BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: M. Tech. SEMESTER: II
BRANCH: SER SESSION: SP/2024

SUBJECT: SR578 COMPUTATIONAL FLUID DYNAMICS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

			со	BL
Q.1(a)	Define computational fluid dynamics. Explain the steps involved to complete a CFD	[5]	1	2
Q.1(b)	project. Classify the system of equations, $(x+y)\partial u/\partial x + \partial v/\partial y = 0$ $(x-y)\partial v/\partial x + \partial u/\partial y = 0$	[5]	1	3
Q.2(a)	Using Taylor series expansion, derive the 1 st order forward and backward differences, and 2^{nd} order central difference approximations of $\partial f/\partial x$.	[5]	2	3
Q.2(b)	What do you understand by the numerical dissipation and dispersion? Explain with suitable examples.	[5]	2	2
Q.3(a)	Discuss the Jacobi iteration method to solve the 2-D Laplace's equation $\delta^2 u/\delta x^2$ + $\delta^2 u/\delta y^2$ = 0 numerically.	[5]	3	2
Q.3(b)	Explain the explicit and implicit methods to solve the linear convection equation $\partial u/\partial t$ + c $\partial u/\partial x$ = 0, where c = constant.	[5]	3	2
Q.4(a)	What do you understand by checkerboard velocity or pressure distribution? How do you remove this problem for solving incompressible Navier-Stokes equations?	[5]	4	2
Q.4(b)	Explain the procedure to solve incompressible Navier-Stokes equations using staggered grid.	[5]	4	2
Q.5(a)	Write down the 1-D Euler equations in conservative form and find out the flux Jacobian matrix.	[5]	5	3
Q.5(b)	Explain the supersonic inlet and supersonic outlet boundary conditions at the farfield boundary faces.	[5]	5	2

:::::25/04/2024 E:::::