionization gauges: Bayard-Alpert gauge, Penning gauge, leak detection.       |         |
| Modu   | ıle-2   | Basic Thermodynamics of Thin Films                                                               | [8]     |
|        |         | Solid surface, interphase surface, Surface energies: Binding energy and Interatomic Potential    |         |
|        |         | energy, latent heat, surface tension, Liquid surface energy measurement by capillary effect,     |         |
|        |         | by zero creep, magnitude of surface energy, General concept, jump frequency and diffusion        |         |
|        |         | flux, Fick's First law, Nonlinear diffusion, Fick's second law, calculation of diffusion         |         |
|        |         | coefficient, interdiffusion and diffusion in                                                     |         |
|        | 1 0     | thin films                                                                                       |         |
| Modu   | ile-3   | Mechanisms of Film Formation                                                                     | [8]     |
|        |         | Stages of thin film formation: Nucleation, Adsorption, Surface diffusion, capillarity theory of  |         |
|        |         | nucleation, statistical theory of nucleation, growth and coalescence of islands, grain structure |         |
|        |         | and microstructure of thin films, diffusion during film growth, polycrystalline and amorphous    |         |
|        |         | tims, i neories of epitaxy, role of interfacial layer, epitaxial film growth, super lattice      |         |
|        | 1 4     |                                                                                                  | F4 = 3  |
| Modu   | ıle-4   | Methods of Preparation of Thin Films:                                                            | 15      |

|             | Physical vapour deposition: Vacuum evaporation-Hertz- Knudsen equation, evaporation from<br>a source and film thickness uniformity, Glow discharge and plasmas-Plasma structure, DC,<br>RF and microwave excitation; Sputtering processes-Mechanism and sputtering yield,<br>Sputtering of alloys; magnetron sputtering, Reactive sputtering; vacuum arc: cathodic and<br>anodic vacuum arc deposition. Chemical vapour deposition: Thermodynamics of CVD, gas<br>transport, growth kinetics, Plasma chemistry, plasma etching mechanisms; etch rate and<br>selectivity, orientation dependent etching; PECVD. |            |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Module-5    | Characterization of thin films:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [6]        |
|             | Deposition rate, Film thickness and uniformity, Structural properties: Crystallographic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
|             | properties, defects, residual stresses, adhesion, hardness, ductility, electrical properties,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|             | magnetic properties; optical properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| Text book   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 1. Th       | e Material Science of Thin Films by Milton Ohring, Academic Press, Inc., 1992.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| 2. Ha       | ndbook of Thin Films by Maissel and Glang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| 3. Th       | in Film Phenomena by K. L. Chopra (McGraw Hill, 1969)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Reference   | books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| 1. Th       | in Film Deposition: Principles & Practice by Donald L. Smith (McGraw Hill, 1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 2. Co       | ating Technology Handbook by D. Satas, A. A. Tracton, Marcel Dekkar Inc. USA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| 3. Ar<br>19 | e Plasma Technology in Material Science, P. A. Gerdeman and N. L. Hecht, Spring<br>72.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er Verlag, |

| Course Delivery methods                           |     |
|---------------------------------------------------|-----|
| Lecture by use of boards/LCD projectors/OHP       | Yes |
| projectors                                        |     |
| Tutorials/Assignments                             | Yes |
| Seminars                                          | No  |
| Mini projects/Projects                            | No  |
| Laboratory experiments/teaching aids              | No  |
| Industrial/guest lectures                         | No  |
| Industrial visits/in-plant training               | No  |
| Self- learning such as use of NPTEL materials and | Yes |
| internets                                         |     |
| Simulation                                        | No  |

# **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| AssessmentCompoents       | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination Marks | Yes | Yes | Yes | No  | No  |
| End Sem Examination Marks | Yes | Yes | Yes | Yes | Yes |
| Assignment                | Yes | Yes | Yes | Yes | Yes |

#### Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

| Course    |   | Program Outcomes |   |   |   |   |  |  |  |  |
|-----------|---|------------------|---|---|---|---|--|--|--|--|
| Outcome # | a | b                | с | d | e | f |  |  |  |  |
| 1         | Н | Н                | Н | L | М | L |  |  |  |  |
| 2         | Н | Н                | М | L | L | L |  |  |  |  |
| 3         | Н | М                | М | L | L | L |  |  |  |  |
| 4         | Н | М                | М | L | L | L |  |  |  |  |
| 5         | Н | Н                | Н | L | Н | L |  |  |  |  |

| Course    | Course Objectives |   |   |   |   |  |  |  |  |
|-----------|-------------------|---|---|---|---|--|--|--|--|
| Outcome # | a                 | b | с | d | e |  |  |  |  |
| 1         | Н                 | М | М | М | L |  |  |  |  |
| 2         | М                 | Н | М | М | L |  |  |  |  |
| 3         | М                 | М | Н | L | L |  |  |  |  |
| 4         | М                 | М | Н | L | L |  |  |  |  |
| 5         | М                 | М | L | L | Н |  |  |  |  |

|     | Mapping Between COs and Course De                           | eli | very (CD) n       | nethods                   |
|-----|-------------------------------------------------------------|-----|-------------------|---------------------------|
| CD  | Course Delivery methods                                     |     | Course<br>Outcome | Course Delivery<br>Method |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      |     | CO1               | CD1, CD2 and CD8          |
| CD2 | Tutorials/Assignments                                       |     | CO2               | CD1, CD2 and CD8          |
| CD3 | Seminars                                                    |     | CO3               | CD1, CD2 and CD8          |
| CD4 | Mini projects/Projects                                      |     | CO4               | CD1, CD2 and CD8          |
| CD5 | Laboratory experiments/teaching aids                        |     | CO5               | CD1, CD2 and CD8          |
| CD6 | Industrial/guest lectures                                   |     |                   |                           |
| CD7 | Industrial visits/in-plant training                         |     |                   |                           |
| CD8 | Self- learning such as use of NPTEL materials and internets |     |                   |                           |
| CD9 | Simulation                                                  |     |                   |                           |

| Week | Lect. | Tent  | Module | Topics     | to     | be   | Text   | Cos    | Actual  | Methodology  | Remarks    |
|------|-------|-------|--------|------------|--------|------|--------|--------|---------|--------------|------------|
|      | No.   | ative | No.    | covered    |        |      | Book / | mapped | Content | used         | by         |
| No.  |       | Date  |        |            |        |      | Refere |        | covered |              | faculty if |
|      |       |       |        |            |        |      | nces   |        |         |              | any        |
| 1-2  | L1-2  |       | Ι      | Classifica | ation  | of   | T2     | CO-1   |         | PPT Digi     |            |
|      |       |       |        | vacuum     | rang   | ges, |        |        |         | Class/Chalk- |            |
|      |       |       |        | Kinetic t  | theory | of   |        |        |         | Board        |            |
|      |       |       |        | gases      |        |      |        |        |         |              |            |
|      | L3-4  |       |        | gas trans  | sport  | and  | T2     | CO-1   |         | PPT Digi     |            |
|      |       |       |        | pumping,   | ,      |      |        |        |         | Class/Chalk  |            |
|      |       |       |        | Conducta   | ince   | and  |        |        |         | -Board       |            |
|      |       |       |        | Throughr   | nit    |      |        |        |         |              |            |
|      |       |       |        | Inough     | ) al   |      |        |        |         |              |            |
| 2    | L5    |       |        | Classifica | ation  | of   | T1     | CO-1   |         | PPT Digi     |            |
|      |       |       |        | vacuum     | pun    | nps, |        |        |         | Class/Chalk- |            |
|      |       |       |        | single st  | tage   | and  |        |        |         | Board        |            |

| 2-3 | L6     |   | doublestagerotarypump,diffusionpump,turbomolecularpump,cryopumpandClassificationofgauges,Mechanicalgauges:McLeod  | T1            | CO-1 | PPT Digi<br>Class/Chalk-<br>Board |  |
|-----|--------|---|-------------------------------------------------------------------------------------------------------------------|---------------|------|-----------------------------------|--|
| 3   | L7     |   | gauge<br>Thermal<br>conductivity<br>gauges: Pirani<br>gauge and<br>thermocouple<br>gauge.                         |               | CO-1 | PPT Digi<br>Class/Chalk-<br>Board |  |
| 3   | L8     |   | Ionization gauges:<br>Bayard-Alpert<br>gauge, Penning<br>gauge, leak<br>detection.                                | Τ3            | CO-2 | PPT Digi<br>Class/Chalk-<br>Board |  |
| 4   | L9     | Π | Solid surface,<br>interphase surface                                                                              | Т3            | CO-2 | PPT Digi<br>Class/Chalk-<br>Board |  |
| 4   | L10    |   | Surface energies:<br>Binding energy<br>and Interatomic<br>Potential energy                                        | T1            | CO-2 | PPT Digi<br>Class/Chalk-<br>Board |  |
| 5   | L11-12 |   | latent heat, surface<br>tension, Liquid<br>surface energy<br>measurement by<br>capillary effect, by<br>zero creep | T1            | CO-2 | PPT Digi<br>Class/Chalk-<br>Board |  |
| 5   | L13    |   | magnitude of<br>surface energy,<br>General concept,<br>jump frequency<br>and diffusion flux                       |               | CO-2 | PPT Digi<br>Class/Chalk-<br>Board |  |
| 6   | L14-16 |   | Fick's First law,<br>Nonlinear<br>diffusion, Fick's<br>second law,                                                | T1,<br>T2, T3 | CO-2 | PPT Digi<br>Class/Chalk-<br>Board |  |

|      |         |     | calculation of      |        |      |              |  |
|------|---------|-----|---------------------|--------|------|--------------|--|
|      |         |     | diffusion           |        |      |              |  |
|      |         |     | coefficient,        |        |      |              |  |
|      |         |     | interdiffusion and  |        |      |              |  |
|      |         |     | diffusion in        |        |      |              |  |
|      |         |     | thin films          |        |      |              |  |
| 7    | L17-18  | III | Stages of thin film | T1     | CO-3 | PPT Digi     |  |
|      |         |     | formation.          |        |      | Class/Chalk- |  |
|      |         |     | Nucleation          |        |      | Board        |  |
|      |         |     | Adsorption          |        |      |              |  |
|      |         |     | Surface diffusion   |        |      |              |  |
| 7 8  | I 10 20 |     | conjillarity theory |        | CO 3 |              |  |
| 7-0  | L19-20  |     | of pupiloption      |        | 0-5  | Class/Chalk- |  |
|      |         |     |                     |        |      | Board        |  |
|      |         |     | statistical theory  |        |      | 20000        |  |
|      |         |     | of nucleation,      |        |      |              |  |
|      |         |     | growth and          |        |      |              |  |
|      |         |     | coalescence of      |        |      |              |  |
|      |         |     | 1slands             |        |      |              |  |
| 8    | L21-22  |     | grain structure and | T2     | CO-3 | PPT Digi     |  |
|      |         |     | microstructure of   |        |      | Class/Chalk- |  |
|      |         |     | thin films,         |        |      | Doard        |  |
|      |         |     | diffusion during    |        |      |              |  |
|      |         |     | film growth         |        |      |              |  |
| 9    | L23     |     | polycrystalline and | T1,    | CO-3 | PPT Digi     |  |
|      |         |     | amorphous films,    | Т2,    |      | Class/Chalk- |  |
|      |         |     | Theories of         |        |      | Board        |  |
|      |         |     | epitaxy             |        |      |              |  |
| 9    | L24     |     | role of interfacial | T2, T3 | CO-3 | PPT Digi     |  |
|      |         |     | layer, epitaxial    |        |      | Class/Chalk- |  |
|      |         |     | film growth, super  |        |      | Board        |  |
|      |         |     | lattice structures  |        |      |              |  |
| 9-10 | L25-26  | IV  | Vacuum              | T1     | CO-4 | PPT Digi     |  |
|      |         |     | evaporation-Hertz-  |        |      | Class/Chalk- |  |
|      |         |     | Knudsen equation,   |        |      | Board        |  |
|      |         |     | evaporation from a  |        |      |              |  |
|      |         |     | source and film     |        |      |              |  |
|      |         |     | thickness           |        |      |              |  |
|      |         |     | uniformity          |        |      |              |  |
| 10   | L27-28  |     | Glow discharge      | T1     | CO-4 | PPT Digi     |  |
|      |         |     | and plasmas-        |        |      | Class/Chalk- |  |
|      |         |     | Plasma structure    |        |      | Board        |  |
|      |         |     | DC. RF and          |        |      |              |  |
|      |         |     | microwave           |        |      |              |  |
|      |         |     | excitation          |        |      |              |  |
| 11   | L29-30  |     | Sputtering          | T2     | CO-4 | ΡΡΤ Πισί     |  |
| **   |         |     | nrocesses-          | 1      |      | Class/Chalk- |  |
|      |         |     | Mechanism and       |        |      | Board        |  |
|      |         |     | ivicchanisin and    |        |      |              |  |

|       |         |            | sputtering yield,   |    |      |              |  |
|-------|---------|------------|---------------------|----|------|--------------|--|
|       |         |            | Sputtering of       |    |      |              |  |
|       |         |            | allovs              |    |      |              |  |
| 11-12 | L31-32  |            | magnetron           | Т2 | CO-4 | PPT Digi     |  |
| 11 12 | 201 02  |            | sputtering          |    | 001  | Class/Chalk- |  |
|       |         |            | Ponotivo            |    |      | Board        |  |
|       |         |            | Reactive            |    |      |              |  |
| 10    | 1.00.04 |            | sputtering          |    | 00.4 |              |  |
| 12    | L33-34  |            | vacuum arc:         | 12 | CO-4 | PPT Digi     |  |
|       |         |            | cathodic and        |    |      | Class/Chalk- |  |
|       |         |            | anodic vacuum arc   |    |      | Doald        |  |
|       |         |            | deposition.         |    |      |              |  |
|       |         |            | Chemical vapour     |    |      |              |  |
|       |         |            | deposition          |    |      |              |  |
| 13    | L35-36  |            | Thermodynamics      | T2 | CO-4 | PPT Digi     |  |
|       |         |            | of CVD, gas         |    |      | Class/Chalk- |  |
|       |         |            | transport, growth   |    |      | Board        |  |
|       |         |            | kinetics. Plasma    |    |      |              |  |
|       |         |            | chemistry           |    |      |              |  |
| 14    | L37-39  |            | plasma etching      | Т2 | CO-4 | PPT Digi     |  |
| 1     | 201 05  |            | mechanisms, etch    |    | 001  | Class/Chalk- |  |
|       |         |            | rate and            |    |      | Board        |  |
|       |         |            | solootivity         |    |      |              |  |
|       |         |            | sciectivity,        |    |      |              |  |
|       |         |            | demondent etching:  |    |      |              |  |
|       |         |            | dependent etcning;  |    |      |              |  |
| 1.4   | I. 40   | <b>X</b> 7 | PECVD               |    | 00.5 |              |  |
| 14    | L40     | V          | Deposition rate,    | 12 | CO-5 | PPT Digi     |  |
|       |         |            | Film thickness and  |    |      | Class/Chaik- |  |
|       |         |            | uniformity          |    |      | Board        |  |
| 15    | L41     |            | Structural          | T2 | CO-5 | PPT Digi     |  |
|       |         |            | properties:         |    |      | Class/Chalk- |  |
|       |         |            | Crystallographic    |    |      | Board        |  |
|       |         |            | properties, defects |    |      |              |  |
| 15    | L42     |            | residual stresses,  | T2 | CO-5 | PPT Digi     |  |
|       |         |            | adhesion,           |    |      | Class/Chalk- |  |
|       |         |            | hardness, ductility |    |      | Board        |  |
| 15    | L43     |            | electrical          | T2 | CO-5 | PPT Digi     |  |
|       |         |            | properties          |    |      | Class/Chalk- |  |
|       |         |            | 1 · I · · · · ~     |    |      | Board        |  |
| 16    | L44     |            | magnetic            | T2 | CO-5 | PPT Digi     |  |
|       |         |            | properties;         |    |      | Class/Chalk- |  |
|       |         |            |                     |    |      | Board        |  |
| 16    | L45     |            | optical properties  | T2 | CO-5 | PPT Digi     |  |
|       |         |            |                     |    |      | Class/Chalk- |  |
|       |         |            | 1                   | 1  |      | ьoard        |  |

 Course code: PH 520

 Course title: Theory of Dielectrics and Ferroics

 Pre-requisite(s):

 Co- requisite(s):

 Credits:
 4L: 3 T: 1 P: 0

 Class schedule per week:

 Class: I.M.Sc.

 Semester / Level:PE VI / VII

 Branch: PHYSICS

 Name of Teacher:

 Group : B
 Option 4

|                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                            | L T C P    |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|
| Code<br>PH 52                                                                                                                                                                                                                                                                                                  | e:<br>20                                                                                                                                                                      | Title: Theory of dielectrics and ferroics                                                                                                                                                                                                                                                                                                                                                                  | 3-1-0-4    |  |  |  |  |  |
| Cours                                                                                                                                                                                                                                                                                                          | se Obj                                                                                                                                                                        | ectives                                                                                                                                                                                                                                                                                                                                                                                                    |            |  |  |  |  |  |
| This c                                                                                                                                                                                                                                                                                                         | ourse                                                                                                                                                                         | enables the students:                                                                                                                                                                                                                                                                                                                                                                                      |            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | A.                                                                                                                                                                            | To become familiar with the concept of polarisation in ideal and non-ideal dielectrics.                                                                                                                                                                                                                                                                                                                    |            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | В.                                                                                                                                                                            | To be familiarized with electrochemical impedance spectroscopy.                                                                                                                                                                                                                                                                                                                                            |            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | C.                                                                                                                                                                            | Γο become familiar with the theory of ferroelectricity using domain theory and understand different type of phase transition in ferroelectric materials.                                                                                                                                                                                                                                                   |            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | D.                                                                                                                                                                            | To acquire an understanding of the theory of ferromagnetism and know about the different magnetic ordering.                                                                                                                                                                                                                                                                                                | t types of |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | E.                                                                                                                                                                            | To become familiar with the concept of multiferroics and different types of mechanisms by multiferroics can be formed.                                                                                                                                                                                                                                                                                     | y which    |  |  |  |  |  |
| Cours                                                                                                                                                                                                                                                                                                          | se Out                                                                                                                                                                        | comes<br>unletion of this course, students will be:                                                                                                                                                                                                                                                                                                                                                        |            |  |  |  |  |  |
| 1 11001                                                                                                                                                                                                                                                                                                        | 1.                                                                                                                                                                            | Able to differentiate between different type of dielectrics, ferroelectrics and able to interpresent experimental results with different theoretical models.                                                                                                                                                                                                                                               | et the     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | 2.                                                                                                                                                                            | Able to apply the concept of relaxation, resonance and dispersion in dielectrics using frequencies time domain method.                                                                                                                                                                                                                                                                                     | uency and  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | <ol> <li>Able to differentiate between different types of ferroelectric materials and able to calculate the recoverable energy efficiency from the hysteresis loop</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                            |            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | 4.                                                                                                                                                                            | Able to identify and compare different kinds of magnetic ordering.                                                                                                                                                                                                                                                                                                                                         |            |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                | 5.                                                                                                                                                                            | Able to categorize different types of multiferroics based on the different mechanisms of the origin.                                                                                                                                                                                                                                                                                                       | eir        |  |  |  |  |  |
| Modu                                                                                                                                                                                                                                                                                                           | le-1                                                                                                                                                                          | Macroscopic theory of dielectrics: Polarisation in dielectrics, Clausius Mosotti relation<br>for ideal dielectrics, Lorentz field, Debye correction to Clausius Mosotti equation,<br>frequency and temperature dependency of dielectrics, Temperature coefficient of<br>dielectrics, dielectric losses. The double well potential model for polarization and<br>determination of depth of potential wells. | [10]       |  |  |  |  |  |
| Modu                                                                                                                                                                                                                                                                                                           | le-2                                                                                                                                                                          | Dielectric spectroscopy: introduction to impedance spectroscopy, physical models for<br>equivalent circuit elements, dielectric relaxation in materials with single time constant,<br>distribution of relaxation time, interface and boundary conditions, grain boundary<br>effects. Elementary idea of measurement technique in frequency and time domain<br>methods.                                     |            |  |  |  |  |  |
| Module-3 Ferroelectricity: Ferroelectricity, Microscopic theory of Ferroelectricity, Land<br>of ferroelectricity, Phase transition of ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup> and relaxor k<br>optical phonons, hysteresis loop, Recoverable energy, Piezoelectricity ar<br>harvesting, transducer., |                                                                                                                                                                               | Ferroelectricity: Ferroelectricity, Microscopic theory of Ferroelectricity, Landau primer of ferroelectricity, Phase transition of ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup> and relaxor kind), soft optical phonons, hysteresis loop, Recoverable energy, Piezoelectricity and energy harvesting, transducer.,                                                                                    | [10]       |  |  |  |  |  |
| Modu                                                                                                                                                                                                                                                                                                           | le-4                                                                                                                                                                          | Ferromagnetism: Weiss model of a ferromagnet, magnetic susceptibility, effect of a magnetic field, origin of the molecular field, Weiss model of antiferromagnet, magnetic susceptibility, effect of a strong magnetic field, types of antiferromagnetic order, ferrimagnetism, helical order, spin glasses, frustration.                                                                                  | [10]       |  |  |  |  |  |

| Module-5 | Multiferroics: Ferroic, magnetoelectric, multiferroic, magnetodielectric, magnetoelectric coupling, Type I and Type II Multiferroics, charge-order driven multiferroicity, examples of charge-ordered driven multiferroicity, lone-pair electron multiferroic systems, geometric ferroelectricity, frustrated magnetism triggered ferroelectricity, applications of multiferroics: magnetoelectric switching, multiferroics for spintronics. | [10]      |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Textbo   | ooks:                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 1. App   | blied Electromagnetism and Materials by Andre Moliton, Springer, 2007                                                                                                                                                                                                                                                                                                                                                                        |           |
| 2. Mag   | gnetism in Condensed Matter, Oxford Master Series in Condensed Matter Physics 4.                                                                                                                                                                                                                                                                                                                                                             | , Stephen |
| Blu      | ndell, Oxford University Press, 2001.                                                                                                                                                                                                                                                                                                                                                                                                        |           |
| 3. Mu    | ltiferroic Materials: Properties, Techniques and Applications, Junling Wang, CRC Pres                                                                                                                                                                                                                                                                                                                                                        | s, Taylor |
| and      | Francis group, 2017.                                                                                                                                                                                                                                                                                                                                                                                                                         |           |

| Course Delivery methods                                |     |
|--------------------------------------------------------|-----|
| Lecture by use of boards/LCD projectors/OHP projectors | Yes |
| Tutorials/Assignments                                  | Yes |
| Seminars                                               | Yes |
| Mini projects/Projects                                 | No  |
| Laboratory experiments/teaching aids                   | No  |
| Industrial/guest lectures                              | No  |
| Industrial visits/in-plant training                    | No  |
| Self- learning such as use of NPTEL materials and      | Yes |
| internets                                              |     |
| Simulation                                             | No  |

