BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc SEMESTER: VI BRANCH: Physics SESSION: SP/2024

SUBJECT: PH315 ELECTROMAGNETIC THEORY

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Explain how Maxwell generalized the Ampere's circuital law. Discuss gauge transformation.	[5] [5]	CO 1 1	BL 5 6
Q.2(a) Q.2(b)	Prove the transverse nature of electromagnetic wave in unbounded media. Discuss the role of refractive index of the medium for propagation of EM wave through dilute plasma or lonized gas.	[5] [5]		5 6
Q.3(a)	An EM wave polarized perpendicular to the plane of incidence impinges at 30° on a glass slab having refractive index 1.5. Find the amplitude reflection and transmission coefficients.	[5]	3	1
Q.3(b)	Determine the expression for Brewster's angle for s-polarized electromagnetic wave incident at the interface of two media.	[5]	3	5
Q.4(a) Q.4(b)	What do you mean by optical rotation and optical activity? If the plane of vibration of the incident beam makes an angle of 30° with the optic axis. Compare the intensities of ordinary and extraordinary rays.	[5] [5]	4 4	1 2
Q.5(a) Q.5(b)	Explain modes in planar guide with suitable figure. Develop the expression of group index for the planar wave guide.	[5] [5]	5 5	2

:::::23/04/2024 M:::::