BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH SEMESTER: II
BRANCH: SER(AERODYNAMICS) SESSION: SP/2024

SUBJECT: SR579 EXPERIMENTAL AERODYNAMICS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Distinguish between the indraft and blowdown supersonic wind tunnel. Construct using a sketch the expected pressure distribution along the supersonic wind tunnel in running condition after the starting shock has been swallowed.	[5] [5]	1 1	BL 4 3
Q.2(a)	Define flow visualization. Classify the techniques of visualization both for subsonic and supersonic flows	[5]	2	2
Q.2(b)	Illustrate the techniques of surface flow visualizations which are very commonly executed.	[5]	2	3
Q.3(a)	Prepare a Prandtl's pitot tube from the design and attribute the decided parameters on the sketch of the tube.	[5]	2	3
Q.3(b)	Describe the working principle of a mechanical balance.	[5]	2	2
Q.4(a)	Differentiate between temporal and spatial resolution taking the examples of constant temperature anemometer, laser doppler anemometer and particle image velocimetry.	[5]	2	3
Q.4(b)	Describe the King's Law and demonstrate the calibration process of a hot wire using a constant temperature anemometer(CTA).	[5]	3	4
Q.5(a)	Appraise the significance of speed, reliability, repeatability, Accuracy and Resolution of a ADC Card.	[5]	5	4
Q.5(b)	A typical signal is acquired using a ADC having 8 bit resolution. The card has input range of ±10V. The system used in the acquisition has a gain of 10 using a amplifier. Assess the result and mention if the resulting resolution is sufficient to acquire 5mV?	[5]	5	5

:::::26/04/2024:::::E