# **Direct** Assessment

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| AssessmentCompoents       | CO1 | CO2 | CO3 | CO4 | CO5 |
|---------------------------|-----|-----|-----|-----|-----|
| Mid Sem Examination Marks | Yes | Yes | Yes | No  | No  |
| End Sem Examination Marks | Yes | Yes | Yes | Yes | Yes |
| Assignment                | Yes | Yes | Yes | Yes | Yes |

#### Indirect Assessment -

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

| Thupping of course once a regram outcomes |   |                  |   |   |   |   |  |  |  |  |
|-------------------------------------------|---|------------------|---|---|---|---|--|--|--|--|
| Course Outcome #                          |   | Program Outcomes |   |   |   |   |  |  |  |  |
|                                           | а | b                | с | d | e | f |  |  |  |  |
| 1                                         | М | Н                | Н | L | L | М |  |  |  |  |
| 2                                         | L | Н                | Н | L | L | М |  |  |  |  |
| 3                                         | М | Н                | Н | L | L | L |  |  |  |  |
| 4                                         | Н | М                | М | L | L | L |  |  |  |  |
| 5                                         | Μ | Н                | Н | Н | L | L |  |  |  |  |

### Mapping of Course Outcomes onto Program Outcomes

| Course Outcome # | Course Objective |   |   |   |   |  |  |  |
|------------------|------------------|---|---|---|---|--|--|--|
|                  | a                | b | с | d | e |  |  |  |
| 1                | Н                | М | М | L | М |  |  |  |
| 2                | М                | Н | М | L | М |  |  |  |
| 3                | M                | М | Н | L | М |  |  |  |
| 4                | L                | L | L | Н | Н |  |  |  |
| 5                | M                | M | Μ | Н | Н |  |  |  |

|     | Mapping Between COs and Course Delivery (CD) methods        |                  |                             |  |  |  |  |  |  |
|-----|-------------------------------------------------------------|------------------|-----------------------------|--|--|--|--|--|--|
| CD  | Course Delivery methods                                     | Course<br>Outcom | Course Delivery<br>e Method |  |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1              | CD1, CD2 and CD8            |  |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       | CO2              | CD1, CD2 and CD8            |  |  |  |  |  |  |
| CD3 | Seminars                                                    | CO3              | CD1, CD2 and CD8            |  |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      | CO4              | CD1, CD2 and CD8            |  |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        | CO5              | CD1, CD2 and CD8            |  |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |                  |                             |  |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |                  |                             |  |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |                  |                             |  |  |  |  |  |  |
| CD9 | Simulation                                                  |                  |                             |  |  |  |  |  |  |

| Week | Lect. | Tentative | Mod | Topics to be covered      | Text   | COs  | Actual  | Methodolog  | Remarks |
|------|-------|-----------|-----|---------------------------|--------|------|---------|-------------|---------|
| No.  | No.   | Date      | ule |                           | Book / | map  | Content | у           | by      |
|      |       |           | No. |                           | Refere | ped  | covered | used        | faculty |
|      |       |           |     |                           | nces   |      |         |             | if any  |
| 1    | L1-2  |           | Ι   | Macroscopic theory of     | T1     | 1, 2 |         | PPT Digi    |         |
|      |       |           |     | dielectrics: Polarisation |        |      |         | Class/Chalk |         |
|      |       |           |     | in dielectrics,           |        |      |         | -Board      |         |
|      |       |           |     | ClausiusMosotti relation  |        |      |         |             |         |
|      |       |           |     | for ideal dielectrics,    |        |      |         |             |         |
| 1    | L3    |           |     | Lorentz field, Debye      | T1     |      |         | PPT Digi    |         |
|      |       |           |     | correction to             |        |      |         | Class/Chalk |         |
|      |       |           |     | ClausiusMosotti           |        |      |         | -Board      |         |
|      |       |           |     | equation,                 |        |      |         |             |         |
| 1    | L4-   |           |     | frequency and             | T1     |      |         | PPT Digi    |         |
|      | L5    |           |     | temperature dependency    |        |      |         | Class/Chalk |         |
|      |       |           |     | of dielectrics,           |        |      |         | -Board      |         |

| 2 | L6                                                   |     | Temperature coefficient                                                                                                                                                                                                                                                                                                                                                                                                                      | T1                                                                | PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                      |     | of dielectrics, dielectric                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                      |     | losses.                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   | -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 | L7-8                                                 |     | The double well                                                                                                                                                                                                                                                                                                                                                                                                                              | T1                                                                | PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                      |     | potential model for                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                      |     | polarization and                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                      |     | determination of depth                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                      |     | of potential wells.                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 | L9-                                                  | II  | Dielectric spectroscopy:                                                                                                                                                                                                                                                                                                                                                                                                                     | T1                                                                | PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 10                                                   |     | introduction to                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                      |     | impedance                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   | -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                      |     | spectroscopy                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 | L11                                                  |     | physical models for                                                                                                                                                                                                                                                                                                                                                                                                                          | T1                                                                | PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                      |     | equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                      |     | alamenta                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   | Doord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5 | L 10                                                 | _   | dialactoria malamatian in                                                                                                                                                                                                                                                                                                                                                                                                                    | T1                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 | L12-                                                 |     | dielectric relaxation in                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                | PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 13                                                   |     | materials with single                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                      |     | time constant,                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   | -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                      |     | distribution of relaxation                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                      |     | time,                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5 | L14-                                                 |     | interface and boundary                                                                                                                                                                                                                                                                                                                                                                                                                       | T1                                                                | PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 15                                                   |     | conditions, grain                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                      |     | boundary effects.                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6 | L16                                                  |     | Elementary idea of                                                                                                                                                                                                                                                                                                                                                                                                                           | T1                                                                | PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                      |     | measurement technique                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                      |     | in frequency and time                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | -Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                                      |     | domain methods                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | L17                                                  | Ш   | Ferroelectricity:                                                                                                                                                                                                                                                                                                                                                                                                                            | T1                                                                | PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                      | 111 | Ferroelectricity                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                      |     | Microscopic theory of                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   | Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                      |     | Earroalastrisity                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | -Doard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | I 10                                                 | -   | Landau primar of                                                                                                                                                                                                                                                                                                                                                                                                                             | T1                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                                                      |     | Landau primer of                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   | PPI Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                      |     | C 1 4 · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   | (1) $(01)$ $(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                                      |     | ferroelectricity,                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | X 10                                                 | _   | ferroelectricity,                                                                                                                                                                                                                                                                                                                                                                                                                            | m1                                                                | Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | L19                                                  |     | ferroelectricity,<br>Phase transition of                                                                                                                                                                                                                                                                                                                                                                                                     | T1                                                                | Class/Chalk<br>-Board<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | L19                                                  |     | ferroelectricity,Phase transition of<br>ferroelectrics (1st, 2nd                                                                                                                                                                                                                                                                                                                                                                             | T1                                                                | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | L19                                                  | -   | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),                                                                                                                                                                                                                                                                                                                          | T1                                                                | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | L19<br>L20                                           | -   | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,                                                                                                                                                                                                                                                                                                 | T1<br>T1                                                          | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | L19<br>L20                                           | -   | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,                                                                                                                                                                                                                                                                             | T1<br>T1<br>T1                                                    | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | L19<br>L20                                           | -   | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,                                                                                                                                                                                                                                                                             | T1<br>T1<br>T1                                                    | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | L19<br>L20<br>L21-                                   | -   | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,                                                                                                                                                                                                                                                      | T1<br>T1<br>T1<br>T1                                              | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | L19<br>L20<br>L21-<br>24                             | -   | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and                                                                                                                                                                                                                              | T1<br>T1<br>T1<br>T1                                              | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | L19<br>L20<br>L21-<br>24                             | -   | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,                                                                                                                                                                                                        | T1<br>T1<br>T1<br>T1                                              | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | L19<br>L20<br>L21-<br>24                             | -   | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer                                                                                                                                                                                          | T1<br>T1<br>T1<br>T1                                              | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | L19<br>L20<br>L21-<br>24<br>L25                      |     | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss                                                                                                                                                                 | T1<br>T1<br>T1<br>T1<br>T1<br>T2                                  | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | L19<br>L20<br>L21-<br>24<br>L25                      | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet                                                                                                                                       | T1<br>T1<br>T1<br>T1<br>T2                                        | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | L19<br>L20<br>L21-<br>24<br>L25                      | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet,                                                                                                                                      | T1       T1       T1       T1       T1       T2                   | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | L19<br>L20<br>L21-<br>24<br>L25                      | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet,                                                                                                                                      | T1       T1       T1       T1       T1       T2                   | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | L19<br>L20<br>L21-<br>24<br>L25<br>L26               | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet,<br>magnetic<br>suscentibility affect of a                                                                                            | T1       T1       T1       T1       T1       T2       T2          | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | L19<br>L20<br>L21-<br>24<br>L25<br>L26               | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet,<br>magnetic<br>susceptibility,effect of a<br>magnetic field                                                                          | T1       T1       T1       T1       T2       T2                   | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | L19<br>L20<br>L21-<br>24<br>L25<br>L26               | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet,<br>magnetic<br>susceptibility,effect of a<br>magnetic field,                                                                         | T1       T1       T1       T1       T1       T2       T2          | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | L19<br>L20<br>L21-<br>24<br>L25<br>L25<br>L26<br>L27 | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet,<br>magnetic<br>susceptibility,effect of a<br>magnetic field,<br>origin of the molecular                                              | T1       T1       T1       T1       T1       T2       T2       T2 | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi |
|   | L19<br>L20<br>L21-<br>24<br>L25<br>L26<br>L27        | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet,<br>magnetic<br>susceptibility,effect of a<br>magnetic field,<br>origin of the molecular<br>field, Weiss model of                     | T1                                                                | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | L19<br>L20<br>L21-<br>24<br>L25<br>L26<br>L27        | IV  | ferroelectricity,<br>Phase transition of<br>ferroelectrics (1 <sup>st</sup> , 2 <sup>nd</sup><br>and relaxor kind),<br>soft optical phonons,<br>hysteresis loop,<br>Recoverable energy,<br>Piezoelectricity and<br>energy harvesting,<br>transducer<br>Ferromagnetism: Weiss<br>model of a ferromagnet,<br>magnetic<br>susceptibility,effect of a<br>magnetic field,<br>origin of the molecular<br>field, Weiss model of<br>antiferromagnet, | T1       T1       T1       T1       T1       T2       T2       T2 | Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board<br>PPT Digi<br>Class/Chalk<br>-Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 28         | effect of a magnetic field,                                                             | strong T2                      | PPT Digi<br>Class/Chalk<br>Board  |  |
|------------|-----------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|--|
| 29-<br>30  | types<br>antiferromagneti                                                               | of T2<br>c order               | PPT Digi<br>Class/Chalk<br>-Board |  |
| L31-<br>32 | ferrimagnetism,<br>order, spin<br>frustration.                                          | helical T2<br>glasses,         | PPT Digi<br>Class/Chalk<br>-Board |  |
| L33        | V Multiferroic,<br>magnetoelectric,<br>multiferroic,                                    | T3                             | PPT Digi<br>Class/Chalk<br>-Board |  |
| L34        | magnetodielectri<br>magnetoelectric<br>coupling, Type<br>Type II Multifer               | I and roics,                   | PPT Digi<br>Class/Chalk<br>-Board |  |
| L35        | charge-order<br>multiferroicity,<br>examples of<br>ordered<br>multiferroicity,          | driven T3<br>charge-<br>driven | PPT Digi<br>Class/Chalk<br>-Board |  |
| L36        | lone-pair<br>multiferroic syst                                                          | electron T3<br>ems,            | PPT Digi<br>Class/Chalk<br>-Board |  |
| L37-<br>38 | geometric<br>ferroelectricity,<br>frustrated ma<br>triggered<br>ferroelectricity,       | agnetism T3                    | PPT Digi<br>Class/Chalk<br>-Board |  |
| L39-<br>40 | applications<br>multiferroics:<br>magnetoelectric<br>switching, mult<br>for spintronics | of T3<br>iferroics             | PPT Digi<br>Class/Chalk<br>-Board |  |

 Course code: PH 515

 Course title: Theoretical and Computational Condensed Matter Physics

 Pre-requisite(s):

 Co- requisite(s):

 Credits:
 4L: 2

 T: 0
 P:4

 Class schedule per week:

 Class: I.M.Sc.

 Semester / Level: PE VI / VII

 Branch: PHYSICS

 Name of Teacher:

 Group : B
 Option 5

Same Given As above( in Group A)

| Group C-                 | - Photonics:                                                                                                |                   |       |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------|-------------------|-------|--|--|--|--|
| 1. Pl                    | 'hotonic and Optoelectronic Devices         4. Introduction to Nanophotonics                                |                   |       |  |  |  |  |
| 2. H                     | Iolography and Applications                                                                                 |                   |       |  |  |  |  |
| 3. Q                     | Quantum photonics and applications                                                                          |                   |       |  |  |  |  |
| COURSE INFORMATION SHEET |                                                                                                             |                   |       |  |  |  |  |
| Course code: PH 521      |                                                                                                             |                   |       |  |  |  |  |
| Course ti                | itle: Photonics and Ontoelectronic Devices                                                                  |                   |       |  |  |  |  |
| Pre-reau                 | uisite(s):                                                                                                  |                   |       |  |  |  |  |
| Co- requ                 | uisite(s):                                                                                                  |                   |       |  |  |  |  |
| Credits:                 | <b>4</b> L: 3 T:1 P: 0                                                                                      |                   |       |  |  |  |  |
| Class sch                | nedule per week:                                                                                            |                   |       |  |  |  |  |
| Class: I.N               | M.Sc.                                                                                                       |                   |       |  |  |  |  |
| Semester                 | r / Level: VI / VII                                                                                         |                   |       |  |  |  |  |
| Branch:                  | PHYSICS                                                                                                     |                   |       |  |  |  |  |
| Name of                  | Teacher:                                                                                                    |                   |       |  |  |  |  |
| Grou                     | ip : C Option 1                                                                                             | <b>I</b>          |       |  |  |  |  |
| Code: PH                 | H 521     Title: Photonics and Optoelectronic Devices                                                       | L-T-P-            | ·C    |  |  |  |  |
|                          |                                                                                                             | [3 1              | 0 4]  |  |  |  |  |
| Course O                 | <b>D</b> bjectives This course enables the students:                                                        |                   |       |  |  |  |  |
| T                        | o explain the properties of optoelectronic material and optical processes in semiconductor                  |                   |       |  |  |  |  |
| B. To                    | o understand underlying principle & working of liquid crystal displays, optical modulator,                  | and switches.     |       |  |  |  |  |
| C. To                    | o understand principle & working of light sources and photodetectors.                                       |                   |       |  |  |  |  |
| D To                     | o know the working of optical nonlinear devices and understand its significance for optical                 | l computing.      |       |  |  |  |  |
| E To                     | o acquire the knowledge of the function and working of photonic switches and interconne                     | cts               |       |  |  |  |  |
| Course C                 | Outcomes After the completion of this course, students will be:                                             |                   |       |  |  |  |  |
| 1. A                     | ble to identify suitable optoelectronic materials and explain optical phenomena occurring                   | in semiconductor  |       |  |  |  |  |
| 2. A                     | ble to recognize parameters for optimizing the performance of liquid crystal displays,                      | optical modulator | , and |  |  |  |  |
| sv                       | witches & solve related numerical problems.                                                                 |                   |       |  |  |  |  |
| 3. A                     | ble to identify the parameters for optimizing the performance of light sources and detector                 | <b>.</b> .        |       |  |  |  |  |
| 4. To                    | o define the role of different nonlinear optical devices in optical computing.                              |                   |       |  |  |  |  |
| 5. To                    | o select appropriate photonic switch and interconnect for different operations under different              | ent working condi | tion. |  |  |  |  |
| Module-                  | Optical processes in semiconductors: Electron-hole pair formation and recombination                         | tion, Direct and  | 10    |  |  |  |  |
| 1                        | indirect bandgap semiconductors, structural property of crystalline, polycrystal                            | line, amorphous   |       |  |  |  |  |
|                          | materials, optoelectronic materials, Liquid crystals, compound semiconductors                               | , absorption in   |       |  |  |  |  |
|                          | semiconductors, Stark effects in quantum well structures, Absorption and emission s                         | pectra, excitonic |       |  |  |  |  |
|                          | effects.                                                                                                    |                   |       |  |  |  |  |
| Module-                  | Displays, optical modulators, and switches: Liquid crystal cells (principle), Passive a                     | nd Active matrix  | 8     |  |  |  |  |
| 2                        | liquid crystal displays, Electro-optic modulator, Magneto-optic modulator, Acousto-                         | optic modulator.  |       |  |  |  |  |
|                          | Electro-absorption modulators, Mach-Zehnder Electrorefraction (Electro-optic) mod                           | ulators, optical  |       |  |  |  |  |
|                          | switches.                                                                                                   |                   |       |  |  |  |  |
| Module-                  | Optical sources and detectors: Light emitting diodes, surface- and edge- emitting                           | ng configuration. | 12    |  |  |  |  |
| 3                        | Injection laser diodes, gain and index guided lasers, PIN and avalanche photodiodes, I                      | Photoconductors,  |       |  |  |  |  |
|                          | Phototransistors, noise in photodetector. Solar cells (spectral response, conversion effi                   | ciency), Charge-  |       |  |  |  |  |
|                          | coupled devices, Characteristics and applications.                                                          |                   |       |  |  |  |  |
| Module-                  | Optical computing: Digital optical computing: Nonlinear devices, optical bistable                           | devices, SEED     | 10    |  |  |  |  |
| 4                        | devices, Optical phase conjugate devices, integrated devices, spatial light modulators                      | (SLM), Optical    |       |  |  |  |  |
|                          | Memory: Holographic data storage                                                                            |                   |       |  |  |  |  |
| Module-                  | Iodule-Photonic switching and interconnects:Kerr gates, Nonlinear Directional couplers, Nonlinear optical10 |                   |       |  |  |  |  |

| 5 | 5     | loop mirror (NOLM), Soliton logic gates, Free-space optical interconnects, wave-guide interconnects, holographic interconnections. |  |
|---|-------|------------------------------------------------------------------------------------------------------------------------------------|--|
| 1 | Refer | ences<br>ences                                                                                                                     |  |

- Introduction to Fiber Optics, Ghatak & Thyagarajan, Cambridge University press.
- 2.
- Optoelectronics: An Introduction to Materials and Devices, Jasprit Singh, The McGraw-Hill Companies. 3.
- 4. Semiconductor Optoelectronics Devices, P. Bhattacharya, PHI.
- 5. Optoelectronics and Photonics, principles and practices S. O. Kasap, Prentice Hall
- Photonic switching and Interconnects; Abdellatif Marrakchi, Marcel Dekker, Inc. 6.
- Optical Computing, an Introduction, Mohammad A. Karim and Abdul A. S Awwal, John Wiley & Sons Inc 7.

