DEPARTMENT OF MATHEMATICS BIRLA INSTITUTE OF TECHNOLOGY MESRA, RANCHI
 MA103 Mathematics-I, Session: (MO-2023)
 Assignment - 5 (Module IV)

1. If $\vec{A}=5 t^{2} \hat{i}+t^{3} \hat{j}-t \hat{k}$ and $\vec{B}=2(\sin t) \hat{i}-(\cos t) \hat{j}+5 t \hat{k}$, find
a) $\frac{d}{d t}(\vec{A} \cdot \vec{B})$
b) $\frac{d}{d t}(\vec{A} \times \vec{B})$
2. Find a vector normal to the surface at the given point
a) $f(x, y)=y \ln x+x y^{2}$
b) $f(x, y)=2 z^{3}-3\left(x^{2}+y^{2}\right) x+\tan ^{-1}(x z)$ at $(1,1,1)$
c) $f(x, y, z)=e^{x+y} \cos z+(y+1) \sin ^{-1}(x)$ at $\left(0,0, \frac{\pi}{6}\right)$
3. Find the constants a and b so that the surface $a x^{2}-b y z=(a+2) x$ is orthogonal to the surface $4 x^{2}-y z+z^{3}=4$ at the point $(1,1,-2)$.
4. Find the directional derivative of the function at the given point P_{0} in the direction of the vector \vec{A}
a) $f(x, y)=2 x y-3 y^{2}, P_{0}(5,5), \vec{A}=4 \hat{i}+3 \hat{j}$
b) $f(x, y, z)=3 e^{x} \cos (y z), P_{0}(0,0,0), \vec{A}=2 \hat{i}+\hat{j}-2 \hat{k}$
5. Find the direction in which the functions increase and decrease most rapidly at the given point P_{0}. Find also the directional derivative of the function in that direction
a) $f(x, y)=x^{2}+x y+y^{2}, P_{0}(-1,1)$
b) $f(x, y, z)=\ln \left(x^{2}+y^{2}+1\right)+y+6 z, P_{0}(1,1,0)$
6. Find the directional derivative of $f(x, y)=x^{2} y z^{3}$ along the curve $x=e^{-u}, y=2 \sin u+1, z=u-\cos u$ at the point P where $u=0$
7. In what direction from $(3,1,-2)$ is the directional derivative of $\phi=x^{2} y-2 x^{4}$ maximum. Find also the magnitude of this maximum.
8. Evaluate div R and curl R and div (curl R) where
a) $\vec{R}=\left(x^{2} y^{3}-z^{4}\right) \hat{i}+4 x^{5} y^{2} z \hat{j}-y^{3} z^{6} \hat{k}$
b) $\vec{R}=(x-y)^{3} \hat{i}+e^{y z} \hat{j}+x y e^{2 y} \hat{k}$
9. Find the work done in moving a particle once around a circle C in the $X Y$ plane, of the circle has centre at the origin and radius 2 and if the force field is given by $\vec{F}=(2 x-y+2 z) \hat{i}+(x+y+z) \hat{j}+(3 x-2 y-5 z) \hat{k}$.
10. Find the circulation of F around the curve C where $\vec{F}=y \hat{i}+z \hat{j}+x \hat{k}$ and C is the circle $x^{2}+y^{2}=$ $1, z=0$.
11. Find the work done by the force If $\vec{F}=y z \hat{i}+x z \hat{j}+x y \hat{k}$ acting along the curve given by $\vec{R}=t^{3} \hat{i}+t^{2} \hat{j}+t \hat{k}$ from $t=1$ to $t=3$.
12. Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential. Find also the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.
13. Evaluate $\int_{(0,0)}^{(2,1)}\left(10 x^{4}-2 x y^{3}\right) d x-\left(3 x^{2} y^{2}\right) d y$ along the path $x^{4}-6 x y^{3}=4 y^{2}$.
14. Applying Green's theorem to evaluate $\oint_{C} e^{2 x} \sin (2 y) d x+e^{2 x} \cos (2 y) d y$, where C is the ellipse $9(x-$ $1)^{2}+4(y-3)^{2}=36$.
15. Applying Green's theorem to evaluate $\oint_{C}\left(x^{5}+3 y\right) d x+\left(2 x-e^{y^{3}}\right) d y$, where C is the circle $(x-1)^{2}+$ $(y-5)^{2}=4$.
16. Verify Green's theorem $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where C is bounded by the curve $y=x, y=x^{2}$.
17. Find the surface area of the portion of the cylinder $x^{2}+z^{2}=4$ lying inside the cylinder $x^{2}+y^{2}=4$.
18. Find the surface area of the portion of the sphere $x^{2}+y^{2}+z^{2}=9$ lying inside the cylinder $x^{2}+y^{2}-3 z=0$
19. Evaluate $\iint_{S} y z \hat{i}+z x \hat{j}+x y \hat{k}$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant.
20. By Gauss's Divergence theorem evaluate $\iint_{S} x^{2} d y d z+y^{2} d z d x+2 z(x y-x-y) d x d y$ where S is the surface of the cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$.
21. By transforming to a triple integral evaluate, $\iint_{S} x^{3} d y d z+x^{2} z d x d y$ where S is the closed surface bounded by the planes $x=0, x=6$ and cylinder $y^{2}+z^{2}=a^{2}$.
22. Apply divergence theorem to evaluate $\iint_{S}(x+z) d y d z+(y+z) d z d x+(x+y) d x d y$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=4$.
