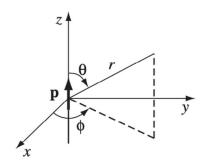
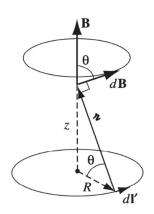
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2024)

CLASS: IMSc SEMESTER: II
BRANCH: MATHS & COMPUTING SESSION: SP/2024


SUBJECT: PH109 PHYSICS-I

TIME: 02 Hours FULL MARKS: 25


INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a) Q.1(b)	Define electrostatic potential. How is it related to the Electric Field? Determine the expression for the capacitance of a parallel plate capacitor. What are the various ways to increase its capacitance?	[2] [3]	1 2	BL 1 5
Q.2(a)	Define electric dipole moment $\stackrel{\frown}{p}$. What happens when an electric dipole is placed	[2]	2	1
Q.2(b)	in a uniform, external electric field E ? Evaluate the expression for the electric field due to an electric dipole at a distance r from it (as shown in the Figure).	[3]	1	5

Q.3(a)	Define Directive polarization vector (-). How is it related to the Directive	[2]	1	1
Q.3(b)	displacement vector (\vec{D}) for a linear, homogeneous, isotropic di-electric medium? Determine the boundary conditions satisfied by the fields \vec{E} and \vec{D} at the interface between two different di-electrics.	[3]	2	5
Q.4(a)	What is Biot-Savart law? Use it to estimate the magnetic field a distance z above the center of a circular loop of radius R, which carries a steady current I (See Figure below).	[3]	2	6

PTO

Q.4(b)	What is Lorentz force law? Use it to show that Magnetic forces don't do any work.	[2]	2	1
Q.5(a)	Define: Atomic number (Z) and mass number (A) of a nucleus. What are the differences between: Isotopes, Isobars and Isotones?	[2]	3	1
Q.5(b)	What is binding energy (B.E) of a nucleus? Draw the binding energy per nucleon (B.E/A) vs mass number (A) curve and explain its salient features qualitatively.	[3]	3	5

:::::27/02/2024:::::E