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | N |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | Ν |

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |  |  |  |  |
|---------------------------|-------------------------------------|--|--|--|--|
| Assignment                | 10                                  |  |  |  |  |
| Seminar before a commitee | 10                                  |  |  |  |  |
| Three Quizes              | 30 (10+10+10)                       |  |  |  |  |
| End Sem Examination Marks | 50                                  |  |  |  |  |

| AssessmentCompoents       | CO1          | CO2          | CO3          | <b>CO4</b>   | <u>CO5</u>   |
|---------------------------|--------------|--------------|--------------|--------------|--------------|
| Quiz 1                    | $\checkmark$ | $\checkmark$ |              |              |              |
| Quiz 2                    |              |              | $\checkmark$ | $\checkmark$ |              |
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Assignment                | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

#### Indirect Assessment -

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

#### Mapping between Course Objectives and Course Outcomes

| Course    |   | Co | urse Ou | itcomes |   |
|-----------|---|----|---------|---------|---|
| Objective | 1 | 2  | 3       | 4       | 5 |
| А         | Н | Н  | Н       | Н       | Н |
| В         | L | Н  | Μ       | Μ       | L |
| С         | Μ | Н  | Н       | Μ       | Н |
| D         | Μ | Μ  | Н       | Н       | Н |
| Е         | Μ | Н  | Н       | Н       | Н |

| <b>Course Outcome</b> | Program Outcomes |   |   |   |   |   |  |
|-----------------------|------------------|---|---|---|---|---|--|
|                       | а                | b | с | d | e | f |  |
| 1                     | Н                | Η | Η | - | Н | М |  |
| 2                     | Н                | Н | Η | - | Н | Н |  |
| 3                     | М                | Η | Η | - | Н | Н |  |
| 4                     | М                | Н | М | - | Н | Н |  |
| 5                     | L                | Н | М | - | Н | Н |  |

|     | Mapping Between COs and Course Deliv                        | very (CD) metho   | ds                           |
|-----|-------------------------------------------------------------|-------------------|------------------------------|
|     |                                                             |                   |                              |
| CD  | Course Delivery methods                                     | Course<br>Outcome | Course<br>Delivery<br>Method |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1, CD2                     |
| CD2 | Tutorials/Assignments                                       | CO2               | CD1                          |
| CD3 | Seminars                                                    | CO3               | CD1, CD2                     |
| CD4 | Mini projects/Projects                                      | CO4               | CD1, CD8                     |
| CD5 | Laboratory experiments/teaching aids                        | CO5               | CD1, CD8                     |
| CD6 | Industrial/guest lectures                                   |                   |                              |
| CD7 | Industrial visits/in-plant training                         |                   |                              |
| CD8 | Self- learning such as use of NPTEL materials and internets |                   |                              |
| CD9 | Simulation                                                  |                   |                              |

| Wee | Lect | Tentativ | Ĉh   | Topics to be covered       | Text    | COs   | Actual  | Method | Remarks    |
|-----|------|----------|------|----------------------------|---------|-------|---------|--------|------------|
| 1.  | Leet |          | CII. | Toples to be covered       |         | 003   | Contont | alagu  | h          |
| K   | •    | e        | INO  |                            | BOOK /  | mappe | Content | ology  | by         |
| No. | No.  | Date     | •    |                            | Refere  | d     | covered | used   | faculty if |
|     |      |          |      |                            | nces    |       |         |        | any        |
| 1   | L1   |          | 1    | Electron-hole pair         | R3, R4, | 1, 2  |         | CD1,   |            |
|     |      |          |      | formation and              | R5      |       |         | CD2    |            |
|     |      |          |      | recombination              |         |       |         |        |            |
|     | L2   |          |      | Direct and indirect        | R3, R4, | 1     |         | CD1,   |            |
|     |      |          |      | bandgap                    | R5      |       |         | CD2    |            |
|     |      |          |      | semiconductors             |         |       |         |        |            |
|     | L3   |          |      | structural property of     | R3, R4  | 1     |         | CD1,   |            |
|     |      |          |      | crystalline,               |         |       |         | CD2    |            |
|     |      |          |      | polycrystalline.           |         |       |         |        |            |
|     |      |          |      | amorphous materials        |         |       |         |        |            |
|     | I A  |          |      | anto al actuaria matariala | D2 D4   | 1     |         | CD1    |            |
|     | L/4  |          |      | optoelectronic materials   | K3, K4, | 1     |         | CD1,   |            |
|     |      |          |      |                            | K5      |       |         | CD2    |            |
| 2   | L5   |          |      | Liquid crystals,           | R3      | 1     |         | CD1,   |            |
|     |      |          |      |                            |         |       |         | CD2    |            |
|     | L6   |          |      | compound                   | R4      | 1     |         | CD1,   |            |
|     |      |          |      | semiconductors             |         |       |         | CD2    |            |
|     | L7   |          |      | absorption in              | R3, R4, | 1     |         | CD1,   |            |
|     |      |          |      | semiconductors             | R5      |       |         | CD2    |            |
|     | L8   |          |      | Stark effects in quantum   | R3, R4, | 1     |         | CD1,   |            |
|     |      |          |      | well structures            | R5      |       |         | CD2    |            |
| 3   | L9   |          |      | Absorption and             | R3, R4, | 1     |         | CD1,   |            |
|   |     |   | emission spectra         | R5      |      | CD2  |  |
|---|-----|---|--------------------------|---------|------|------|--|
|   | L10 |   | excitonic effects        | R4      | 1    | CD1, |  |
|   |     |   |                          |         |      | CD2  |  |
|   | L11 | 2 | Liquid crystal cells     | R3      | 2    | CD1, |  |
|   |     |   | (principle)              |         |      | CD2  |  |
| - | L12 |   | Passive and Active       | R3      | 2    | CD1, |  |
|   |     |   | matrix liquid crystal    |         |      | CD2  |  |
|   |     |   | displays                 |         |      |      |  |
| 4 | L13 |   | Electro-optic modulator  | R3, R4, | 1,2  | CD1, |  |
|   |     |   | 1                        | R5      | -    | CD2  |  |
|   | L4  |   | Magneto-optic            | R3, R4, | 1,2  | CD1, |  |
|   |     |   | modulator                | R5      |      | CD2  |  |
|   | L15 |   | Acousto-optic            | R3, R4, | 1,2  | CD1, |  |
|   |     |   | modulator                | R5      |      | CD2  |  |
|   | L16 |   | Electro-absorption       | R3, R4, | 1,2  | CD1, |  |
|   | _   |   | modulators               | R5      | ,    | CD2  |  |
| 5 | L17 |   | Mach-Zehnder             | R3. R4. | 1.2  | CD1. |  |
| C |     |   | Electrorefraction        | R5      | -,-  | CD2  |  |
|   |     |   | (Electro-optic)          | -       |      |      |  |
|   |     |   | modulators               |         |      |      |  |
| - | L18 | - | ontical switches         | R4      | 1.2  | CD1  |  |
|   | 210 |   | optical switches         |         | -,-  | CD2  |  |
|   | L19 | 3 | Light emitting diodes    | R3. R4. | 1.3  | CD1. |  |
|   |     | - | Light entitting aroues   | R5      | - ,- | CD2  |  |
|   | L20 |   | Surface- emitting        | R3, R4, | 1,3  | CD1, |  |
|   |     |   | configuration            | R5      | ,    | CD2  |  |
| 6 | L21 |   | edge- emitting           | R3, R4, | 1,3  | CD1, |  |
|   |     |   | configuration            | R5      |      | CD2  |  |
|   | L22 |   | Injection laser diodes   | R3, R4, | 1.3  | CD1, |  |
|   |     |   | 5                        | R5      | ,    | CD2  |  |
|   | L23 |   | gain and index guided    | R3, R4, | 1,3  | CD1, |  |
|   |     |   | lasers                   | R5      |      | CD2  |  |
|   | L24 |   | PIN photodiodes          | R3, R4, | 1,3  | CD1, |  |
|   |     |   | 1                        | R5      |      | CD2  |  |
| 7 | L25 |   | Avalanche photodiodes    | R3, R4, | 1,3  | CD1, |  |
|   |     |   |                          | R5      |      | CD2  |  |
|   | L26 |   | Photoconductors          | R3, R4, | 1,3  | CD1, |  |
|   |     |   |                          | R5      |      | CD2  |  |
|   | L27 |   | Phototransistors         | R3, R4, | 1,3  | CD1, |  |
|   |     |   |                          | R5      |      | CD2  |  |
|   | L28 |   | Noise in photodetector   | R3, R4, | 1,3  | CD1, |  |
|   |     |   |                          | R5      |      | CD2  |  |
| 8 | L29 |   | Solar cells (spectral    | R3, R4, | 1,3  | CD1, |  |
|   |     |   | response, conversion     | R5      |      | CD2  |  |
|   | ļ   |   | efficiency)              |         |      |      |  |
|   | L30 |   | Charge-coupled           | R3, R4, | 1,3  | CD1, |  |
|   |     |   | devices, Characteristics | R5      |      | CD2  |  |
|   |     |   | and applications         |         |      |      |  |
|   | L31 | 4 | Digital optical          | R6, R7  | 3,4  | CD1, |  |
|   |     |   | computing                |         |      | CD8  |  |
| 9 | L32 |   | Nonlinear devices        | R4, R6  | 3,4  | CD1, |  |
|   |     |   |                          |         |      | CD8  |  |

|    | L33             |   | optical bistable devices                       | R4            | 3,4 | CD1,<br>CD8 |
|----|-----------------|---|------------------------------------------------|---------------|-----|-------------|
|    | L34             |   | SEED devices                                   | R4            | 3,4 | CD1,<br>CD8 |
|    | L35             |   | Optical phase conjugate devices                | R6, R7        | 3,4 | CD1,<br>CD8 |
| 10 | L36<br>-<br>L37 |   | integrated devices                             | R6, R7        | 3,4 | CD1,<br>CD8 |
|    | L38<br>-<br>L39 |   | spatial light modulators<br>(SLM)              | R6, R7        | 3,4 | CD1,<br>CD8 |
|    | L40             |   | Optical Memory:<br>Holographic data<br>storage | R6, R7        | 4,5 | CD1,<br>CD8 |
| 11 | L41             | 5 | Kerr gates                                     | R4, R6,<br>R7 | 4,5 | CD1,<br>CD8 |
|    | L42<br>-<br>L43 |   | Nonlinear Directional couplers                 | R6, R7        | 4,5 | CD1,<br>CD8 |
|    | L44             |   | Nonlinear optical loop<br>mirror (NOLM)        | R6, R7        | 4,5 | CD1,<br>CD8 |
| 12 | L45             |   | Soliton logic gates                            | R6, R7        | 4,5 | CD1,<br>CD8 |
|    | L46<br>-<br>L47 |   | Free-space optical interconnects               | R6, R7        | 4,5 | CD1,<br>CD8 |
| 13 | L48<br>-<br>L49 |   | wave-guide<br>interconnects                    | R6, R7        | 4,5 | CD1,<br>CD8 |
|    | L50             |   | holographic<br>inteconnections                 | R6, R7        | 4,5 | CD1,<br>CD8 |

Course code: PH 522 Course title: Holography and Applications Pre-requisite(s): Co- requisite(s): Credits: 4 L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: VI / VII Branch: PHYSICS Name of Teacher: Group : C Option 2

| Code: |       | Title: Holography and Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L-T-J   | P-C  |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| PH 52 | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [0] 1   | 0 41 |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [3] [   | 0 4] |
| Cour  | se Ob | jectives This course enables the students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |      |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1       |      |
|       | A.    | To understand the basics of holograms and able to differentiate between holography and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |
|       | D     | photography<br>The service the largest largest for the largest field and the largest field | -       |      |
|       | B.    | To acquire the knowledge of different types of holograms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       |      |
|       | C.    | To understand different materials used for hologram recordings and its merits and demerits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -       |      |
|       | D.    | To have an idea of using holographic technique in varieties of diverse applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -       |      |
|       | E     | To acquire knowledge in holographic optical elements and to estimate how these optical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |
| C     |       | elements can be utilized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ]       |      |
| Cour  |       | Attest the completion of this course, students will be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1       |      |
|       | 1.    | Able to identify the parameters which differentiate holograms from photographs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -       |      |
|       | 2.    | Able to distinguish between various types of holograms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       |      |
|       | 3.    | Able to analyze the different parameters of holographic recording materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -       |      |
|       | 4.    | Able to utilize holographic interferometric technique in various new applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |      |
|       | 5.    | Able to experiment with holographic elements for various applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |      |
| Modu  | ıle-1 | Basics of Holography: Principle of Holography. Recording and Reconstruction Method. Theo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ry of   | [10] |
|       |       | Holography as Interference between two Plane Waves. Point source holograms, In line Holog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | gram,   |      |
|       |       | off axis hologram, Fourier Hologram, Lenses Fourier Hologram, Image Hologram, Fraunl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hofer   |      |
|       |       | Hologram. Holographic interferometer, double exposure hologram, real-time holography, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | igital  |      |
|       |       | holography, holographic camera.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C       |      |
| Modu  | ıle-2 | Theory of Hologram: Coupled wave theory, Thin Hologram, Volume Hologram, Transmi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ssion   | [8]  |
|       |       | Hologram, Reflection Hologram, Anomalous Effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |      |
| Modu  | ıle-3 | Recording Medium: Microscopic Characteristics, Modulation transfer function, Diffra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ction   | [13] |
|       |       | efficiencies, Image Resolution, Nonlinearities, S/N ratio, Silver halide emulsion, Dichron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nated   |      |
|       |       | gelatin, Photoresist, Photochrometics, Photothermoplastics, photorefractive crystals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |      |
| Modu  | ıle-4 | Applications: Microscopy, interferometry, NDT of engineering objects, particle sizing, hologra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aphic   | [13] |
|       |       | particle image velocimetry; imaging through aberrated media, phase amplification by hologra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | aphy:   |      |
|       |       | Optical testing; Information storage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 .     |      |
| Modi  | ıle-5 | Holographic Optical Elements (HOE): multifunction, holographic lenses, holographic m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | irror.  | [8]  |
|       |       | holographic beam splitters, polarizing, diffuser, interconnects, couplers, scanners; Optical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | data    | [-]  |
|       |       | processing, holographic solar connectors; antireflection coating, holophotoelasticity;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |
| Т     | ext b | poks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I       |      |
| T     | 1: Op | ical Holography. Principle Techniques and applications: P. Hariharan, Cambridge University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v Press | 3    |
| Т     | 2:    | Holographic Recording materials: H M Smith Springer Verlag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | -    |
| I     |       | notographie recording materials, rationnal, opiniger vehag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |      |
| R     | efere | nce books: R1: Lasers and Holography P C Mehta and V V Rampal, World Scientific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |      |

| Course Delivery methods                           |   |
|---------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP       | Y |
| projectors                                        |   |
| Tutorials/Assignments                             | Y |
| Seminars                                          | Ν |
| Mini projects/Projects                            | Ν |
| Laboratory experiments/teaching aids              | Ν |
| Industrial/guest lectures                         | Ν |
| Industrial visits/in-plant training               | Ν |
| Self- learning such as use of NPTEL materials and | Y |
| internets                                         |   |
| Simulation                                        | Ν |

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1 | CO2 | CO3          | CO4          | CO5 |
|---------------------------|-----|-----|--------------|--------------|-----|
| Mid Sem Examination Marks |     |     |              |              |     |
| End Sem Examination Marks |     |     |              |              |     |
| Quiz I                    |     |     |              |              |     |
| Quiz II                   |     |     | $\checkmark$ | $\checkmark$ |     |

#### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

# <u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

| ···· 8····· 9····· 9····· 1 |   |   |   |   |   |  |  |  |
|-----------------------------|---|---|---|---|---|--|--|--|
| Course Objectives           | 1 | 2 | 3 | 4 | 5 |  |  |  |
| Α                           | Н | Μ | L | Η |   |  |  |  |
| В                           | Н | Η | Μ | Μ | L |  |  |  |
| С                           | Н | Η | Η | Μ | Μ |  |  |  |
| D                           |   | Μ | Μ | Н | Η |  |  |  |
| Е                           | L | Μ | Μ | Н | Н |  |  |  |

| Course    |   | Program Outcomes |   |   |   |   |  |  |  |  |
|-----------|---|------------------|---|---|---|---|--|--|--|--|
| Outcome # | а | b                | с | d | e | f |  |  |  |  |
| 1         | М | Н                | Н |   | L | Н |  |  |  |  |

| 2 | М | Н | М |   | М | Н |
|---|---|---|---|---|---|---|
| 3 | М | Н | Н | L | L | М |
| 4 | М | М | Н | L | Н | М |
| 5 | М | М | М | L | Н | Н |

|     | Mapping Between COs and Course Delivery (CD) methods   |        |                |  |  |  |  |  |  |
|-----|--------------------------------------------------------|--------|----------------|--|--|--|--|--|--|
| CD  | Course Delivery methods                                | Course | Course Deliver |  |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors | CO1    | CD1 and CD2    |  |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                  | CO2    | CD1 and CD2    |  |  |  |  |  |  |
| CD3 | Seminars                                               | CO3    | CD1 and CD2    |  |  |  |  |  |  |
| CD4 | Mini projects/Projects                                 | CO4    | CD1 and CD2    |  |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                   | CO5    | CD1 and CD2    |  |  |  |  |  |  |
| CD6 | Industrial/guest lectures                              |        |                |  |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                    |        |                |  |  |  |  |  |  |
|     | Self- learning such as use of NPTEL materials and      |        |                |  |  |  |  |  |  |
| CD8 | internets                                              |        |                |  |  |  |  |  |  |
| CD9 | Simulation                                             |        |                |  |  |  |  |  |  |

| Week | Lect. | <b>Fentative</b> | Ch. | <b>Fopics to be covered</b> | Гext   | Cos    | Actual  | Methodol | Remarks        | by |
|------|-------|------------------|-----|-----------------------------|--------|--------|---------|----------|----------------|----|
| No.  | No.   | Date             | No  |                             | Book / | mapped | Content | ogy used | faculty if any |    |
|      |       |                  |     |                             | Refere |        | covered |          |                |    |
|      |       |                  |     |                             | nces   |        |         |          |                |    |
| 1    | L1-   |                  |     | Principle of Holography.    | T1, R1 | CO1    |         | PPT Digi |                |    |
|      | L2    |                  |     | Recording and               |        |        |         | Class/Ch |                |    |
|      |       |                  |     | Reconstruction Method.      |        |        |         | ock-     |                |    |
|      |       |                  |     | Theory of Holography        |        |        |         | Board    |                |    |
|      |       |                  |     | as Interference between     |        |        |         |          |                |    |
|      |       |                  |     | two Plane Waves             |        |        |         |          |                |    |
|      | L3-   |                  |     | Point source holograms,     | T1, R1 | CO1    |         | PPT Digi |                |    |
|      | L6    |                  |     | In line Hologram, off       |        |        |         | Class/Ch |                |    |
|      |       |                  |     | axis hologram, Fourier      |        |        |         | ock-     |                |    |
|      |       |                  |     | Hologram, Lenses            |        |        |         | Board    |                |    |
|      |       |                  |     | Fourier Hologram,           |        |        |         |          |                |    |
|      |       |                  |     | Image Hologram              |        |        |         |          |                |    |
|      | L7-   |                  |     | Fraunhofer Hologram.        | T1, R1 | CO1    |         | PPT Digi |                |    |
|      | L10   |                  |     | Holographic                 |        |        |         | Class/Ch |                |    |
|      |       |                  |     | interferometer, double      |        |        |         | ock-oard |                |    |
|      |       |                  |     | exposure hologram,          |        |        |         |          |                |    |
|      |       |                  |     | real-time holography,       |        |        |         |          |                |    |
|      |       |                  |     | digital holography          |        |        |         |          |                |    |
|      | L11-  |                  |     | Theory of Hologram:         | T1, R1 | CO2    |         | PPT Digi |                |    |
|      | L14   |                  |     | Coupled wave theory,        |        |        |         | Class/Ch |                |    |
|      |       |                  |     | Thin Hologram, Volume       |        |        |         | ock-     |                |    |
|      |       |                  |     | Hologram                    |        |        |         | Board    |                |    |
|      | L15-  |                  |     | Transmission Hologram,      | T1, R1 | CO2    |         | PPT Digi |                |    |
|      |       |                  |     |                             |        |        |         | Class/Ch |                |    |

|          | L18   | Reflection Hologram,      |        |     | ock-     |   |
|----------|-------|---------------------------|--------|-----|----------|---|
|          |       | Anomalous Effect.         |        |     | Board    |   |
|          | L19-  | Recording Medium:         | T2, R1 | CO3 | PPT Digi |   |
|          | L22   | Microscopic               |        |     | Class/Ch |   |
|          |       | Characteristics,          |        |     | ock-     |   |
|          |       | Modulation transfer       |        |     | Board    |   |
|          |       | function, Diffraction     |        |     |          |   |
|          |       | efficiencies,             |        |     |          |   |
|          | L23-  | Image Resolution,         | T2, R1 | CO3 | PPT Digi |   |
|          | L26   | Nonlinearities, S/N       |        |     | Class/Ch |   |
|          |       | ratio, Silver halide      |        |     | ock-     |   |
|          |       | emulsion                  |        |     | Board    |   |
|          | L27-  | Dichromated gelatin,      | T2, R1 | CO3 | PPT Digi |   |
|          | L31   | Photoresist,              |        |     | Class/Ch |   |
|          |       | Photochrometics,          |        |     | ock-     |   |
|          |       | Photothermoplastics.      |        |     | Board    |   |
|          |       | photorefractive crystals. |        |     |          |   |
|          | L32-  | Applications:             | T1, R1 | CO4 | PPT Digi |   |
|          | L35   | Microscopy.               | ,      |     | Class/Ch |   |
|          |       | interferometry, NDT of    |        |     | ock-oard |   |
|          |       | engineering objects.      |        |     |          |   |
|          |       | particle sizing.          |        |     |          |   |
|          | L36-  | holographic particle      | T1. R1 | CO4 | PPT Digi |   |
|          | L39   | image velocimetry:        | ,      |     | Class/Ch |   |
|          |       | imaging through           |        |     | ock-     |   |
|          |       | aberrated media           |        |     | Board    |   |
|          | L40-  | phase amplification by    | T1. R1 | CO4 | PPT Digi |   |
|          | L44   | holography: Optical       | ,      |     | Class/Ch |   |
|          |       | testing: Information      |        |     | ock-oard |   |
|          |       | storage                   |        |     |          |   |
|          | L45-  | Holographic Optical       | T1. R1 | CO5 | PPT Digi |   |
|          | L46   | Elements (HOE):           | ,      |     | Class/Ch |   |
|          |       | multifunction.            |        |     | ock-     |   |
|          |       | holographic lenses.       |        |     | Board    |   |
|          |       | holographic mirror        |        |     |          |   |
|          | I 47- | holographic beam          | T1 R1  | CO5 | PPT Digi |   |
|          | L50   | splitters polarizing      | 11,111 | 000 | Class/Ch |   |
|          | 250   | diffuser interconnects    |        |     | ock-     |   |
|          |       | couplers scanners         |        |     | Board    |   |
| <u> </u> | L51-  | Ontical data processing   | T1 R1  | CO5 | PPT Digi |   |
| 1        | L51   | holographic solar         | 11,111 |     | Class/Ch |   |
|          | 1.52  | connectors:               |        |     | ock-     |   |
|          |       | antireflection coating    |        |     | Board    |   |
| 1        |       | holophotoelasticity       |        |     |          |   |
| 1        |       | nonophotociasticity       |        |     |          | 1 |

Course code: PH 523 Course title: Quantum photonics and applications Pre-requisite(s): **Co- requisite(s): Credits:** P: 0 4 L: 3 T: 1 **Class schedule per week:** Class: I.M.Sc. Semester / Level: VI / VII **Branch: PHYSICS** Name of Teacher: **Group** : C

**Option 3** 

| Code: PH 523 |        | Title: Quantum photonics and applications                                                                                                                                        | L-T-P     | -C      |  |  |
|--------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|--|--|
|              |        |                                                                                                                                                                                  | [3 1      | 0 4]    |  |  |
| Cours        | e Obje | tives :This course enables the students:                                                                                                                                         |           |         |  |  |
|              | А.     | To assess light-matter interaction at the nanoscale (1-100 nm) in terms of photon statistics for of single photon sources.                                                       | · identif | ication |  |  |
|              | В.     | To Identify various plasmonic nanoantenna (nanoparticles, nanorods) for enhanced el interaction                                                                                  | ectroma   | agnetic |  |  |
|              | C.     | C. To identify a source of single photons and discuss a method to detect the single photons efficiently.                                                                         |           |         |  |  |
|              | D.     | To design chip scale devices for propagation of single photons for quantum communications                                                                                        |           |         |  |  |
|              | E      | To assess the present status and future applications of single photons in quantum technologies and the status and future applications of single photons in quantum technologies. | ogy       |         |  |  |

