COURSE INFORMATION SHEET

Course code: MA24201 Course title: Numerical Methods Pre-requisite(s): NIL Co- requisite(s): ---NIL Credits: L: 2 T: 0 P: 0 C: 2 Class schedule per week: 2 Lectures Class: B Tech Semester / Level: 2 Branch: ALL Name of Teacher: Course Objectives: This course enables the students to

1.	derive appropriate numerical methods to solve algebraic and transcendental
	equations
2.	derive appropriate numerical methods to solve linear system of equations
3.	approximate a function using various interpolation techniques
4.	to find the numerical solution of initial value problems and boundary value
	problems

Course Outcomes: After the completion of this course, students will be able to

CO 1	solve algebraic and transcendental equation using an appropriate numerical method
	arising in various engineering problems
CO 2	solve linear system of equations using an appropriate numerical method arising in computer programming, chemical engineering problems etc.
CO 3.	Approximate a function using an appropriate numerical method in various research problems
CO 4	evaluate derivative at a value using an appropriate numerical method in various research problems
CO 5	solve differential equation numerically

SyllabusMA 24201Numerical Methods2-0-0-2

Module I: Errors and Nonlinear Equations

Error Analysis: Definition and sources of errors, propagation of errors, floating-point arithmetic **Solution of Nonlinear equations:** Bisection method, Regula-Falsi method, Secant method, Newton-Raphson method and its variants, General Iterative method. [05L]

Module II: System of Linear Equations

Gauss-Elimination, Gauss-Jordan, LU-Decomposition, Gauss-Jacobi and Gauss- Siedel methods to solve linear system of equations and Power method to find least and largest eigenvalues.

[05L]

Module III: Interpolation

Lagrange's interpolation, Newton's divided differences interpolation formulas, inverse

Module IV: Differentiation and Integration

Differentiation using interpolation formulas, Integration using Newton-Cotes formulas: Trapezoidal rule, Simpson's rule [05L]

Module V: Solution of Ordinary Differential Equations

Euler's method, modified Euler's method, Runge - Kutta Methods of second and fourth order to solve initial value problems. [05L]

Text Books:

- 1. Jain M.K, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age Publications, 2004.
- 2. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI.
- 3. E. Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

Reference Books:

- 1. S.C. Chapra and R. P. Canale, Numerical Methods for Engineers, McGraw Hill, 1985.
- 2. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pearson Education, Seventh Edition, 2003.
- 3. R. W. Hamming: Numerical Methods for Scientists and Engineers, Second Edition, Dover

Course delivery methods					
Lecture by use of boards/lcd projectors/ohp projectors					
Tutorials/assignments					
Seminars					
Mini projects/projects					
Laboratory experiments/teaching aids					
Industrial/guest lectures					
Industrial visits/in-plant training					
Self- learning such as use of nptel materials and					
internets					
Simulation					

Course outcome (co) attainment assessment tools & evaluation procedure

Direct assessment

Assessment tool	% contribution during co assessment
Mid semester examination	25
End semester examination	50
Quiz (s)	10+10
Assignment	5

Assessment components	CO1	CO2	CO3	CO4	CO5
Mid semester examination	\checkmark	\checkmark	\checkmark		
End semester examination	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Quiz (s)	\checkmark	\checkmark	\checkmark		
Assignment					

Indirect assessment -

1. Student feedback on course outcome

Mapping of course outcomes onto program outcomes

Course	Program outcomes											
outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	1	1	1	1	3	3	2	2
CO2	3	2	2	2	1	1	2	1	3	3	2	2
CO3	3	3	2	2	1	1	1	1	3	3	2	2
CO4	2	2	3	1	1	1	1	1	3	3	2	2
CO5	2	2	3	3	1	2	1	1	3	3	2	2

If satisfying< 34%=1, 34-66% =2, > 66% = 3.

MAPPING BETWEEN COURSE OUTCOMES AND COURSE DELIVERY METHOD

Course Outcomes	Course Delivery Method
CO1	CD1,CD6
CO2	CD1, CD6,CD7
CO3	CD1, CD2, CD3,
CO4	CD1, CD3, CD6, CD7
CO5	CD1,CD2,CD7