BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH SEMESTER: II
BRANCH: PIE SESSION: SP/2024

SUBJECT: PE527 SOFT COMPUTING IN MANUFACTURING

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Describe the basic characteristics of soft computing tools as compared to hard computation.	[5]	CO 1	BL 2	
Q.1(b)					
Q.2(a)	Referring to the Figure of ANN, find the computed output [O] for the given numerical values of [X], [V] and [W] assuming a linear function at input and bipolar sigmoidal activation function at hidden and output layers. Also calculate the input to hidden layer neuron H_2 . $X_1 = (-0.5), X_2 = (0.4)$ $[V] = \begin{bmatrix} 0.2 & 0.4 & 0.1 \\ 0.8 & 0.3 & 0.5 \end{bmatrix}$ $[W] = \begin{bmatrix} 0.9 & 0.0 \\ 0.7 & 0.3 \\ 0.2 & 0.8 \end{bmatrix}$	[8]	2	4	
Q.2(b)	Construct a feed-forward neural network of (3-2-2-2) configuration and mention the dimension of weight matrices between the layers.				
Q.3(a)	Let set C={C1, C2, C3} of three cities with a set of transport systems T={T1, T2, T3, T4} and the set of convenience associated with these transport systems is E={E1, E2, E3}. If \tilde{A} be the relation on (C×T) and \tilde{B} relation on (T×E) as given below, find the association of the	[8]	3	3	

[0.2.04.01.02]		0.2	0.4	0.1
$\tilde{A} = \begin{bmatrix} 0.2 & 0.4 & 0.1 & 0.3 \\ 0.8 & 0.3 & 0.5 & 0.1 \\ 0.6 & 0.3 & 0.2 & 0.3 \end{bmatrix}$	_	0.8	0.3	0.1 0.5 0.4 0.3
$\tilde{A} = 0.8 \ 0.3 \ 0.5 \ 0.1 $	\tilde{B} =	0.5	Λ 1	0.4
0.6 0.3 0.2 0.3		0.5	0.1	0.4
	<u> </u>	0.9	0.4	0.3

cities with convenience using max-min composition.

- Q.3(b) What are the various fuzzy connectives? Give their definitions in terms of truth values of $\ [2] \ 3 \ 2$ the propositions
- Q.4(a) A search space is spread between 10 to 70. Use a 6 bit binary chromosome for mapping the [3] 4 4 search space. Find the real value of a string 101101.
- Q.4(b) A travelling salesman problem of 4 cities with intercity distances are given here. Write the [7] 4 steps to solve the problem using GA. Distance between cities A & B=45, B & C=30, C & D=25, A & D=50, A & C=45 and B & D=20.
- Q.5(a) Discuss about selective pressure and population diversity capabilities as used in Genetic [4] 5 2 Algorithm.
- Q.5(b) Discuss the classification of hybrid soft computing systems and their degree of integration [6] 5 2 with suitable examples.

:::::26/04/2024 E:::::