Course Outcomes : After the completion of this course, students will be

|                                                                                                                                                                                                                    | 1.                                                                                           | Able to identify semiconducting quantum dot as a single photon source.                                                                                                                                                                                                                                                     |    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| :                                                                                                                                                                                                                  | 2.                                                                                           | To develop skills of designing a suitable metal nanoantenna for enhanced light-matter interaction, thus making single photon source faster and brighter.                                                                                                                                                                   |    |  |  |  |  |  |  |
|                                                                                                                                                                                                                    | 3.                                                                                           | To characterize (theoretically) whether a given source of the photon, is a single photon source.                                                                                                                                                                                                                           |    |  |  |  |  |  |  |
| '                                                                                                                                                                                                                  | 4.                                                                                           | To design (theoretically) photonic circuits for the propagation of single photons on semiconductor and metallic platform.                                                                                                                                                                                                  |    |  |  |  |  |  |  |
|                                                                                                                                                                                                                    | 5.                                                                                           | To understand the modern and future scope of quantum communication.                                                                                                                                                                                                                                                        |    |  |  |  |  |  |  |
| Module                                                                                                                                                                                                             | e-1                                                                                          | Classical optical communications and their limitations, quantum optical communications,<br>Semiconducting quantum dots, quantum dot single photon sources, classification of light states<br>and photon statistics. Photon detection and correlation function.Single-Photon Pulses and<br>Indistinguishability of Photons. | 12 |  |  |  |  |  |  |
| Module                                                                                                                                                                                                             | e-2                                                                                          | Plasmonic nanoantennas, fabrications, characterizations and applications in quantum communications devices                                                                                                                                                                                                                 | 8  |  |  |  |  |  |  |
| Module                                                                                                                                                                                                             | e-3                                                                                          | Single photon sources for quantum information: Fabrication and characterizations, Han burry Brown and Twiss measurements (single photons characterization), The Hong–Ou–Mandel effect (indistinguishability test).                                                                                                         | 12 |  |  |  |  |  |  |
| Module                                                                                                                                                                                                             | e-4                                                                                          | Resonant excitation of single photon sources, Integrated quantum photonic circuits and devices, semiconductor, metallic platform, single photon filtering and multiplexing.                                                                                                                                                | 8  |  |  |  |  |  |  |
| Module-5 Principles of quantum key distribution (QKD), Implementing QKD, Fiber-based QKD, Free-space QKD, Diamond-based single-photon sources and their application in quantum key distribution, Quantum repeaters |                                                                                              |                                                                                                                                                                                                                                                                                                                            |    |  |  |  |  |  |  |
| Ref                                                                                                                                                                                                                | Reference:                                                                                   |                                                                                                                                                                                                                                                                                                                            |    |  |  |  |  |  |  |
| 1.                                                                                                                                                                                                                 | 1. Michler, P. (Ed.). (2009). Single semiconductor quantum dots (Vol. 28). Berlin: Springer. |                                                                                                                                                                                                                                                                                                                            |    |  |  |  |  |  |  |
| 2.                                                                                                                                                                                                                 | 2. Novotny, L. & Hecht, B., Principles of nano-optics, Cambridge university press, 2006      |                                                                                                                                                                                                                                                                                                                            |    |  |  |  |  |  |  |

- 3. Lounis, B., &Orrit, M. (2005). Single-photon sources. Reports on Progress in Physics, 68(5), 1129.
- 4. Prawer, Steven, and Igor Aharonovich, eds. Quantum information processing with diamond: Principles and applications. Elsevier, 2014.
- 5. Briegel , H.-J. , Dürr , W. , Cirac , J. I. and Zoller , P. (1998) ' Quantum repeaters: The role of imperfect local operations in quantum communication ', Phys Rev Lett, 81, 5932 - 5935,

| Course Delivery methods                     |   |
|---------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP | Y |
| projectors                                  |   |

| Tutorials/Assignments                             | Y |
|---------------------------------------------------|---|
| Seminars                                          | Ν |
| Mini projects/Projects                            | Ν |
|                                                   |   |
| Laboratory experiments/teaching aids              | Ν |
| Industrial/guest lectures                         | Ν |
| Industrial visits/in-plant training               | Ν |
| Self- learning such as use of NPTEL materials and | Y |
| internets                                         |   |
| Simulation                                        | Ν |

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Components     | CO1          | CO2          | CO3 | CO4          | CO5          |
|---------------------------|--------------|--------------|-----|--------------|--------------|
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ |     |              |              |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ |     |              | $\checkmark$ |
| Quiz I                    |              |              |     | $\checkmark$ |              |
| Quiz II                   |              |              |     | $\checkmark$ | $\checkmark$ |

Indirect Assessment -

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

#### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | 5 |
|-------------------|---|---|---|---|---|
| Α                 | Н | Μ | М | L | М |
| В                 | М | Н | М | L | L |
| С                 | L | L | Н | L | L |
| D                 | - | L | L | Η | L |
| Е                 | L | Μ | L | L | Н |

| Course Outcome # | Program Outcomes |   |   |   |   |   |  |
|------------------|------------------|---|---|---|---|---|--|
|                  | а                | b | с | d | e | f |  |
| 1                | Н                | Н | Н | Н | L | Н |  |
| 2                | Н                | Н | Н | Н | М | Н |  |
| 3                | Н                | Н | Н | М | L | М |  |
| 4                | Н                | М | Н | Н | L | М |  |
| 5                | М                | Н | Н | Н | Н | Н |  |

|     | Mapping Between COs and Course Delivery (CD) methods   |  |         |                 |  |  |  |  |
|-----|--------------------------------------------------------|--|---------|-----------------|--|--|--|--|
| CD  | Course Delivery methods                                |  | Course  | Course Delivery |  |  |  |  |
|     |                                                        |  | Outcome | Method          |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors |  | CO1     | CD1 and CD2     |  |  |  |  |
| CD2 | Tutorials/Assignments                                  |  | CO2     | CD1 and CD2     |  |  |  |  |
| CD3 | Seminars                                               |  | CO3     | CD1 and CD2     |  |  |  |  |
| CD4 | Mini projects/Projects                                 |  | CO4     | CD1 and CD2     |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                   |  | CO5     | CD1 and CD2     |  |  |  |  |
| CD6 | Industrial/guest lectures                              |  | -       | -               |  |  |  |  |
| CD7 | Industrial visits/in-plant training                    |  | -       | -               |  |  |  |  |
|     | Self- learning such as use of NPTEL materials and      |  |         |                 |  |  |  |  |
| CD8 | internets                                              |  | -       | -               |  |  |  |  |
| CD9 | Simulation                                             |  | -       | -               |  |  |  |  |

| Week<br>No. | Lect.<br>No. | Tentati<br>ve<br>Date | Ch.<br>No. | Topics to be covered                                                                                                                                                                                                                | Text<br>Book /<br>Refere | COs<br>mapped | Actual<br>Content<br>covered | Methodolo<br>gy<br>used               | Remarks<br>by<br>faculty if |
|-------------|--------------|-----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|------------------------------|---------------------------------------|-----------------------------|
| 1           | L1-L2        |                       | 1          | Classical optical<br>communications and their<br>limitations, quantum<br>optical communications                                                                                                                                     | T1,<br>T2,               | 1,2           |                              | PPT Digi<br>Class/<br>Chock<br>-Board |                             |
|             | L3-L7        |                       |            | Semiconducting quantum dots, quantum dot single photon sources,                                                                                                                                                                     |                          | 1,            |                              | Digi<br>Class/<br>Chock<br>-Board     |                             |
|             | L8-L10       |                       |            | classification of light<br>states and photon<br>statistics                                                                                                                                                                          |                          | 1,2           |                              | Digi<br>Class/Ch<br>ock<br>-Board     |                             |
|             | L11-<br>L12  |                       |            | Photondetectionandcorrelationfunction.Single-PhotonPulsesandIndistinguishabilityofPhotons                                                                                                                                           |                          | 1,2,3         |                              | Digi<br>Class/Ch<br>ock-<br>Board     |                             |
|             | L13-<br>L20  |                       |            | Plasmonic nanoantennas,<br>fabrications,<br>characterizations and<br>applications in quantum<br>communications devices.                                                                                                             |                          | 1,2           |                              | DigiClass<br>/Chock<br>-Board         |                             |
|             | L21-<br>L32  |                       |            | Single photon sources for<br>quantum information:<br>Fabrication and<br>characterizations, Han<br>burry Brown and Twiss<br>measurements (single<br>photons characterization),<br>The Hong–Ou–Mandel<br>effect (indistinguishability |                          | 1             |                              | Digi<br>Class/Ch<br>ock<br>-Board     |                             |

|             | test).                                                                                                                                                                                                                                 |   |                                   |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------|
| L33-<br>L40 | Resonant excitation of<br>single photon sources,<br>Integrated quantum<br>photonic circuits and<br>devices, semiconductor,<br>metallic platform, single<br>photon filtering and<br>multiplexing.                                       | 2 | Digi<br>Class/Ch<br>ock<br>-Board |
| L41-<br>L50 | Principles of quantum key<br>distribution (QKD),<br>Implementing QKD,<br>Fiber-based QKD, Free-<br>space QKD, Diamond-<br>based single-photon<br>sources and their<br>application in quantum<br>key distribution, Quantum<br>repeaters | 3 | Digi<br>Class/Ch<br>ock<br>-Board |

| Course    | code: PH 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Course    | title: Introduction to Nanophotonics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Pre-requ  | uisite(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Co- requ  | uisite(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| Credits:  | <b>4</b> L: 3 T: 1 P: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Class sc  | hedule per week:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| Class: L  | M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Semeste   | r / Level· VI / VII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Branch    | PHVSICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Nomo of   | Tanahari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Crown (   | Continu 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Group     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Code:     | L-I-P-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| PH 524    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Course    | Objective: Course enables the students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Α         | To identify optical phenomenon and tools to understand physics at nanoscales.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| В.        | To evaluate different quantum systems in zero, one, two and three-dimensional system at the nanoscale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| C.        | To discuss photonic crystals and manifestation of nonlinear optical interactions with it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| D         | To discuss different types of microstructure fibres and photonic crystal fibre devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| F         | To identify the manifestation of optical interaction with metallic nanostructures and nanophotonic devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
|           | like microcavity and waveguides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Course    | <b>Outcomes</b> • After the completion of this course, students will be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|           | To solve problems of optical confinement at paposcales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| 1.        | To solve problems of optical commence at nanoscales.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| 2.        | To evaluate light-matter interaction in Nano-systems (quantum dots, well etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| 3.        | To design theoretical models for photomic crystals. The line $(1 - 1)$ is the second |    |
| 4.        | To design (theoretically) different types of microstructure fibres and photonic crystal fibre devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| Э.        | To assess the field enhancement in metal nanoparticles and its application in surface plasmon waveguide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s. |
|           | Further he/she will be able to apply knowledge of light confinement in microcavity for microcavity laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s. |
| Module-1  | Foundations for Nanophotonics: similarities and differences of photons and electrons and their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 |
|           | confinement. Propagation through a classically forbidden zone: tunnelling. Localization under a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
|           | periodic potential: Band gap. Cooperative effects for photons and electrons. Nanoscale optical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|           | interactions, axial and lateral nanoscopic localization, scanning near-field optical microscopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|           | Nanoscale confinement of electronic interactions: Quantum confinement effects, nanoscale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
|           | interaction dynamics, nanoscale electronic energy transfer. Cooperative emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
| Module-2  | Quantum wells, quantum wired, quantum dots, quantum rings and superlattices. Quantum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 |
|           | confinement, density of states, optical properties. Quantum confined stark effect. Dielectric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
|           | confinement effect. Core-shell quantum dots and quantum-dot-quantum wells. Quantum confined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|           | structures as lasing media. Organic quantum-confined structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Module-3  | Photonic Crystals: basics concepts, features of photonic crystals, wave propagation, photonic band-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 |
|           | gaps light guiding Theoretical modeling of photonic crystals Methods of fabrication Photonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|           | crystal ontical circuitry Nonlinear photonic crystals Applications of photonic crystals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|           | Microstructure fibers: photonic crystal fiber (PCF) photonic hand gap fibers (PBG) hand gap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|           | guiding single mode and multi-mode dispersion engineering nonlinearity engineering PCE devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
|           | guiding, single mode and multi-mode, dispersion engineering, noninicarity engineering, i er devices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Module_4  | Plasmonics: Metallic nanonarticles, nanorods and nanoshells, local field enhancement. Collective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8  |
| viouuic-+ | modes in papoparticle arrays, particle chains and arrays, surface plasmons, plasmon waveguides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0  |
|           | Applications of metallic Manastructures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| Modula 5  | Applications of instance manosulucines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 |
| viouule-5 | diodos Eurodomontolo of Covity OED, strong and much covity quantum well fasters and light emitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 |
|           | diodes, Fundamentals of Cavity QED, strong and weak coupling regime, Purceil factor, Spontaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
|           | emission control, Application of microcavities, including low threshold lasers, resonant cavity LED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
|           | Microcavity-based single photon sources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Refe      | rences:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| T1. N     | vanophotonics, Paras N Prasad, John Wiley & Sons (2004)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| T2.       | Fundamentals of Photonic Crystal Fibers; Fredric Zolla- Imperial College Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| T3. F     | hotonic Crystals; John D Joannopoulos, Princeton University Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

T4 Photonic Crystals: Modelling Flow of Light; John D Joannopoulos, R.D. Meade and J.N.Winn, Princeton University Press (1995)

| Course Delivery methods                           |   |
|---------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP       | Y |
| projectors                                        |   |
| Tutorials/Assignments                             | Y |
| Seminars                                          | Ν |
| Mini projects/Projects                            | Ν |
|                                                   |   |
| Laboratory experiments/teaching aids              | Ν |
| Industrial/guest lectures                         | Ν |
| Industrial visits/in-plant training               | Ν |
| Self- learning such as use of NPTEL materials and | Y |
| internets                                         |   |
| Simulation                                        | Ν |

#### **Direct** Assessment

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Components     | CO1          | CO2          | CO3          | CO4          | CO5 |
|---------------------------|--------------|--------------|--------------|--------------|-----|
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |     |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |     |
| Quiz I                    |              |              | $\checkmark$ | $\checkmark$ |     |
| Quiz II                   |              |              |              |              |     |

#### Indirect Assessment -

**1.** Student Feedback on Faculty

2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

# Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | 5 |
|-------------------|---|---|---|---|---|
| Α                 | Н | Μ | Μ | L | М |
| В                 | Μ | Η | Μ | L | L |
| С                 | L | L | Н | L | L |
| D                 | - | L | L | Η | L |
| Е                 | L | Μ | L | L | Н |

| Course Outcome # |   | Program Outcomes |   |   |   |   |
|------------------|---|------------------|---|---|---|---|
|                  | а | b                | с | d | e | f |
| 1                | Н | Н                | Н | Н | L | Н |

| 2 | Н | Н | Н | Н | М | Н |
|---|---|---|---|---|---|---|
| 3 | Н | Н | Н | М | L | М |
| 4 | Н | М | Н | Н | L | М |
| 5 | М | Н | Η | Н | Н | Η |

|     | Mapping Between COs and Course Delivery (CD) methods   |  |                   |                           |  |  |  |
|-----|--------------------------------------------------------|--|-------------------|---------------------------|--|--|--|
| CD  | Course Delivery methods                                |  | Course<br>Outcome | Course Delivery<br>Method |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors |  | CO1               | CD1 and CD2               |  |  |  |
| CD2 | Tutorials/Assignments                                  |  | CO2               | CD1 and CD2               |  |  |  |
| CD3 | Seminars                                               |  | CO3               | CD1 and CD2               |  |  |  |
| CD4 | Mini projects/Projects                                 |  | CO4               | CD1 and CD2               |  |  |  |
| CD5 | Laboratory experiments/teaching aids                   |  | CO5               | CD1 and CD2               |  |  |  |
| CD6 | Industrial/guest lectures                              |  | -                 | -                         |  |  |  |
| CD7 | Industrial visits/in-plant training                    |  | -                 | -                         |  |  |  |
|     | Self- learning such as use of NPTEL materials and      |  |                   |                           |  |  |  |
| CD8 | internets                                              |  | -                 | -                         |  |  |  |
| CD9 | Simulation                                             |  | _                 | -                         |  |  |  |

| Week | Lect.  | Tentati | Ch. | Topics to be covered    | Text    | COs   | Actual  | Methodo  | Remarks    |
|------|--------|---------|-----|-------------------------|---------|-------|---------|----------|------------|
| No.  | No.    | ve      | No  | -                       | Book /  | mappe | Content | logy     | by         |
|      |        | Date    |     |                         | Refere  | d     | covered | used     | faculty if |
|      |        |         |     |                         | nces    |       |         |          | anv        |
| 1    | L1-L4  |         | 1   | Foundations for         | T1. T2. | 1.2   |         | PPT Digi |            |
|      |        |         |     | Nanophotonics:          | , ,     | ,     |         | Class/Ch |            |
|      |        |         |     | similarities and        |         |       |         | ock      |            |
|      |        |         |     | differences of photons  |         |       |         | -Board   |            |
|      |        |         |     | and electrons and their |         |       |         | 2000     |            |
|      |        |         |     | confinement.            |         |       |         |          |            |
|      |        |         |     | Propagation through a   |         |       |         |          |            |
|      |        |         |     | classically forbidden   |         |       |         |          |            |
|      |        |         |     | zone: tunneling.        |         |       |         |          |            |
|      |        |         |     | Localization under a    |         |       |         |          |            |
|      |        |         |     | periodic potential:     |         |       |         |          |            |
|      |        |         |     | Band gap.               |         |       |         |          |            |
|      | L3-L7  |         |     | Cooperative effects for |         | 1,    |         | Digi     |            |
|      |        |         |     | photons and electrons.  |         |       |         | Class/Ch |            |
|      |        |         |     | Nanoscale optical       |         |       |         | ock      |            |
|      |        |         |     | interactions, axial and |         |       |         | -Board   |            |
|      |        |         |     | lateral nanoscopic      |         |       |         |          |            |
|      |        |         |     | localization, scanning  |         |       |         |          |            |
|      |        |         |     | near-field optical      |         |       |         |          |            |
|      | 10110  |         |     | microscopy.             |         | 1.0   |         | D' '     |            |
|      | L8-L10 |         |     | Nanoscale confinement   |         | 1,2   |         | Digi     |            |
|      |        |         |     | oi electronic           |         |       |         | Class/Ch |            |
|      |        |         |     | interactions: Quantum   |         |       |         | ock      |            |
|      |        |         |     | commement effects,      |         |       |         | -Board   |            |
|      |        |         |     | nanoscale interaction   |         |       |         |          |            |
|      |        |         |     | dynamics, nanoscale     |         |       |         |          |            |

|           | electronic energy        |       |          |
|-----------|--------------------------|-------|----------|
|           | transfer. Cooperative    |       |          |
|           | emissions                |       |          |
|           |                          | 1.0.0 | D' '     |
| LII-LI2   | Quantum wens,            | 1,2,3 | Digi     |
|           | quantum wired,           |       | Class/Ch |
|           | quantum dots,            |       | ock      |
|           | quantum rings and        |       | -Board   |
|           | superlattices Quantum    |       | Dourd    |
|           | confinament density      |       |          |
|           | commentent, density      |       |          |
|           | of states, optical       |       |          |
|           | properties               |       |          |
| L13-L15   | Quantum confined stark   | 1,2   | Digi     |
|           | effect. Dielectric       |       | Class/Ch |
|           | confinement effect       |       | ock      |
|           | Core shell quantum       |       |          |
|           | data and mantan dat      |       | -Board   |
|           | dots and quantum-dot-    |       |          |
|           | quantum wells.           |       |          |
| L16-L20   | Quantum confined         | 3     | Digi     |
|           | structures as lasing     |       | Class/Ch |
|           | media. Organic           |       | ock      |
|           | auantum-confined         |       | Deced    |
|           | quantum-commed           |       | -Board   |
|           | structures               |       |          |
| L21-L25   | Photonic Crystals:       | 3     | Digi     |
|           | basics concepts,         |       | Class/Ch |
|           | features of photonic     |       | ock      |
|           | crystals, wave           |       | -Board   |
|           | propagation photonic     |       | Board    |
|           | band gang light          |       |          |
|           | band-gaps, light         |       |          |
|           | guiding. Theoretical     |       |          |
|           | modeling of photonic     |       |          |
|           | crystals. Methods of     |       |          |
|           | fabrication              |       |          |
| I 26-I 30 | Photonic crystal ontical | 3     |          |
| E20 E50   | circuitry Nonlineer      | 5     |          |
|           | cheunty. Nominear        |       |          |
|           | photonic crystais.       |       |          |
|           | Applications of          |       |          |
|           | photonic crystals.       |       |          |
|           | Microstructure fibers:   |       |          |
|           | photonic crystal fiber   |       |          |
|           | (PCF) photonic hand      |       |          |
|           | (i ci ); photoine band   |       |          |
|           | gap fibers (FDO), ballu  |       |          |
|           | gap                      |       |          |
|           | guiding, single mode     |       |          |
|           | and multi-mode,          |       |          |
|           | dispersion               |       |          |
|           | engineering              |       |          |
|           | nonlineerity             |       |          |
|           |                          |       |          |
|           | engineering, PCF         |       |          |
|           | devices                  |       |          |
| L31-L35   | Plasmonics: Metallic     | 4     |          |
|           | nanoparticles,           |       |          |
|           | nanorods and             |       |          |
|           | nanoshells local field   |       |          |
|           | anhoncomont              |       |          |
|           | ennancement.             |       |          |
|           | Collective modes in      |       |          |
|           | nanoparticle arrays,     |       |          |
|           | particle chains and      |       |          |
|           | arrays surface           |       |          |
|           | nlaemone plaemon         |       |          |
|           | prasmons, prasmon        |       |          |

|         | waveguides.<br>Applications of<br>metallic<br>Nanostructures                                                                                                                                                                                                                                                 |   |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| L36-L50 | Nanophotonic Devices:Quantum well lasers:resonantcavityquantum well lasersand light emittingdiodes, Fundamentalsof Cavity QED, strongand weak couplingregime, Purcell factor,Spontaneous emissioncontrol, Application ofmicrocavities,includinglowthresholdlasers,resonantcavity-basedsingle photon sources. | 5 |  |

#### **Group D- Electronics:**

1. Microprocessor and Microcontroller Applications

2. Integrated Electronics

**3.** Microwave Electronics

### **COURSE INFORMATION SHEET**

| Course code: I        | PH 525             |         |                 |              |
|-----------------------|--------------------|---------|-----------------|--------------|
| Course title: M       | licroprocessor     | and Mic | rocontroller    | Applications |
| Pre-requisite(s       | s):                |         |                 |              |
| Co- requisite(s       | s):                |         |                 |              |
| Credits:              | <b>4</b> L: 3 T: 1 | P: 0    |                 |              |
| <b>Class schedule</b> | per week:          |         |                 |              |
| Class: I.M.Sc.        | -                  |         |                 |              |
| Semester / Lev        | el:PE VI / VII     |         |                 |              |
| Branch: PHYS          | SICS               |         |                 |              |
| Name of Teach         | ner:               |         |                 |              |
| Group : D             |                    |         | <b>Option 1</b> |              |

| Code:<br>PH 52 | Title:MicroprocessorandMicrocontrollerL-T-P-CApplications3-1-0-4                                             |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Course Ol      | ojectives                                                                                                    |  |  |  |  |  |
| This course    | enables the students:                                                                                        |  |  |  |  |  |
| А.             | The first module introduces architecture of 8085 and 8086 Microprocessor.                                    |  |  |  |  |  |
| В.             | The module-2 is compilation of information about I/O communication Interface.                                |  |  |  |  |  |
| C.             | Microcontrollers (8051), its architecture and working is subject of module-3                                 |  |  |  |  |  |
| D.             | The 4 <sup>th</sup> module contains Real time control sequences and programming of 8051-<br>microcontroller. |  |  |  |  |  |
| E.             | The AVR RISC microcontroller architecture is covered in module-5.                                            |  |  |  |  |  |

### **Course Outcomes**

After the completion of this course, students will be:

| 1.             | e course intends to impart knowledge of Microprocessors and microcontrollers to enable learners |           |  |  |  |  |  |  |
|----------------|-------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
|                | the knowledge of basics of Modern computation.                                                  |           |  |  |  |  |  |  |
| 2.             | Knowledge of 8085/8086 architecture would make learners rich about working and                  | design of |  |  |  |  |  |  |
|                | microprocessors and microcontrollers.                                                           |           |  |  |  |  |  |  |
| 3.             | The course also includes information about microcontrollers, real time control of 8051 and A    | AVR RISC  |  |  |  |  |  |  |
|                | microcontroller architecture. This would enable learners to understand fundam                   | entals of |  |  |  |  |  |  |
|                | microcontrollers and implement it to design / use microcontroller for new environments.         |           |  |  |  |  |  |  |
|                |                                                                                                 |           |  |  |  |  |  |  |
| <b>N</b> 1 1 1 |                                                                                                 | F1 73     |  |  |  |  |  |  |
| Module-1       | 8086 Architecture [15]                                                                          |           |  |  |  |  |  |  |
|                | Introduction to 8085 Microprocessor, 8086 Architecture-Functional diagram.                      |           |  |  |  |  |  |  |
|                | Register Organization, Memory Segmentation. Programming Mode!. Memory                           |           |  |  |  |  |  |  |
|                | addresses. Physical memory organization. Architecture of 8086, signal descriptions              |           |  |  |  |  |  |  |

|                                                                                               | -                                                                                      |            |  |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------|--|--|--|--|
|                                                                                               | of 8086-common function signals. Minimum and Maximum mode signals. Timing              |            |  |  |  |  |
|                                                                                               | diagrams. Interrupts of 8086. Instruction Set and Assembly Language Programming        |            |  |  |  |  |
|                                                                                               | of 8086: Instruction formats, addressing modes, instruction set, assembler directives, |            |  |  |  |  |
|                                                                                               | macros, simple programs involving logical, branch and call instructions, sorting,      |            |  |  |  |  |
|                                                                                               | evaluating arithmetic expressions, string manipulations.                               |            |  |  |  |  |
| Module-2                                                                                      | I/O and Communication Interface:                                                       | [14]       |  |  |  |  |
|                                                                                               | 8255 PPI various modes of operation and interfacing to 8086. Interfacing keyboard,     |            |  |  |  |  |
|                                                                                               | display, stepper motor interfacing, D/A and A/D converter. Memory interfacing to       |            |  |  |  |  |
|                                                                                               | 8086. Interrupt structure of 8086. Vector interrupt table. Interrupt service routine.  |            |  |  |  |  |
|                                                                                               | Introduction to DOS and BIOS interrupts. Interfacing Interrupt Controller 8259         |            |  |  |  |  |
|                                                                                               | DMA Controller 8257 to 8086 Communication interface: Serial communication              |            |  |  |  |  |
|                                                                                               | standards Serial data transfer schemes 8251 USART architecture and interfacing         |            |  |  |  |  |
|                                                                                               | RS-232 IFFE-4-88 Prototyping and trouble shooting                                      |            |  |  |  |  |
| Module-3                                                                                      | Introduction to Microcontrollers: Overview of 8051 microcontroller. Architecture       | [6]        |  |  |  |  |
| Widdule-5                                                                                     | I/O Ports Memory organization addressing modes and instruction set of 8051             | [0]        |  |  |  |  |
|                                                                                               | simple program                                                                         |            |  |  |  |  |
| Modulo 4                                                                                      | 8051 Deal Time Control: Interrupts timer/ Counter and sorial communication             | [7]        |  |  |  |  |
| Module-4                                                                                      | busin Real Time Control. Interrupts, timer Counter and serial communication,           | [/]        |  |  |  |  |
|                                                                                               | programming limer interrupts, programming external hardware interrupts,                |            |  |  |  |  |
|                                                                                               | programming the serial communication interrupts, programming 8051 timers and           |            |  |  |  |  |
|                                                                                               |                                                                                        | [7]        |  |  |  |  |
| Module-5                                                                                      | The AVR RISC microcontroller architecture: Introduction, AVR Family                    | [/]        |  |  |  |  |
|                                                                                               | architecture, Register File, The ALU. Memory access and Instruction execution. I/O     |            |  |  |  |  |
|                                                                                               | memory. EEPROM. I/O ports. Timers. UART. Interrupt Structure                           |            |  |  |  |  |
| TEXT BOOKS                                                                                    | ):<br>                                                                                 |            |  |  |  |  |
| 1 D. V. H                                                                                     | Iall. Micro processors and Interfacing, TMGH. 2'1 edition 2006.                        |            |  |  |  |  |
| 2 Kennet                                                                                      | h. J. Ayala. The 8051 microcontroller, 3rd edition, Cengage learning, 2010             |            |  |  |  |  |
|                                                                                               |                                                                                        |            |  |  |  |  |
| REFERENCE                                                                                     | BOOKS:                                                                                 |            |  |  |  |  |
| 1 Advanced Microprocessors and Peripherals -A. K. Ray and K.M. Bhurchandani, TMH, 2nd edition |                                                                                        |            |  |  |  |  |
| 2 The 80                                                                                      | 051 Microcontrollers, Architecture and programming and Applications -K.Uma             | Rao, Andhe |  |  |  |  |
| Pallavi,                                                                                      | "Pearson, 2009.                                                                        |            |  |  |  |  |
| 2 11                                                                                          |                                                                                        | 1 1 0 1    |  |  |  |  |

3 Micro Computer System 8086/8088 Family Architecture. Programming and Design -By Liu and GA Gibson, PHI, 2nd Ed.,

4 Microcontrollers and application, Ajay. V. Deshmukh, TMGH. 2005

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | N |
| Mini projects/Projects                                      | N |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | N |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

# **Course Assessment tools & Evaluation procedure**

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1 | CO2          | CO3          | CO4          | CO5          |
|---------------------------|-----|--------------|--------------|--------------|--------------|
| Mid Sem Examination Marks |     | $\checkmark$ | $\checkmark$ |              |              |
| End Sem Examination Marks |     | $\checkmark$ |              |              | $\checkmark$ |
| Quiz I                    |     | $\checkmark$ |              |              |              |
| Quiz II                   |     |              | $\checkmark$ | $\checkmark$ |              |

Indirect Assessment –

1. Student Feedback on Faculty

Student Feedback on Course Outcome 2.

# <u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

| Course Objectives | Course Outcomes |   |   |   |   |
|-------------------|-----------------|---|---|---|---|
|                   | 1               | 2 | 3 | 4 | 5 |
| Α                 | Н               | Μ | Μ | L | Η |
| В                 | М               | Н | Μ | Μ | Η |
| С                 | L               | L | Н | М | L |
| D                 | М               | L | L | Η | Н |
| Е                 | Н               | Μ | L | L | Η |

#### **Mapping of Course Outcomes onto Program Outcomes**

| Course Outcome # |   | Program Outcomes |   |   |   |   |  |
|------------------|---|------------------|---|---|---|---|--|
|                  | a | b                | с | d | e | f |  |
| 1                | Н | М                | Н | М | М | М |  |
| 2                | L | Η                | Η | М | Η | Н |  |
| 3                | Н | L                | М | М | L | М |  |
| 4                | L | М                | Η | М | М | М |  |
| 5                | L | Η                | Н | М | Η | Η |  |

|     | Mapping Between COs and Course Delivery (CD) methods        |  |         |                  |  |  |  |  |
|-----|-------------------------------------------------------------|--|---------|------------------|--|--|--|--|
|     |                                                             |  | Course  | Course Delivery  |  |  |  |  |
| CD  | Course Delivery methods                                     |  | Outcome | Method           |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      |  | CO1     | CD1 and CD2      |  |  |  |  |
| CD2 | Tutorials/Assignments                                       |  | CO2     | CD1 and CD2      |  |  |  |  |
| CD3 | Seminars                                                    |  | CO3     | CD1 and CD2      |  |  |  |  |
| CD4 | Mini projects/Projects                                      |  | CO4     | CD1, CD2 and CD8 |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        |  | CO5     | CD1, CD2 and CD8 |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |  | -       | -                |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |  | -       | -                |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |  | -       | -                |  |  |  |  |
| CD9 | Simulation                                                  |  | -       | -                |  |  |  |  |

| Week | Lect. | <b>Fentative</b> | Ch. | Fopics to be covered | Гext   | Cos   | Actual  | Methodol | Remarks    |
|------|-------|------------------|-----|----------------------|--------|-------|---------|----------|------------|
|      | No.   | Date             |     |                      | Book / | mappe | Content | ogy used | by         |
| No.  |       |                  | No. |                      | Refere | d     | covered |          | faculty if |

|   |            |   |                                                                                                                                                         | nces   |     |             | any |
|---|------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-------------|-----|
| 1 | L1-<br>L2  | 1 | Introductionto8085Microprocessor,8086Architecture-Functionaldiagram.                                                                                    | T1, R3 | CO1 | CD1,<br>CD2 |     |
|   | L3-<br>L5  |   | RegisterOrganization,MemorySegmentation.Programming Model                                                                                               | T1,R3  | CO1 | CD1,<br>CD2 |     |
| 2 | L6         |   | Memory addresses. Physical memory organization.                                                                                                         | T1,R3  | CO1 | CD1,<br>CD2 |     |
|   | L7-8       |   | Architecture of 8086, signal<br>descriptions of 8086-<br>common function signals.<br>Minimum and Maximum<br>mode signals.                               | T1, R3 | CO1 | CD1,<br>CD2 |     |
| 3 | L9         |   | Timing diagrams. Interrupts of 8086.                                                                                                                    | T1, R3 | CO1 | CD1,<br>CD2 |     |
|   | L10-<br>11 |   | Instruction Set and Assembly<br>Language Programming of<br>8086: Instruction formats,<br>addressing modes,<br>instruction set, assembler<br>directives, | T1, R3 | CO1 | CD1,<br>CD2 |     |
| 4 | L12-<br>13 |   | macros, simple programs<br>involving logical, branch and<br>call instructions, sorting,                                                                 | T1, R3 | CO1 | CD1,<br>CD2 |     |
|   | L14-<br>15 |   | evaluating arithmetic<br>expressions, string<br>manipulations.                                                                                          | T1, R3 | CO1 | CD1,<br>CD2 |     |
| 5 | L16        | 2 | 8255 PPI various modes of<br>operation and interfacing to<br>8086                                                                                       | T2     | CO2 | CD1,<br>CD2 |     |
|   | L17-<br>18 |   | Interfacing keyboard,<br>display, stepper motor<br>interfacing, D/A and A/D<br>converter.                                                               | T2     | CO2 | CD1,<br>CD2 |     |
| 6 | L19-<br>20 |   | Memory interfacing to 8086,<br>Interrupt structure of 8086,<br>Vector interrupt table,<br>Interrupt service routine,                                    | T2     | CO2 | CD1,<br>CD2 |     |
|   | L21-<br>22 |   | Introduction to DOS and<br>BIOS interrupts, Interfacing<br>Interrupt Controller 8259<br>DMA Controller 8257 to<br>8086.                                 | T2     | CO2 | CD1,<br>CD2 |     |
| 7 | L23-<br>25 |   | Communication<br>interface: Serial                                                                                                                      | T2     | CO2 | CD1,<br>CD2 |     |

|    |      | <br>- |                                                         |        |     |          |  |
|----|------|-------|---------------------------------------------------------|--------|-----|----------|--|
|    |      |       | communication standards,                                |        |     |          |  |
|    |      |       | Serial data transfer schemes.                           |        |     |          |  |
|    | L26- |       | 8251 USART architecture                                 | T2     | CO2 | CD1,     |  |
|    | 27   |       | and interfacing, RS-232,                                |        |     | CD2      |  |
|    |      |       | IEEE-4-88,                                              |        |     |          |  |
| 8  | L28- |       | Prototyping and trouble                                 | T2     | CO2 | CD1,     |  |
|    | 29   |       | shooting                                                |        |     | CD2      |  |
|    | L30- | 3     | Overview of 8051                                        | T2     | CO3 | CD1,     |  |
|    | 31   |       | microcontroller.                                        |        |     | CD2      |  |
|    |      |       | Architecture.                                           |        |     |          |  |
| 9  | L32- |       | I/O Ports. Memory                                       | T2     | CO3 | CD1,     |  |
|    | 33   |       | organization,                                           |        |     | CD2      |  |
|    | L33- |       | addressing modes and                                    | T2     | CO3 | CD1,     |  |
|    | L34  |       | instruction set of 8051,                                |        |     | CD2      |  |
|    | L35  |       | simple program                                          | T2     | CO3 | CD1,     |  |
|    |      |       |                                                         |        |     | CD2      |  |
| 10 | L36- | 4     | Interrupts, timer/ Counter                              | T2, R2 | CO4 | CD1,     |  |
|    | 37   |       | and serial communication,                               |        |     | CD2      |  |
|    | L38- |       | programming Timer                                       | T2, R2 | CO4 | CD1,     |  |
|    | 39   |       | Interrupts, programming<br>external hardware interrupts |        |     | CD2      |  |
| 11 | L40- |       | programming the serial                                  | T2, R2 | CO4 | CD1.     |  |
|    | 41   |       | communication interrupts                                |        |     | CD2      |  |
|    | L42  |       | programming 8051 timers                                 | T2, R2 | CO4 | CD1,     |  |
|    |      |       | and counters                                            | , ,    |     | CD2, and |  |
|    |      |       |                                                         |        |     | CD8      |  |
|    | L43  | 5     | Introduction                                            | R4     | CO5 | CD1,     |  |
|    |      |       |                                                         |        |     | CD2, and |  |
|    |      |       |                                                         |        |     | CD8      |  |
|    | L44- |       | AVR Family architecture,                                | R4     | CO5 | CD1,     |  |
|    | 45   |       | Register File, The ALU.                                 |        |     | CD2, and |  |
|    |      |       |                                                         |        |     | CD8      |  |
| 12 | L46- |       | Memory access and                                       | R4     | CO5 | CD1,     |  |
|    | 47   |       | Instruction execution.                                  |        |     | CD2, and |  |
|    |      |       |                                                         |        |     | CD8      |  |
|    | L48- | 1     | Timers. UART. Interrupt                                 | R4     | CO5 | CD1,     |  |
|    | 49   |       | Structure                                               |        |     | CD2, and |  |
|    |      |       |                                                         |        |     | CD8      |  |

Course code: PH 526 Course title: Integrated Electronics Pre-requisite(s): Co- requisite(s): Credits: 4 L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher: Group : D

Option 2

| Code:               | Title: Integrated Electronics                                                                                                                                                                         | L-T-P-C                    |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| PH 526              | 3-1-0-4                                                                                                                                                                                               |                            |  |  |  |  |  |  |
| <b>Course Objec</b> | tives                                                                                                                                                                                                 |                            |  |  |  |  |  |  |
| This course ena     | bles the students:                                                                                                                                                                                    |                            |  |  |  |  |  |  |
| А.                  | First module of the course contains information about various type of circuitry to achieve logic processing for digital devices.                                                                      |                            |  |  |  |  |  |  |
| В.                  | The second module of the course would introduce the learners t<br>being followed in foundry for fabrication of Integrated devices.                                                                    | to the processes currently |  |  |  |  |  |  |
| C.                  | The learners should explain different nanoscale devices.                                                                                                                                              |                            |  |  |  |  |  |  |
| D.                  | The working and construction of nanoscale electronic devices is planned to be covered in Module-4.                                                                                                    |                            |  |  |  |  |  |  |
| E.                  | The final module, module-5 contains an account of functional thin films, nanostructures and their applications. Information contained in this module bridges ongoing research with the course taught. |                            |  |  |  |  |  |  |

#### **Course Outcomes**

After the completion of this course, students will be:

|       | 1.                                                                                              | This course would introduce students about designing and making process of integrated devices.                                                                                             |     |  |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|
| -     | 2.                                                                                              | The various fabrication process taught in module-II would enrich their knowledge to various foundry fabrication processes enabling them with skills of nanofabrication.                    |     |  |  |  |  |  |
|       | 3.                                                                                              | Knowledge of functioning and construction of nanoscale electronic devices would cater the need to keep them update with recent technologies in the field.                                  |     |  |  |  |  |  |
|       | 4.                                                                                              | Knowledge of functioning and construction of nanoscale optoelectronic devices would cater the need to keep them update with recent technologies in the field.                              |     |  |  |  |  |  |
|       | 5                                                                                               | Knowledge of various types of functional thin films, nanostructures and their applications would enable learners understand working of presently used various type of sensors and devices. | ıld |  |  |  |  |  |
| Modul | le-1                                                                                            | Logic Families                                                                                                                                                                             | 5   |  |  |  |  |  |
|       |                                                                                                 | Diode Transistor Logic, High Threshold Logic, Transistor-transistor Logic, Resistor-                                                                                                       |     |  |  |  |  |  |
|       |                                                                                                 | transistor Logic, Direct Coupled Transistor Logic, Comparison of Logic families                                                                                                            |     |  |  |  |  |  |
| Modul | le-2                                                                                            | Integrated Chip Technology                                                                                                                                                                 | 20  |  |  |  |  |  |
|       |                                                                                                 | Overview of semiconductor industry, Stages of Manufacturing, Process and product trends,                                                                                                   |     |  |  |  |  |  |
|       |                                                                                                 | Crystal growth, Basic wafer fabrication operations, process yields, semiconductor material                                                                                                 |     |  |  |  |  |  |
|       |                                                                                                 | preparation, yield measurement, contamination sources, clean room construction, substrates,                                                                                                |     |  |  |  |  |  |
|       |                                                                                                 | diffusion, oxidation and photolithography, doping and depositions, implantation, rapid                                                                                                     |     |  |  |  |  |  |
|       |                                                                                                 | thermal processing, metallization. patterning process, Photoresists, physical properties of                                                                                                |     |  |  |  |  |  |
|       |                                                                                                 | photoresists, Storage and control of photoresists, photo masking process, Hard bake, develop                                                                                               |     |  |  |  |  |  |
|       | inspect, Dry etching Wet etching, resist stripping, Doping and depositions: Diffusion process   |                                                                                                                                                                                            |     |  |  |  |  |  |
|       |                                                                                                 | steps, deposition, Drive-in oxidation, Ion implantation, CVD basics, CVD process steps, Low                                                                                                |     |  |  |  |  |  |
|       | pressure CVD systems, Plasma enhanced CVD systems, Vapour phase epitoxy, molecu                 |                                                                                                                                                                                            |     |  |  |  |  |  |
|       | beam epitaxy. Design rules and Scaling, BICMOS ICs: Choice of transistor types, j               |                                                                                                                                                                                            |     |  |  |  |  |  |
|       | transistors, Resistors, capacitors, Packaging: Chip characteristics, package functions, package |                                                                                                                                                                                            |     |  |  |  |  |  |

|           | operations                                                                                      |        |
|-----------|-------------------------------------------------------------------------------------------------|--------|
| Modulo 2  | Nencolostronio devices                                                                          | 15     |
| Module-5  | Nanoelectronic devices                                                                          | 15     |
|           | Effect of shrinking the p-n junction and bipolar transistor; held-effect transistors, MOSFETS,  |        |
|           | Introduction, CMOS scaling, the nanoscale MOSFET, vertical MOSFETs, electrical                  |        |
|           | characteristics of sub-100 nm MOS transistors, limits to scaling, system integration limits     |        |
|           | (interconnect issues etc.), heterostructure and heterojunction devices, ballistic transport and |        |
|           | high-electron-mobility devices, HEMT, Carbon Nanotube Transistor, single electron effects,      |        |
|           | Coulomb blockade. Single Electron Transistor, Resonant Tunneling Diode, Resonant                |        |
|           | Tunneling Transistor, applications in high frequency and digital electronic circuits and        |        |
|           | comparison with competitive devices.                                                            |        |
| Module-4  | Nano-Optoelectronic devices                                                                     | 5      |
|           | Direct and indirect band gap semiconductors, QWLED, QWLaser, Quantum Cascade Laser              |        |
|           | Integrated Micromachining Technologies for Transducer Fabrication                               |        |
| Module-5  | Applications of Functional Thin Films and Nanostructures                                        | 5      |
|           | Functional Thin Films and Nanostructures for Gas Sensing, Chemical Sensors, Applications        |        |
|           | of Functional Thin Films for Mechanical sensing, Sensing Infrared signals by Functional         |        |
|           | Films.                                                                                          |        |
| Referen   | ices                                                                                            |        |
| Textbooks | s and Reference Books:                                                                          |        |
| 1 Herbert | Taub, Donald L. Schilling, Digital Integrated Electronics, McGraw-Hill, 1977                    |        |
| 2 S.M. Sz | e, Ed, Modern Semiconductor Device Physics, Wiley, New York                                     |        |
| 3 S.M. Sz | e and K.K. Ng, Physics of Semiconductor Devices, 3rd Ed, Wiley, Hoboken.                        |        |
| 4 S. Wolf | and R.N. Tauber, Silicon Processing, vol. 1, (Lattice Press)                                    |        |
| 5 S.Wolf  | and R. N. Tauber, Silicon Processing for the VLSI Era. (Lattice Press, 2000)                    |        |
| 6 Streetm | an, B.G. Solid State Electronic Devices, Prentice Hall, Fifth Edition, 2000                     |        |
| 7 R. D. D | oering and Y. Nishi, Handbook of Semiconductor Manufacturing Technology, CRC Press, Boca        | Raton. |
| 8 W. R. F | ahrner (Editor), Nanotechnology and Nanoelectronics, Materials, Devices, Measurement Technik    | aues   |

9 Anis Zribi, Jeffrey Fortin (Editors), Functional Thin Films and Nanostructures for Sensors Synthesis, Physics, and Applications

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | N |
| Mini projects/Projects                                      | N |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | N |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

# Course Assessment tools & Evaluation procedure

#### **Direct** Assessment

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2          | CO3          | CO4          | CO5 |
|---------------------------|--------------|--------------|--------------|--------------|-----|
| Quiz I                    | $\checkmark$ | $\checkmark$ |              |              |     |
| Quiz II                   |              |              | $\checkmark$ | $\checkmark$ |     |
| Assessment                | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |     |
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |     |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |     |

#### Indirect Assessment -

1. Student Feedback on Faculty

2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

# Mapping between Course Objectives and Course Outcomes

| Course Objectives |   | Co | ourse Outco | me |   |
|-------------------|---|----|-------------|----|---|
|                   | 1 | 2  | 3           | 4  | 5 |
| Α                 | Н | L  | М           | Μ  | М |
| В                 | Μ | Н  | Н           | Н  | Н |
| С                 | L | М  | Н           | Н  | М |
| D                 | L | М  | М           | Η  | Н |
| Е                 | L | Μ  | Н           | Н  | Н |

#### Mapping of Course Outcomes onto Program Outcomes

| Course Outcome | Program Outcomes |   |   |   |   |   |  |  |
|----------------|------------------|---|---|---|---|---|--|--|
|                | a                | b | с | d | e | f |  |  |
| 1              | Н                | Н | Н | М | М | М |  |  |
| 2              | М                | Н | Н | М | Н | Н |  |  |
| 3              | М                | Н | М | М | Н | М |  |  |
| 4              | М                | Н | М | М | Н | М |  |  |
| 5              | М                | Н | Н | М | Н | Н |  |  |

| Mapping Between COs and Course Delivery (CD) methods |                                                             |  |         |                  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------|--|---------|------------------|--|--|--|
|                                                      |                                                             |  | Course  | Course Delivery  |  |  |  |
| CD                                                   | Course Delivery methods                                     |  | Outcome | Method           |  |  |  |
| CD1                                                  | Lecture by use of boards/LCD projectors/OHP projectors      |  | CO1     | CD1 and CD2      |  |  |  |
| CD2                                                  | Tutorials/Assignments                                       |  | CO2     | CD1 and CD2      |  |  |  |
| CD3                                                  | Seminars                                                    |  | CO3     | CD, CD2 and CD8  |  |  |  |
| CD4                                                  | Mini projects/Projects                                      |  | CO4     | CD1, CD2 and CD8 |  |  |  |
| CD5                                                  | Laboratory experiments/teaching aids                        |  | CO5     | CD1, CD2 and CD8 |  |  |  |
| CD6                                                  | Industrial/guest lectures                                   |  | -       | -                |  |  |  |
| CD7                                                  | Industrial visits/in-plant training                         |  | -       | -                |  |  |  |
| CD8                                                  | Self- learning such as use of NPTEL materials and internets |  | -       | -                |  |  |  |
| CD9                                                  | Simulation                                                  |  | -       | -                |  |  |  |

| Week | Lect. | <b>Fentati</b> | Ch. | Fopics to be covered | Гext   | COs    | Actual Cont | entMethodolo | gRemar  |
|------|-------|----------------|-----|----------------------|--------|--------|-------------|--------------|---------|
|      | No.   | ve             |     |                      | Book / |        | covered     | у            | ks by   |
| No.  |       | Date           | No. |                      | Refere | napped |             |              | faculty |
|      |       |                |     |                      |        |        |             | ısed         | if any  |
|      |       |                |     |                      | nces   |        |             |              |         |

| 1 | L1-L2       | 1 | Diode Transistor Logic, High | R2,                                                | CD1,        |
|---|-------------|---|------------------------------|----------------------------------------------------|-------------|
|   |             |   | Threshold Logic, Transistor- | R3,                                                | CD2         |
|   |             |   | transistor Logic             | and R6                                             |             |
|   | L3-L4       |   | Resistor-transistor Logic.   | R2.                                                | CD1.        |
|   | _           |   | Direct Coupled Transistor    | R3.                                                | CD2         |
|   |             |   | Logic                        | and R6                                             |             |
|   | L5          |   | Comparison of Logic          | R2                                                 | CD1         |
|   | 20          |   | families                     | R3                                                 | CD2         |
|   |             |   |                              | and R6                                             | 002         |
|   | I.6-7       | 2 | Overview of semiconductor    | R1 R4                                              | CD1         |
|   |             | 2 | industry Stages of           | R1,R1,                                             | CD2         |
|   |             |   | Manufacturing Process and    | KJ                                                 | CD2         |
|   |             |   | product trends               |                                                    |             |
|   | 180         |   | Crystal growth Pasia wafar   | D1                                                 | CD1         |
|   | L0-9        |   | fabrication                  | $\mathbf{N}$ I,<br>$\mathbf{D}$ $4$ $\mathbf{D}$ 5 | CD1,<br>CD2 |
|   |             |   | radification operations,     | к4, кэ                                             | CD2         |
|   |             |   | process yields,              |                                                    |             |
|   |             |   | semiconductor material       |                                                    |             |
|   | T.O.        |   | preparation,                 | <b>D</b> 1                                         |             |
|   | L9          |   | yield measurement,           | RI,                                                | CDI,        |
|   |             |   | contamination sources, clean | R4, R5                                             | CD2         |
|   |             |   | room construction,           |                                                    |             |
|   | L10-        |   | substrates, diffusion,       | R1,                                                | CD1,        |
|   | 12          |   | oxidation and                | R4,                                                | CD2         |
|   |             |   | photolithography, doping     | R5                                                 |             |
|   |             |   | and depositions,             |                                                    |             |
|   |             |   | implantation, rapid thermal  |                                                    |             |
|   |             |   | processing, metallization.   |                                                    |             |
|   | L13-        |   | patterning process,          | R1,                                                | CD1,        |
|   | 14          |   | Photoresists, physical       | R4, R5                                             | CD2         |
|   |             |   | properties of photoresists,  |                                                    |             |
|   | L15-        |   | Storage and control of       | R1,                                                | CD1,        |
|   | 16          |   | photoresists, photo masking  | R4, R5                                             | CD2         |
|   |             |   | process, Hard bake, develop  |                                                    |             |
|   |             |   | inspect,                     |                                                    |             |
|   | L17-        |   | Dry etching Wet etching,     | R1,                                                | CD1,        |
|   | 18          |   | resist stripping,            | R4, R5                                             | CD2         |
|   | L19-        |   | Doping and depositions:      | R1,                                                | CD1,        |
|   | 20          |   | Diffusion process steps.     | R4, R5                                             | CD2         |
|   |             |   | deposition, Drive-in         |                                                    |             |
|   |             |   | oxidation, Ion implantation. |                                                    |             |
|   | L21-        |   | CVD basics, CVD process      | R1,                                                | CD1,        |
|   | 22          |   | steps, Low pressure CVD      | R4. R5                                             | CD2         |
|   |             |   | systems, Plasma enhanced     | ,                                                  |             |
|   |             |   | CVD systems. Vapour phase    |                                                    |             |
|   |             |   | epitoxy molecular beam       |                                                    |             |
|   |             |   | epitaxy.                     |                                                    |             |
|   | 1.23-       |   | Design rules and Scaling     | R1                                                 | CD1         |
|   | 24          |   | BICMOS ICs. Choice of        | R4 R5                                              | CD2         |
|   | 2- <b>1</b> |   | transistor types ppp         | к <del>т</del> , КЭ                                |             |
|   |             |   | transistor types, plip       |                                                    |             |

|  |       |   | transistors, Resistors,       |         |          |  |
|--|-------|---|-------------------------------|---------|----------|--|
|  |       |   | capacitors                    |         |          |  |
|  | L25   |   | Packaging: Chip               | R1,     | CD1,     |  |
|  |       |   | characteristics, package      | R4, R5  | CD2      |  |
|  |       |   | functions, package            |         |          |  |
|  |       |   | operations                    |         |          |  |
|  | L26-  | 3 | Effect of shrinking the p-n   | R8, R9  | CD1,     |  |
|  | 27    |   | junction and bipolar          |         | CD2, and |  |
|  |       |   | transistor; field-effect      |         | CD8      |  |
|  |       |   | transistors, MOSFETs,         |         |          |  |
|  | L28-  |   | Introduction, CMOS scaling,   | R8. R9  | CD1.     |  |
|  | 29    |   | the nanoscale MOSFET.         | ,       | CD2, and |  |
|  | -     |   | vertical MOSFETs              |         | CD8      |  |
|  | L30-  |   | electrical characteristics of | R8. R9  | CD1.     |  |
|  | 31    |   | sub-100 nm MOS transistors.   | - ) -   | CD2, and |  |
|  | • -   |   | limits to scaling system      |         | CD8      |  |
|  |       |   | integration limits            |         |          |  |
|  |       |   | (interconnect issues etc.)    |         |          |  |
|  | L32-  |   | heterostructure and           | R8 R9   | CD1      |  |
|  | 33    |   | heteroiunction devices        | 100,100 | CD2 and  |  |
|  | 20    |   | ballistic transport and high- |         | CD8      |  |
|  |       |   | electron-mobility devices     |         | CD0      |  |
|  | I.34- |   | HEMT Carbon Nanotube          | R8 R9   | CD1      |  |
|  | L35   |   | Transistor single electron    | K0, K)  | CD2 and  |  |
|  | 200   |   | effects Coulomb blockade      |         | CD8      |  |
|  |       |   | eneets, coulonio bioekade.    |         | CD0      |  |
|  | L36-  |   | Single Electron Transistor,   | R8, R9  | CD1,     |  |
|  | 38    |   | Resonant Tunneling Diode,     |         | CD2, and |  |
|  |       |   | Resonant Tunneling            |         | CD8      |  |
|  |       |   | Transistor                    |         | <br>     |  |
|  | L39-  |   | applications in high          | R8, R9  | CD1,     |  |
|  | 40    |   | frequency and digital         |         | CD2, and |  |
|  |       |   | electronic circuits and       |         | CD8      |  |
|  |       |   | comparison with competitive   |         |          |  |
|  |       |   | devices                       |         |          |  |
|  | L41   | 4 | Direct and indirect band gap  | R8, R9  | CDI,     |  |
|  |       |   | semiconductors                |         | CD2, and |  |
|  |       |   |                               |         | <br>CD8  |  |
|  | L42-  |   | QWLED, QWLaser,               | R8, R9  | CD1,     |  |
|  | 43    |   | Quantum Cascade Laser         |         | CD2, and |  |
|  |       |   |                               |         | CD8      |  |
|  | L44-  |   | Integrated Micromachining     | R8, R9  | CD1,     |  |
|  | 45    |   | Technologies for Transducer   |         | CD2, and |  |
|  |       |   | Fabrication                   |         | CD8      |  |
|  | L46-  | 5 | Functional Thin Films and     | R9      | CD1,     |  |
|  | 48    |   | Nanostructures for Gas        |         | CD2, and |  |
|  |       |   | Sensing, Chemical Sensors     |         | CD8      |  |
|  | L49-  |   | Applications of Functional    | R9      | CD1,     |  |
|  | 50    |   | Thin Films for Mechanical     |         | CD2, and |  |
|  |       |   | sensing, Sensing Infrared     |         | CD8      |  |
|  |       | [ | signals by Functional Films   |         |          |  |

Course code: PH 527 Course title: Microwave Electronics Pre-requisite(s): Co- requisite(s): Credits: 4L: 3 T: 1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher: Group : D

Option 4

| Code:<br>PH 52 | :<br>27 | Title: Microwave Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L-T-P-C<br>[3-1-0-4] |  |  |  |  |
|----------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| Cours          | se O    | bjectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |  |  |  |  |
| This           | cours   | se enables the students:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |  |  |  |  |
|                | A.      | Module-1 contains information about Transmission lines and wave-guides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |
|                | В.      | The design and working of various types of micro-wave sources is covered in module-II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |  |  |  |  |
|                | C.      | Module-III contains information about various types of stripline, microstrip lines and l analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Network              |  |  |  |  |
|                | D.      | Knowledge about Micro-wave passive components and methods to measure various mic<br>parameters are planned to be covered in Module-IV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | crowave              |  |  |  |  |
|                | E.      | Module-V contains information about design, fabrication and working of microwave in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tegrated             |  |  |  |  |
|                |         | circuit technology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                    |  |  |  |  |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |  |  |
| Cours          | se O    | utcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |
| After          | the o   | completion of this course, students will be:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |  |
|                | 1.      | Leaner would gain knowledge about working, design and application of microwave fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | quency               |  |  |  |  |
|                |         | electronics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |  |
| 2.             |         | The course is intended to enrich the learner about Microwave transmission lines and waveguides. Through it students would be able to understand the propagation of microwave through transmission lines and Waveguides.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |  |  |  |  |
|                | 3.      | Learner would gather understanding of devices used for microwave generation, detection and microwave network analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |  |  |  |  |
|                | 4.      | Learner would also enrich their knowledge in terms of various microwave passive components, microwave parameters and microwave integrated circuit technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |  |  |  |  |
|                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |  |  |  |  |
| Modu           | le-1    | <b>Transmission lines and Waveguides</b><br>Introduction of Microwaves and their applications. Types of Transmission lines,<br>Characterization in terms of primary and secondary constants, Characteristic<br>impedance, General wave equation, Loss less propagation, Propagation constant, Wave<br>reflection at discontinuities, Voltage standing wave ratio, Transmission line of finite<br>length, The Smith Chart, Smith Chart calculations for lossy lines, Impedance matching<br>by Quarter wave transformer, Single and double stub matching. Rectangular<br>Waveguides: TE and TM wave solutions, Field patterns, Wave impedance and Power<br>flow. | 12                   |  |  |  |  |
| Module-2       |         | Microwave Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                    |  |  |  |  |
|                |         | Microwave Linear-Beam (O type) and Crossed-Field tubes (M type), Limitations of conventional tubes at microwave frequencies, Klystron, Multicavity Klystron Amplifiers, Reflex Klystrons, Helix Travelling-wave tubes, magnetron Oscillators. Tunnel diode, TED ¬Gunn diode, Avalanche transit time devices IMPATT (also TRAPAT) and parametric devices.                                                                                                                                                                                                                                                                                                       |                      |  |  |  |  |

| Module-3  | Stripline and microstrip lines and Network analysis                                         | 11      |  |  |  |  |  |
|-----------|---------------------------------------------------------------------------------------------|---------|--|--|--|--|--|
|           | Dominant mode of propagation, Field patterns, Characteristic impedance, Basic design        |         |  |  |  |  |  |
|           | formulas and characteristics. Parallel coupled striplines and microstrip lines-Even-and     |         |  |  |  |  |  |
|           | odd-mode excitations. Slot lines and Coplanar lines. Advantages over waveguides.            |         |  |  |  |  |  |
|           | Microwave Network Analysis: Impedance and Admittance matrices, Scattering matri             |         |  |  |  |  |  |
|           | Parameters of reciprocal and Loss less networks, ABCD Matrix, Scattering matrices of        |         |  |  |  |  |  |
|           | typical two-port, three-port and four-port networks, Conversion between two-port            |         |  |  |  |  |  |
|           | network matrices.                                                                           |         |  |  |  |  |  |
| Module-4  | Microwave Passive Components and measurements                                               | 14      |  |  |  |  |  |
|           | Waveguide Components: E-plane and H-plane Tees, Magic Tee, Shorting plunger,                |         |  |  |  |  |  |
|           | Directional couplers, and Attenuator. Stripline and Microstrip line Components: Open        |         |  |  |  |  |  |
|           | and shorted ends. Half wave resonator, Lumped elements (inductors, capacitors and           |         |  |  |  |  |  |
|           | resistors) in microstrip. Ring resonator, 3-dB branchline coupler, backward wave            |         |  |  |  |  |  |
|           | coupler, Wilkinson power dividers and rat-race hybrid ring. Low pass and band pass          |         |  |  |  |  |  |
|           | filters. Microwave Measurements: Detection of microwaves, Microwave power                   |         |  |  |  |  |  |
|           | measurement, Impedance measurement, Measurement of reflection loss (VSWR), and              |         |  |  |  |  |  |
|           | transmission loss in components. Passive and active circuit measurement &                   |         |  |  |  |  |  |
|           | characterization using network analyser, spectrum analyser and noise figuremeter            |         |  |  |  |  |  |
| Module -5 | Microwave Integrated Circuit Technology                                                     | 6       |  |  |  |  |  |
|           | Substrates for Microwave Integrated Circuits (MICs) and their properties. Hybrid            |         |  |  |  |  |  |
|           | technology – Photolithographic process, deposited and discrete lumped components.           |         |  |  |  |  |  |
|           | Microwave Monolithic Integrated Circuit (MMIC) technology-Substrates, MMIC                  |         |  |  |  |  |  |
|           | process, comparison with hybrid integrated circuit technology (MIC technology).             |         |  |  |  |  |  |
| RECOMME   | ENDED BOOKS:                                                                                |         |  |  |  |  |  |
|           | tromagnetic Waves and Radiating Systems – E.C. Jordan & K.G. Balmain, Prentice Hall, In     | nc.     |  |  |  |  |  |
| 2 Mici    | rowave Devices and Circuits -S. Y. LIAO, PHI                                                |         |  |  |  |  |  |
| 3 Intro   | duction to Microwave Theory and Measurements – L. A. Lance, TMH                             |         |  |  |  |  |  |
| 4 Iran    | Ismission lines and Networks – Walter C. Johnson, McGraw Hill, New Delhi                    |         |  |  |  |  |  |
| 5 Netv    | vorks Lines and Fields – John D. Ryder                                                      | N 11 '  |  |  |  |  |  |
| 6 Mici    | rowave Engineering: Passive Circuits -Peter A. Razi, Prentice Hall of India Pvt. Ltd, New I | Delhi.  |  |  |  |  |  |
| 7 Wav     | reguldes – H.K.L. Lamont, Methuen and Company Limited, London                               | D 11 '  |  |  |  |  |  |
| 8 Four    | idations for Microwave Engineering – Robert E. Collin, McGraw Hill Book Company, New        | w Delhi |  |  |  |  |  |
| 9 Micro   | wave Engineering – Annapurna Das, IMH, New Delhi                                            |         |  |  |  |  |  |

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | N |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | N |
| Industrial visits/in-plant training                         | N |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

# **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1 | CO2          | CO3          | CO4          | CO5 |
|---------------------------|-----|--------------|--------------|--------------|-----|
| Quiz I                    |     | $\checkmark$ |              |              |     |
| Quiz II                   |     |              | $\checkmark$ | $\checkmark$ |     |
| Assesment                 |     | $\checkmark$ | $\checkmark$ | $\checkmark$ |     |
| Mid Sem Examination Marks |     | $\checkmark$ | $\checkmark$ |              |     |
| End Sem Examination Marks |     |              |              |              |     |

#### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

# <u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

| Course Objectives |   | Course Outcomes |   |   |          |  |
|-------------------|---|-----------------|---|---|----------|--|
|                   | 1 | 2               | 3 | 4 | <u>5</u> |  |
| Α                 | Н | Μ               | Μ | L | Н        |  |
| В                 | Н | Н               | Μ | L | Н        |  |
| С                 | Μ | L               | Н | L | L        |  |
| D                 | Н | L               | L | Η | Н        |  |
| Е                 | L | Μ               | L | L | Н        |  |

| Course Outcome | Program Outcomes |   |   |   |   |   |
|----------------|------------------|---|---|---|---|---|
|                | а                | b | с | d | e | f |
| 1              | Н                | М | Н | М | Н | Н |
| 2              | Н                | Н | Н | М | Н | Н |
| 3              | Н                | L | М | М | L | М |
| 4              | Н                |   | Н | М | М | М |
| 5              | М                | Н | Н | М | Н | Н |

| Mapping Between COs and Course Delivery (CD) methods |                                      |                   |                           |  |  |  |  |  |
|------------------------------------------------------|--------------------------------------|-------------------|---------------------------|--|--|--|--|--|
| CD                                                   | Course Delivery methods              | Course<br>Outcome | Course Delivery<br>Method |  |  |  |  |  |
|                                                      | Lecture by use of boards/LCD         |                   |                           |  |  |  |  |  |
| CD1                                                  | projectors/OHP projectors            | CO1               | CD1 and CD2               |  |  |  |  |  |
| CD2                                                  | Tutorials/Assignments                | CO2               | CD1 and CD2               |  |  |  |  |  |
| CD3                                                  | Seminars                             | CO3               | CD1 and CD2               |  |  |  |  |  |
| CD4                                                  | Mini projects/Projects               | CO4               | CD1 and CD2               |  |  |  |  |  |
| CD5                                                  | Laboratory experiments/teaching aids | CO5               | CD1, CD2 and CD8          |  |  |  |  |  |
| CD6                                                  | Industrial/guest lectures            | -                 | -                         |  |  |  |  |  |
| CD7                                                  | Industrial visits/in-plant training  | -                 | -                         |  |  |  |  |  |
|                                                      | Self- learning such as use of NPTEL  |                   |                           |  |  |  |  |  |
| CD8                                                  | materials and internets              | -                 | -                         |  |  |  |  |  |
| CD9                                                  | Simulation                           | -                 | -                         |  |  |  |  |  |

| Week | Lect.  | Tentati | Ch. | Topics to be covered           | Text              | COs      | Actual  | Methodology | Remarks by     |
|------|--------|---------|-----|--------------------------------|-------------------|----------|---------|-------------|----------------|
| No.  | No.    | ve      | No. | L                              | Book /            | mappe    | Content | used        | faculty if any |
|      |        | Date    |     |                                | Refere            | d        | covered |             |                |
|      |        |         |     |                                | nces              |          |         |             |                |
| 1    | L1-L2  |         | 1   | Introduction of Microwaves     | R1, R4            | ,CO1     |         | CD1, CD2    |                |
|      |        |         |     | and their applications.        | and R7            |          |         |             |                |
|      | L3-L5  |         |     | Types of Transmission          | R1, R4            | ,CO1     |         | CD1, CD2    |                |
|      |        |         |     | lines, Characterization in     | and R7            |          |         |             |                |
|      |        |         |     | terms of primary and           |                   |          |         |             |                |
|      |        |         |     | secondary constants,           | ,                 |          |         |             |                |
|      |        |         | _   | Characteristic impedance       |                   |          |         |             |                |
| 2    | L6     |         |     | General wave equation,         | ,R1, R4           | ,CO1     |         | CD1, CD2    |                |
|      |        |         |     | Loss less propagation,         | and R7            |          |         |             |                |
|      |        |         |     | Propagation constant, Wave     | •                 |          |         |             |                |
|      | 17     |         | _   | reflection at discontinuities, | D1 D4             | 001      |         |             |                |
|      | L7     |         |     | Voltage standing wave          | RI, R4            | ,COI     |         | CD1, CD2    |                |
|      |        |         |     | ratio, Iransmission line of    | and R/            |          |         |             |                |
|      | το     |         | _   | The Smith Chart Smith          | D1 D4             | CO1      |         | CD1 CD2     |                |
|      | Lð     |         |     | Chart coloulations for lossy   | KI, K4            | ,001     |         | CD1, CD2    |                |
|      |        |         |     | lines                          | allu K /          |          |         |             |                |
| 3    | TQ     |         | -   | Impedance matching by          | R1 R4             | CO1      |         | CD1 CD2     |                |
| 5    | L9     |         |     | Quarter wave transformer       | and $R7$          | ,001     |         | CD1, CD2    |                |
|      |        |         |     | Single and double stub         |                   |          |         |             |                |
|      |        |         |     | matching.                      |                   |          |         |             |                |
|      | L10-12 |         | -   | Rectangular Waveguides:        | R1. R4            | CO1      |         | CD1. CD2    |                |
|      |        |         |     | TE and TM wave solutions.      | and R7            | ,        |         |             |                |
|      |        |         |     | Field patterns, Wave           |                   |          |         |             |                |
|      |        |         |     | impedance and Power flow.      |                   |          |         |             |                |
| 4    | L13-14 |         | 2   | Microwave Linear-Beam (O       | R2                | CO2      |         | CD1, CD2    |                |
|      |        |         |     | type) and Crossed-Field        | l                 |          |         |             |                |
|      |        |         |     | tubes (M type), Limitations    |                   |          |         |             |                |
|      |        |         |     | of conventional tubes at       |                   |          |         |             |                |
|      |        |         | _   | microwave frequencies,         |                   |          |         |             |                |
|      | L15    |         |     | Klystron, Multicavity          | R2                | CO2      |         | CD1, CD2    |                |
|      |        |         |     | Klystron Amplifiers, Reflex    | -                 |          |         |             |                |
| _    |        |         | _   | Klystrons                      |                   | ~ ~ ~    |         |             |                |
| 5    | L16-17 |         |     | Helix Travelling-wave          | R2                | CO2      |         | CD1, CD2    |                |
|      |        |         |     | tubes, magnetron               | L                 |          |         |             |                |
|      | T 10   |         | -   | Uscillators.                   | D.2               | <u> </u> |         | CD1 CD2     |                |
|      | L18    |         |     | Iunnel diode, IED ¬Gunn        | R2                | CO2      |         | CDI, CD2    |                |
|      | I 10   |         | _   | diode,                         | D1                | CO2      |         | CD1 CD2     |                |
|      | L19    |         |     | Avalanche transit time         | κ <i>z</i>        | $CO_2$   |         | CD1, CD2    |                |
|      |        |         |     | TRAPAT) and parametric         |                   |          |         |             |                |
|      |        |         |     | devices                        | ·                 |          |         |             |                |
| 6    | L20-21 |         | 3   | Dominant mode of               | R4 R5             | CO1      |         | CD1 CD2     |                |
| Ĭ    | L2V-21 |         | Ĩ   | propagation Field natterns     | μτ 1, <b>Ι</b> τ. | CO3      |         |             |                |
|      |        |         |     | Characteristic impedance       |                   |          |         |             |                |
|      | L22    |         | -   | Basic design formulas and      | R4. R5            | CO1.     | 1       | CD1, CD2    |                |
|      |        |         |     | characteristics.               | ,                 | CO3      |         | , <b>_</b>  |                |
|      | L23    |         | 1   | Parallel coupled striplines    | R4, R5            | CO1,     |         | CD1, CD2    |                |

|    |         |   | and microstrip lines-Even-                      | CO3        |           |  |
|----|---------|---|-------------------------------------------------|------------|-----------|--|
|    | 1.24    |   | Slot lines and Coplanar D4 D5                   | CO1        | CD1 CD2   |  |
|    | L24     |   | Slot lines and Copianark4, KS                   | CO1,       | CD1, CD2  |  |
|    |         |   | waveguides                                      | 05         |           |  |
| 7  | 1 25 27 |   | Microwaya Network D4 D5                         | CO1        | CD1 CD2   |  |
| /  | L23-27  |   | Analysis Impedance and                          | CO1,       | CD1, CD2  |  |
|    |         |   | Analysis: Impedance and<br>Admitteness matrices | 05         |           |  |
|    |         |   | Souttoring matrix                               |            |           |  |
|    | T DO    |   | Demonstern of regime color dD4, D5              | <u>CO1</u> |           |  |
|    | L20     |   | Loss loss networks APCD                         | CO1,       | CD1, CD2  |  |
|    |         |   | LOSS IESS HELWOIKS, ADCD                        | 05         |           |  |
| 0  | 1.20    |   | Souttoring matrices of D4 D5                    | CO1        | CD1 CD2   |  |
| 0  | L29     |   | tunical two port three port                     | CO1,       | CD1, CD2  |  |
|    |         |   | and four port notworks                          | 05         |           |  |
|    | I 20    |   | Conversion between two P4 P5                    | CO1        | CD1 CD2   |  |
|    | L30     |   | conversion between two-K4, K5                   | CO1,       | CD1, CD2  |  |
|    | I 21 22 | 1 | Wayaguida Components: E D6 D8                   | CO3        | CD1 CD2   |  |
|    | L31-32  | 4 | plane and H plane Tees                          | C04        | CD1, CD2  |  |
|    |         |   | Magic Tee Shorting                              |            |           |  |
|    |         |   | nlunger Directional                             |            |           |  |
|    |         |   | couplers and Attenuator                         |            |           |  |
| 9  | I 33-34 |   | Stripline and Microstrip lineR6 R8              | CO4        | CD1 CD2   |  |
|    | L33-3-  |   | Components: Open and                            | 0.04       | CD1, CD2  |  |
|    |         |   | shorted ends                                    |            |           |  |
|    | L35-36  |   | Half wave resonator R6 R8                       | CO4        | CD1 CD2   |  |
|    |         |   | Lumped elements                                 |            |           |  |
|    |         |   | (inductors, capacitors and                      |            |           |  |
|    |         |   | resistors) in microstrip.                       |            |           |  |
| 10 | L37-38  |   | Ring resonator, 3-dBR6, R8                      | CO4        | CD1, CD2  |  |
|    |         |   | branchline coupler,                             |            |           |  |
|    |         |   | backward wave coupler,                          |            |           |  |
|    |         |   | Wilkinson power dividers                        |            |           |  |
|    |         |   | and rat-race hybrid ring.                       |            |           |  |
|    | L39     |   | Low pass and band passR6, R8                    | CO4        | CD1, CD2  |  |
|    |         |   | filters.                                        |            |           |  |
| 11 | L40-42  |   | Microwave Measurements: R6, R8                  | CO4        | CD1, CD2  |  |
|    |         |   | Detection of microwaves,                        |            |           |  |
|    |         |   | Microwave power                                 |            |           |  |
|    |         |   | measurement, Impedance                          |            |           |  |
|    |         |   | measurement, Measurement                        |            |           |  |
|    |         |   | of reflection loss (VSWR),                      |            |           |  |
|    |         |   | and transmission loss in                        |            |           |  |
|    |         |   | components.                                     |            |           |  |
|    | L43-44  |   | Passive and active circuitR6, R8                | CO4        | CD1, CD2  |  |
|    |         |   | measurement &                                   |            |           |  |
|    |         |   | characterization using                          |            |           |  |
|    |         |   | network analyser, spectrum                      |            |           |  |
|    |         |   | analyser and noise                              |            |           |  |
| 10 | T 47    |   | riguremeter                                     | 005        |           |  |
| 12 | L43     | Э | Substrates for MicrowaveR9                      | COS        | CD1, CD2  |  |
|    |         |   | and their properties                            |            |           |  |
|    | I 16 17 |   | Hybrid technology D0                            | CO5        |           |  |
|    |         | I | riyona acimology – Ry                           |            | CD1, CD2, |  |

|        | Photolithographic process,<br>deposited and discrete<br>lumped components.                      |     | and CD8              |
|--------|-------------------------------------------------------------------------------------------------|-----|----------------------|
| L48    | Microwave MonolithicR9<br>Integrated Circuit (MMIC)<br>technology-Substrates                    | CO5 | CD1, CD2,<br>and CD8 |
| L49-50 | MMIC process, comparisonR9<br>with hybrid integrated<br>circuit technology (MIC<br>technology). | CO5 | CD1, CD2,<br>and CD8 |

Group E- Plasma Sciences:

1. Theory of Plasmas

2. Plasma Confinement

3. Waves and Instabilities in Plasma

**4.** Physics of Thin Films

#### **COURSE INFORMATION SHEET**

Course code: PH 528 Course title: Theory of Plasmas Pre-requisite(s): Co- requisite(s): Credits: 4L:3 T: 1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI/ VII Branch: PHYSICS Name of Teacher: Group : E Option 1

| Code:                                                                     | Title: Theory of Plasmas                                                           | L-T-P-C   |  |  |  |  |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| PH 528                                                                    |                                                                                    | [3-1-0-4] |  |  |  |  |  |
| Plasma Tł                                                                 | ieory                                                                              |           |  |  |  |  |  |
| Course Ol                                                                 | ojective                                                                           |           |  |  |  |  |  |
| 1. To lea                                                                 | rn about the similarity of plasma with fluid.                                      |           |  |  |  |  |  |
| 2. To lea                                                                 | rn about the diffusion and mobility of plasma.                                     |           |  |  |  |  |  |
| 3. To lea                                                                 | rn about the resistivity and single fluid MHD equation of plasma.                  |           |  |  |  |  |  |
| 4. To lea                                                                 | rn about the Boltzmann and the Vlasov equation.                                    |           |  |  |  |  |  |
| 5. To lea                                                                 | rn about the different type of discharges.                                         |           |  |  |  |  |  |
| Course Ou                                                                 | itcome                                                                             |           |  |  |  |  |  |
| 1. Be fan                                                                 | niliar about the method by which plasma can be treated as a fluid.                 |           |  |  |  |  |  |
| 2. Be fan                                                                 | niliar with the diffusion and mobility process.                                    |           |  |  |  |  |  |
| 3. Be abl                                                                 | e to derive the set of single fluid MHD equation.                                  |           |  |  |  |  |  |
| 4. Be abl                                                                 | e to describe plasma with Boltzmann and Vlasov equation.                           |           |  |  |  |  |  |
| 5. Be fan                                                                 | niliar with the different type of electrical discharges.                           |           |  |  |  |  |  |
|                                                                           |                                                                                    |           |  |  |  |  |  |
| Module-1                                                                  | Relation of plasma physics to ordinary electromagnetic field, Fluid equation of    | [8]       |  |  |  |  |  |
|                                                                           | motion, Fluid drifts perpendicular to B, Fluids drifts parallel to B, Plasma       |           |  |  |  |  |  |
|                                                                           | approximation.                                                                     |           |  |  |  |  |  |
| Module-2                                                                  | Diffusion and mobility in weakly ionized gases, Decay of a plasma by diffusion,    | [8]       |  |  |  |  |  |
|                                                                           | steady state solution, Recombination, diffusion across a magnetic field, collision |           |  |  |  |  |  |
|                                                                           | in fully ionized plasma.                                                           |           |  |  |  |  |  |
| Module-3                                                                  | Mechanics of coulomb collisions, Physical meaning of resistivity, Numerical        | [8]       |  |  |  |  |  |
|                                                                           | value of resistivity, Single fluid MHD equations, Diffusion in fully ionized       |           |  |  |  |  |  |
|                                                                           |                                                                                    |           |  |  |  |  |  |
| Module-4                                                                  | Concepts of elementary kinetic theory of plasmas, The meaning of distribution      | [8]       |  |  |  |  |  |
|                                                                           |                                                                                    |           |  |  |  |  |  |
| Module-5 Electrical discharges, Electrical breakdown in gases, glow disch |                                                                                    | [8]       |  |  |  |  |  |
|                                                                           | sustained discharges, Paschen curve, High frequency electrical discharge in        |           |  |  |  |  |  |
|                                                                           | gases, electrode less discharge, capacitively and Inductively coupled plasmas,     |           |  |  |  |  |  |
|                                                                           | ECR Plasmas, Electrical arcs.                                                      |           |  |  |  |  |  |
| Reference                                                                 | S                                                                                  |           |  |  |  |  |  |
| 1. Ga                                                                     | 1. Gas Discharge Physics, Y P Raizer, Springer, 1997                               |           |  |  |  |  |  |

- 2. Introduction to Plasma Physics and Controlled Fusion, Francis, F. Chen, Plenum Press, 1984
- 3. Fundamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 2004
- 4. Plasma Physics (Plasma State of Matter) S. N. Sen, Pragati Prakashan, 1999

| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

#### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2 | CO3          | CO4          | CO5          |
|---------------------------|--------------|-----|--------------|--------------|--------------|
| Mid Sem Examination Marks | $\checkmark$ |     | $\checkmark$ |              |              |
| End Sem Examination Marks | $\checkmark$ |     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Quiz I                    |              |     | $\checkmark$ | $\checkmark$ |              |
| Quiz II                   |              |     |              |              |              |

#### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

## <u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | <u>5</u> |  |  |  |  |  |
|-------------------|---|---|---|---|----------|--|--|--|--|--|
| Α                 | Н | L | L | L | L        |  |  |  |  |  |
| В                 | М | Н | L | L | L        |  |  |  |  |  |
| С                 | М | Μ | Η | L | L        |  |  |  |  |  |
| D                 | М | L | L | Η | L        |  |  |  |  |  |
| Е                 | L | L | L | L | Н        |  |  |  |  |  |

| Course    |   | Program Outcomes |   |   |   |   |   |   |   |   |   |   |
|-----------|---|------------------|---|---|---|---|---|---|---|---|---|---|
| Outcome # | a | В                | С | d | E | f | g | Н | i | j | K | 1 |
| 1         | Μ | Н                | Μ | Μ | Μ | H |   |   |   |   |   |   |
| 2         | М | Н                | L | Μ | Μ | H |   |   |   |   |   |   |
| 3         | Μ | Н                | Н | Μ | Μ | H |   |   |   |   |   |   |
| 4         | Μ | Н                | Н | Μ | Μ | H |   |   |   |   |   |   |
| 5         | Μ | Н                | L | Μ | Μ | H |   |   |   |   |   |   |

| Mapping Between COs and Course Delivery (CD) methods |                                                        |        |                           |  |  |  |  |  |
|------------------------------------------------------|--------------------------------------------------------|--------|---------------------------|--|--|--|--|--|
| CD                                                   | Course Delivery methods                                | Course | Course Delivery<br>Method |  |  |  |  |  |
| CD1                                                  | Lecture by use of boards/LCD projectors/OHP projectors | CO1    | CD1 CD2                   |  |  |  |  |  |

| CD2 | Tutorials/Assignments                                       | CO2 | CD1 CD2 |
|-----|-------------------------------------------------------------|-----|---------|
| CD3 | Seminars                                                    | CO3 | CD1 CD2 |
| CD4 | Mini projects/Projects                                      | CO4 | CD1 CD2 |
| CD5 | Laboratory experiments/teaching aids                        | CO5 | CD1 CD2 |
| CD6 | Industrial/guest lectures                                   |     |         |
| CD7 | Industrial visits/in-plant training                         |     |         |
| CD8 | Self- learning such as use of NPTEL materials and internets |     |         |
| CD9 | Simulation                                                  |     |         |

| Week | Lect        | <b>Fentative</b> | Ch  | Topics to be covered         | Text                  | COs    | Actual  | Methodo | Remark  | s  |
|------|-------------|------------------|-----|------------------------------|-----------------------|--------|---------|---------|---------|----|
| No.  | No.         | Date             | No. |                              | Book /                | mapped | Content | logy    | by      |    |
|      |             |                  |     |                              | Refere                |        | covered | used    | Faculty | if |
|      |             |                  |     |                              | Nces                  |        |         |         | any     |    |
| 1    | L1-         |                  |     | Relation of plasma           | T2 T3                 |        |         |         |         |    |
|      | L5          |                  |     | physics to ordinary          | <b>R</b> 1            |        |         |         |         |    |
|      |             |                  |     | electromagnetic field,       |                       |        |         |         |         |    |
|      |             |                  |     | Fluid equation of motion,    |                       |        |         |         |         |    |
|      | L6-         |                  |     | Fluid drifts perpendicular   | T2 T3                 |        |         |         |         |    |
|      | L10         |                  |     | to B, Fluids drifts parallel | R1                    |        |         |         |         |    |
|      |             |                  |     | to B, Plasma                 |                       |        |         |         |         |    |
|      |             |                  |     | approximation                |                       |        |         |         |         |    |
|      | L11-        |                  |     | Diffusion and mobility in    | T2 T3                 |        |         |         |         |    |
|      | L15         |                  |     | weakly ionized gases,        | R1                    |        |         |         |         |    |
|      |             |                  |     | Decay of a plasma by         |                       |        |         |         |         |    |
|      |             |                  |     | diffusion,                   | <b>—</b>              |        |         |         |         |    |
|      | L16-        |                  |     | steady state solution,       | T2 T3                 |        |         |         |         |    |
|      | L20         |                  |     | Recombination, diffusion     | R1                    |        |         |         |         |    |
|      |             |                  |     | across a magnetic field,     |                       |        |         |         |         |    |
|      |             |                  |     | collision in fully ionized   |                       |        |         |         |         |    |
|      | 1.01        |                  |     | plasma.                      | <b>T</b> 2 <b>T</b> 2 |        |         |         |         |    |
|      | L21-        |                  |     | colligions Physical          | 12 13<br>D1           |        |         |         |         |    |
|      | L25         |                  |     | meaning of resistivity       | KI                    |        |         |         |         |    |
|      |             |                  |     | Numerical value of           |                       |        |         |         |         |    |
|      |             |                  |     | resistivity                  |                       |        |         |         |         |    |
|      | L26-        |                  |     | Single fluid MHD             | Т2 Т3                 |        |         |         |         |    |
|      | L20<br>I 30 |                  |     | equations. Diffusion in      | R1                    |        |         |         |         |    |
|      | L30         |                  |     | fully ionized plasma.        | K1                    |        |         |         |         |    |
|      |             |                  |     | Bohm diffusion and           |                       |        |         |         |         |    |
|      |             |                  |     | Neoclassical diffusion.      |                       |        |         |         |         |    |
|      | L31-        |                  |     | Concepts of elementary       | T2 T3                 |        |         |         |         |    |
|      | L35         |                  |     | kinetic theory of plasmas,   | <b>R</b> 1            |        |         |         |         |    |
|      | L36-        |                  |     | The meaning of               | T2 T3                 |        |         |         |         |    |
|      | 140         |                  |     | distribution function,       | R1                    |        |         |         |         |    |
|      | 2.0         |                  |     | Boltzmann and Vlasov         |                       |        |         |         |         |    |
|      |             |                  |     | equation                     |                       |        |         |         |         |    |
|      | L41-        |                  |     | Electrical discharges,       | T1 R1                 |        |         |         |         |    |
|      | L45         |                  |     | Electrical breakdown in      |                       |        |         |         |         |    |
|      |             |                  |     | gases, glow discharge,       |                       |        |         |         |         |    |
|      |             |                  |     | Self sustained discharges,   |                       |        |         |         |         |    |
|      |             |                  |     | Paschen curve,               |                       |        |         |         |         |    |
|      | L46-        |                  |     | High frequency electrical    | T1 R1                 |        |         |         |         |    |
|      | L50         |                  |     | discharge in gases,          |                       |        |         |         |         |    |
|      |             |                  |     | electrode less discharge,    |                       |        |         |         |         |    |

|  |  | capacitively<br>Inductively<br>plasmas, ECR<br>Electrical arcs. | and<br>coupled<br>Plasmas, |  |  |  |
|--|--|-----------------------------------------------------------------|----------------------------|--|--|--|
|  |  |                                                                 |                            |  |  |  |

Course code: PH 529 Course title: Plasma Confinement Pre-requisite(s): Co- requisite(s): Credits: 4L: 4T: 0 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level:PE VI / VII Branch: PHYSICS Name of Teacher:

**Group** : **E Option 2** Title: Plasma Confinement Code: L-T-P-C PH 529 [4-0-0-4] **Course Objective** 1. To learn about the fundamental and basics of plasma confinement. 2. To learn about the Magnetic confinement scheme and related heating machanicsm. 3. To learn about the transport of plasma. 4. To learn about plasma-surface interaction. 5. To learn about the Magnetohydrodynamics generator. **Course Outcome** 1. Will be familiar with the plasma confinement for thermonuclear fusion. 2. Will have an idea how plasma can be confined magnetically. 3. Be familiar with the transport of plasma and its role in thermonuclear fusion. 4. Be familiar with plasma surface interaction and its role in fusion. 5. Be familiar with the energy generation by MHD generator. Module-1 Nuclear Fusion and plasma physics: Fusion as energy source, Fusion reactions, [8] Controlled thermonuclear fusion and fusion reactor, Lawson criterion, Ignition, Fuel resources, Reactor economics, Plasma confinement schemes, Magnetic confinement, Inertial confinement, Laser-Fusion. Magnetic confinement: Larmor orbits, particle drifts, Magnetic mirror, Z-pinch, Module-2 [8] Theta-pinch, spheromak, Tokamak, safety factor, plasma beta, Aspect-ratio, Flux surfaces, plasma current, Grad-Shafranov equation, collisions, kinetic equation, Fokker-Planck equation, collision times, resistivity, plasma heating, Ohmic heating, RF heating, Neutral beam heating. Collisional Transport: Classical transport – minimal dissipation, diffusion, random Module-3 [8] walk estimate, heat conductivity, Fluid evolution in a torus - transport closure, radial fluxes, neoclassical transport, Surface flows, Axis symmetric fluxes. Module-4 Plasma-surface interaction: Plasma surface interactions, Boundary layer. [8] Recycling, Atomic and molecular processes, Desorption and wall cleaning, Sputtering, Arcing, Limiters, Divertors, Heat flux, Evaporation and heat transfer, Tritium inventory. Radiation from Plasma MHD Generator: Magnetohydrodynamic Generator, Basic theory, Principle of Module-5 [8] working, The fuel in MHD, Magnet in MHD Generator. References 1. Plasma Physics (Plasma State of Matter) S. N. Sen, Pragati Prakashan, 1999 2. Magnetic Fusion Technology, T J Dolan, 2014 3. Plasma Physics and Fusion energy, J P Freidberg Cambridge University Press, 2008 4. Tokamaks, J wessen, Oxford Science Publication, 1987
| Course Delivery methods                                     |   |
|-------------------------------------------------------------|---|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |
| Tutorials/Assignments                                       | Y |
| Seminars                                                    | Ν |
| Mini projects/Projects                                      | Ν |
| Laboratory experiments/teaching aids                        | N |
| Industrial/guest lectures                                   | Ν |
| Industrial visits/in-plant training                         | Ν |
| Self- learning such as use of NPTEL materials and internets | Y |
| Simulation                                                  | N |

## **Course Assessment tools & Evaluation procedure**

### **Direct Assessment**

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2          | CO3          | CO4          | CO5          |
|---------------------------|--------------|--------------|--------------|--------------|--------------|
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Quiz I                    |              |              | $\checkmark$ | $\checkmark$ |              |
| Quiz II                   |              |              |              |              |              |

### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

# **Mapping between Objectives and Outcomes**

### Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | <u>5</u> |
|-------------------|---|---|---|---|----------|
| Α                 | Н | Μ | L | L | L        |
| В                 | Μ | Н | L | L | L        |
| С                 | L | L | Η | L | L        |
| D                 | L | Μ | Μ | Η | L        |
| Е                 | L | Μ | L | L | Н        |

| Course    |   | Program Outcomes |   |   |   |   |   |   |   |   |   |   |
|-----------|---|------------------|---|---|---|---|---|---|---|---|---|---|
| Outcome # | a | b                | c | d | Е | f | g | Н | Ι | j | k | 1 |
| 1         | Μ | Н                | Μ | Μ | Η | Н |   |   |   |   |   |   |
| 2         | М | Н                | Μ | Μ | Η | Н |   |   |   |   |   |   |
| 3         | Μ | Н                | Μ | Μ | Η | Н |   |   |   |   |   |   |
| 4         | Μ | Н                | Μ | Μ | Η | Н |   |   |   |   |   |   |
| 5         | Μ | Н                | Μ | Μ | Η | Η |   |   |   |   |   |   |

## Mapping of Course Outcomes onto Program Outcomes

|     | Mapping Between COs and Course Delivery (CD) methods        |                   |                           |  |  |  |  |  |  |
|-----|-------------------------------------------------------------|-------------------|---------------------------|--|--|--|--|--|--|
| CD  | Course Delivery methods                                     | Course<br>Outcome | Course Delivery<br>Method |  |  |  |  |  |  |
| CD1 | Lecture by use of boards/LCD projectors/OHP projectors      | CO1               | CD1 CD2                   |  |  |  |  |  |  |
| CD2 | Tutorials/Assignments                                       | CO2               | CD1 CD2                   |  |  |  |  |  |  |
| CD3 | Seminars                                                    | CO3               | CD1 CD2                   |  |  |  |  |  |  |
| CD4 | Mini projects/Projects                                      | CO4               | CD1 CD2                   |  |  |  |  |  |  |
| CD5 | Laboratory experiments/teaching aids                        | CO5               | CD1 CD2                   |  |  |  |  |  |  |
| CD6 | Industrial/guest lectures                                   |                   |                           |  |  |  |  |  |  |
| CD7 | Industrial visits/in-plant training                         |                   |                           |  |  |  |  |  |  |
| CD8 | Self- learning such as use of NPTEL materials and internets |                   |                           |  |  |  |  |  |  |
| CD9 | Simulation                                                  |                   |                           |  |  |  |  |  |  |

## Lecture wise Lesson planning Details.

| Week | Lect. | Tentative | Ch. | Topics to be covered    | Text   | COs    | Actual | Methodology | Remarks |
|------|-------|-----------|-----|-------------------------|--------|--------|--------|-------------|---------|
| No.  | No.   | Date      | No. |                         | Book   | mapped | Conten | Used        | by      |
|      |       |           |     |                         | /      |        | t      |             | faculty |
|      |       |           |     |                         | Refere |        | covere |             | if any  |
|      |       |           |     |                         | Nces   |        | d      |             |         |
| 1    | L1-   |           |     | Nuclear Fusion and      |        |        |        |             |         |
|      | L5    |           |     | plasma physics:         |        |        |        |             |         |
|      |       |           |     | Fusion as energy        |        |        |        |             |         |
|      |       |           |     | source, Fusion          |        |        |        |             |         |
|      |       |           |     | reactions, Controlled   |        |        |        |             |         |
|      |       |           |     | thermonuclear fusion    |        |        |        |             |         |
|      |       |           |     | and fusion reactor,     |        |        |        |             |         |
|      |       |           |     | Lawson criterion,       |        |        |        |             |         |
|      |       |           |     | Ignition,               |        |        |        |             |         |
|      | L6-   |           |     | Fuel resources,         |        |        |        |             |         |
|      | L10   |           |     | Reactor economics,      |        |        |        |             |         |
|      |       |           |     | Plasma confinement      |        |        |        |             |         |
|      |       |           |     | schemes, Magnetic       |        |        |        |             |         |
|      |       |           |     | confinement, Inertial   |        |        |        |             |         |
|      |       |           |     | confinement, Laser-     |        |        |        |             |         |
|      |       |           |     | Fusion .                |        |        |        |             |         |
|      | L11-  |           |     | Magnetic confinement:   |        |        |        |             |         |
|      | L15   |           |     | Larmor orbits, particle |        |        |        |             |         |
|      |       |           |     | drifts, Magnetic        |        |        |        |             |         |
|      |       |           |     | mirror, Z-pinch,        |        |        |        |             |         |
|      |       |           |     | Theta-pinch,            |        |        |        |             |         |
|      |       |           |     | spheromak, Tokamak,     |        |        |        |             |         |
|      |       |           |     | safety factor, plasma   |        |        |        |             |         |

|          |  | beta, Aspect-ratio,     |  |  |  |
|----------|--|-------------------------|--|--|--|
| L16-     |  | Flux surfaces, plasma   |  |  |  |
| L20      |  | current. Grad-          |  |  |  |
|          |  | Shafranov equation      |  |  |  |
|          |  | collisions kinetic      |  |  |  |
|          |  | equation Fokker         |  |  |  |
|          |  | Dianaly aquation        |  |  |  |
|          |  | r falles equation,      |  |  |  |
|          |  | comston times,          |  |  |  |
|          |  | resistivity, plasma     |  |  |  |
|          |  | neating, Onmic          |  |  |  |
|          |  | neating, RF neating,    |  |  |  |
| <br>     |  | Neutral beam heating.   |  |  |  |
| L21-     |  | Collisional Transport:  |  |  |  |
| L25      |  | Classical transport –   |  |  |  |
|          |  | minimal dissipation,    |  |  |  |
|          |  | diffusion, random       |  |  |  |
|          |  | walk estimate, heat     |  |  |  |
|          |  | conductivity,           |  |  |  |
| L26-     |  | Fluid evolution in a    |  |  |  |
| L30      |  | torus – transport       |  |  |  |
|          |  | closure, radial fluxes, |  |  |  |
|          |  | neoclassical transport, |  |  |  |
|          |  | Surface flows, Axis     |  |  |  |
|          |  | symmetric fluxes        |  |  |  |
| L31-     |  | Plasma-surface          |  |  |  |
| L35      |  | interaction: Plasma     |  |  |  |
|          |  | surface interactions,   |  |  |  |
|          |  | Boundary layer,         |  |  |  |
|          |  | Recycling, Atomic and   |  |  |  |
|          |  | molecular processes.    |  |  |  |
| L36-     |  | Desorption and wall     |  |  |  |
| L40      |  | cleaning. Sputtering.   |  |  |  |
|          |  | Arcing. Limiters.       |  |  |  |
|          |  | Divertors Heat flux     |  |  |  |
|          |  | Evaporation and heat    |  |  |  |
|          |  | transfer Tritium        |  |  |  |
|          |  | inventory Radiation     |  |  |  |
|          |  | from Plasma             |  |  |  |
| I 41-    |  | MHD Generator           |  |  |  |
| 145      |  | Magnetohydrodynami      |  |  |  |
|          |  | Generator Dasia         |  |  |  |
|          |  | theory                  |  |  |  |
| <br>1.46 |  | Dringinla of morting    |  |  |  |
| L40-     |  | The fuel in MUD         |  |  |  |
| L30      |  | Magnat in MIID,         |  |  |  |
|          |  | Concreter               |  |  |  |
|          |  | Generator.              |  |  |  |
|          |  |                         |  |  |  |

### **COURSE INFORMATION SHEET**

Course code: PH 530 Course title: Waves and Instabilities in Plasma Pre-requisite(s): Co- requisite(s): Credits: 4 L: 3 T:1 P: 0 Class schedule per week: Class: I.M.Sc. Semester / Level: PE VI / VII Branch: PHYSICS Name of Teacher:

Group : E Option 3

| Code:                                                                                                                                                                                                                                                                    | Title: Waves and Instabilities in Plasma                                                                                                                                                                                                    | L-T-P-C              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| PH 530                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                             | [3-1-0-4]            |
| Course (                                                                                                                                                                                                                                                                 | Dbjective                                                                                                                                                                                                                                   |                      |
| 1. To le                                                                                                                                                                                                                                                                 | arn the fundamental and basics of Plasma waves.                                                                                                                                                                                             |                      |
| 2. To le                                                                                                                                                                                                                                                                 | arn about the electromagnetic waves.                                                                                                                                                                                                        |                      |
| 3. To le                                                                                                                                                                                                                                                                 | arn about the Landau Damping.                                                                                                                                                                                                               |                      |
| 4. To le                                                                                                                                                                                                                                                                 | arn about the different type of instabilities.                                                                                                                                                                                              |                      |
| 5. To le                                                                                                                                                                                                                                                                 | arn about the MHD stability.                                                                                                                                                                                                                |                      |
| Course o                                                                                                                                                                                                                                                                 | utcome:                                                                                                                                                                                                                                     |                      |
| 1. Will                                                                                                                                                                                                                                                                  | be familiar with the plasma waves.                                                                                                                                                                                                          |                      |
| 2. Be al                                                                                                                                                                                                                                                                 | ble to handle electromagnetic waves mathematically.                                                                                                                                                                                         |                      |
| 3. Be al                                                                                                                                                                                                                                                                 | ble to derive mathematically Landau damping related concept.                                                                                                                                                                                |                      |
| 4. Will                                                                                                                                                                                                                                                                  | be familiar with the different type of instabilities.                                                                                                                                                                                       |                      |
| 5. Be al                                                                                                                                                                                                                                                                 | ble to handle MHD stability mathematically.                                                                                                                                                                                                 |                      |
| Module-1                                                                                                                                                                                                                                                                 | Representations of waves, group velocity, Plasma Oscillations, Electron plasma w<br>sound waves, ion waves, validity of plasma approximations, comparison of ion<br>electron waves, electrostatic electron oscillations perpendicular to B. | aves, [8] and        |
| Module-2 Electrostatic ion waves perpendicular to B, The lower hybrid frequency, electromagn waves with B=0, Experimental applications, electromagnetic waves perpendicular to Cutoffs and resonances, electromagnetic waves parallel to B, Whistler mode, Fara rotation |                                                                                                                                                                                                                                             | to B,<br>raday       |
| Module-3                                                                                                                                                                                                                                                                 | Hydromagnetic waves, Magnetosonic waves, Alfven waves, Plasma oscillations<br>Landau damping, A physical derivation of Landau damping.                                                                                                      | and [8]              |
| Module-4                                                                                                                                                                                                                                                                 | Equilibrium and stability, Hydromagnetic equilibrium, Diffusion of magnetic field i plasma, Classification of instabilities, two stream instability, The gravitational instab<br>Resistive drift waves.                                     | nto a [8]<br>bility, |
| Module-5                                                                                                                                                                                                                                                                 | MHD stability, Energy principle, Kink instability, Internal kink, tearing modes, Rest layer, Tearing stability, Mercier criterion, Ballooning modes, Beta limit.                                                                            | istive [8]           |
| Referenc                                                                                                                                                                                                                                                                 | es                                                                                                                                                                                                                                          |                      |
| 1. 7                                                                                                                                                                                                                                                                     | okamaks, J Wessons, 1987, Oxford Science Publication.                                                                                                                                                                                       |                      |
| 2. I                                                                                                                                                                                                                                                                     | ntroduction to Plasma Physics f F Chen.                                                                                                                                                                                                     |                      |
| 3. Т                                                                                                                                                                                                                                                                     | The theory of plasma waves, T H Stix, 1962, McGraw-Hill New York.                                                                                                                                                                           |                      |
| 4. F                                                                                                                                                                                                                                                                     | Fundamental of Plasma Physics, J, A. Bittencourt, Springer-Verlag New York Inc., 200                                                                                                                                                        | 4                    |

| Course Delivery methods                                     |   |  |
|-------------------------------------------------------------|---|--|
| Lecture by use of boards/LCD projectors/OHP projectors      | Y |  |
| Tutorials/Assignments                                       | Y |  |
| Seminars                                                    | Ν |  |
| Mini projects/Projects                                      | N |  |
| Laboratory experiments/teaching aids                        | N |  |
| Industrial/guest lectures                                   | Ν |  |
| Industrial visits/in-plant training                         | N |  |
| Self- learning such as use of NPTEL materials and internets | Y |  |
| Simulation                                                  | N |  |

## **Course Assessment tools & Evaluation procedure**

### **Direct** Assessment

| Assessment Tool           | % Contribution during CO Assessment |
|---------------------------|-------------------------------------|
| Assignment                | 10                                  |
| Seminar before a commitee | 10                                  |
| Three Quizes              | 30 (10+10+10)                       |
| End Sem Examination Marks | 50                                  |

| Assessment Compoents      | CO1          | CO2          | CO3          | CO4          | CO5          |
|---------------------------|--------------|--------------|--------------|--------------|--------------|
| Mid Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |
| End Sem Examination Marks | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ |
| Quiz I                    |              |              | $\checkmark$ | $\checkmark$ |              |
| Quiz II                   |              |              |              |              |              |

### Indirect Assessment -

- 1. Student Feedback on Faculty
- 2. Student Feedback on Course Outcome

## <u>Mapping between Objectives and Outcomes</u> Mapping between Course Objectives and Course Outcomes

| Course Objectives | 1 | 2 | 3 | 4 | <u>5</u> |  |  |  |
|-------------------|---|---|---|---|----------|--|--|--|
| Α                 | Н | Μ | L | L | L        |  |  |  |
| В                 | Μ | Η | L | L | L        |  |  |  |
| С                 | Μ | Μ | Η | L | L        |  |  |  |
| D                 | L | L | L | Н | Μ        |  |  |  |
| Е                 | L | L | L | Μ | Н        |  |  |  |

### **Mapping of Course Outcomes onto Program Outcomes**

| Course    | Program Outcomes |   |   |   |   |   |   |   |   |   |   |   |
|-----------|------------------|---|---|---|---|---|---|---|---|---|---|---|
| Outcome # | a                | b | C | D | Е | f | g | Η | i | j | k | 1 |
| 1         | Μ                | Н | Μ | Μ | Н | Н |   |   |   |   |   |   |
| 2         | М                | Н | Μ | Μ | Н | Н |   |   |   |   |   |   |
| 3         | Μ                | Н | Н | Μ | Н | Н |   |   |   |   |   |   |
| 4         | Μ                | Н | Μ | M | Н | Н |   |   |   |   |   |   |
| 5         | L                | Н | L | Μ | Н | Н |   |   |   |   |   |   |

| Mapping Between COs and Course Delivery (CD) methods |                                                             |  |                |                           |  |  |  |  |
|------------------------------------------------------|-------------------------------------------------------------|--|----------------|---------------------------|--|--|--|--|
| CD                                                   | Course Delivery methods                                     |  | Course Outcome | Course Delivery<br>Method |  |  |  |  |
| CD1                                                  | Lecture by use of boards/LCD projectors/OHP projectors      |  | CO1            | CD1 CD2                   |  |  |  |  |
| CD2                                                  | Tutorials/Assignments                                       |  | CO2            | CD1 CD2                   |  |  |  |  |
| CD3                                                  | Seminars                                                    |  | CO3            | CD1 CD2                   |  |  |  |  |
| CD4                                                  | Mini projects/Projects                                      |  | CO4            | CD1 CD2                   |  |  |  |  |
| CD5                                                  | Laboratory experiments/teaching aids                        |  | CO5            | CD1 CD2                   |  |  |  |  |
| CD6                                                  | Industrial/guest lectures                                   |  |                |                           |  |  |  |  |
| CD7                                                  | Industrial visits/in-plant training                         |  |                |                           |  |  |  |  |
| CD8                                                  | Self- learning such as use of NPTEL materials and internets |  |                |                           |  |  |  |  |
| CD9                                                  | Simulation                                                  |  |                |                           |  |  |  |  |

### Lecture wise Lesson planning Details.

| Week | Lect. | Tent  | Ch. | Topics to be covered                        | Text   | COs | Actual  | Metho | Remar   |
|------|-------|-------|-----|---------------------------------------------|--------|-----|---------|-------|---------|
| No.  | No.   | ative | No. | _                                           | Book / | Map | Content | dolog | ks by   |
|      |       | Date  |     |                                             | Refere | ped | covered | у     | faculty |
|      |       |       |     |                                             | nces   | -   |         | used  | if any  |
| 1    | L1-   |       |     | Representations of waves, group             | T2 T3  |     |         |       |         |
|      | L5    |       |     | velocity, Plasma Oscillations, Electron     | R1     |     |         |       |         |
|      |       |       |     | plasma waves, sound waves, ion waves,       |        |     |         |       |         |
|      | L6-   |       |     | validity of plasma approximations,          | T2 T3  |     |         |       |         |
|      | L10   |       |     | comparison of ion and electron waves,       | R1     |     |         |       |         |
|      |       |       |     | electrostatic electron oscillations         |        |     |         |       |         |
|      |       |       |     | perpendicular to B.                         |        |     |         |       |         |
|      | L11-  |       |     | Electrostatic ion waves perpendicular to    | T2 T3  |     |         |       |         |
|      | L15   |       |     | B, The lower hybrid frequency,              | R1     |     |         |       |         |
|      |       |       |     | electromagnetic waves with B=0,             |        |     |         |       |         |
|      |       |       |     | Experimental applications,                  |        |     |         |       |         |
|      | L16-  |       |     | electromagnetic waves perpendicular to      | T2 T3  |     |         |       |         |
|      | L20   |       |     | B, Cutoffs and resonances,                  | R1     |     |         |       |         |
|      |       |       |     | electromagnetic waves parallel to B,        |        |     |         |       |         |
|      |       |       |     | Whistler mode, Faraday rotation             |        |     |         |       |         |
|      | L21-  |       |     | Hydromagnetic waves, Magnetosonic           | T2 T3  |     |         |       |         |
|      | L25   |       |     | waves, Alfven waves,                        | R1     |     |         |       |         |
|      | L26-  |       |     | Plasma oscillations and Landau              |        |     |         |       |         |
|      | L30   |       |     | damping, A physical derivation of           |        |     |         |       |         |
|      |       |       |     | Landau damping                              |        |     |         |       |         |
|      | L31-  |       |     | Equilibrium and stability,                  | T1 T2  |     |         |       |         |
|      | L35   |       |     | Hydromagnetic equilibrium, Diffusion        | R1     |     |         |       |         |
|      |       |       |     | of magnetic field into a plasma,            |        |     |         |       |         |
|      | L36-  |       |     | Classification of instabilities, two stream | T1 T2  |     |         |       |         |
|      | L40   |       |     | instability, The gravitational instability, | R1     |     |         |       |         |
|      |       |       |     | Resistive drift waves.                      |        |     |         |       |         |
|      | L41-  |       |     | MHD stability, Energy principle, Kink       | T1 T2  |     |         |       |         |
|      | L45   |       |     | instability, Internal kink,                 | R1     |     |         |       |         |
|      | L46-  |       |     | tearing modes, Resistive layer, Tearing     | T1 T2  |     |         |       |         |
|      | L50   |       |     | stability, Mercier criterion, Ballooning    | R1     |     |         |       |         |
|      |       |       |     | modes, Beta limit.                          |        |     |         |       |         |

### **COURSE INFORMATION SHEET**

Course code: PH 519 Course title: Physics of Thin Films Pre-requisite(s): Co- requisite(s): Credits: 4 L: 4 T: 0 P: 0 Class schedule per week: Class: M.Sc. Semester / Level: IV/ PE VI- VII Branch: PHYSICS Name of Teacher: Dr. Sanat Mukherjee

**Group** : E

Option 4

Same given as above (in Group B)