BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSC SEMESTER: VI BRANCH: MATHS & COMP. SESSION: SP/2024

SUBJECT: MA309 OPTIMIZATION TECHNIQUES

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Two Graph paper to be supplied to the candidates in the examination hall.

.....

Q1a. Use the graphical method to solve the following LPP [5] 1 1,2,3

x,y≥0 Q1b.Solve by two phase method the LPP Min Z=7.5x-3y

Subject to $3x-y-z \ge 3$ $x-y+z \ge 2$ $x,y,z \ge 0$

Q.2 A manufacturer wants to ship 8 loads his product as shown below. The matrix gives [10] 2,1,2,3, II the kilometers from origin to the destination

	sters from origin to the destination						
		DESTINATION					
		Α	В	С	Availability		
ORIGIN	Χ	50	30	220	1		
	Υ	90	45	170	3		
	Z	250	200	50	4		
	REQUIREMENT	3	3	2			

Shipping costs are Rs. 10 per load per kilometer. What shipping schedule should be used? Apply VAM & MODI method.

Q.3. Use branch and Bound method to solve the following LPP

Maximize Z=3x+2y Subject to:

2x+5y≤9 4x+2y≤9

x,y≥0 and integer

Q.4.A project schedule has the following characteristics:

Activity	1-2	1-3	2-	3-4	3-5	4-9	5-6	5-7	6-8	7-8	8-10	9-10
			4									
Time(days)	4	1	1	1	6	5	4	8	1	2	5	7

Construct a network diagram. Compute earliest event time and latest event time. Determine the critical path and total project duration.

1 1,2,3,1

[10] 3,1,2,3,III

[10] 4,1,2,3IV

Q.5 A manufacturing company processes 6 different jobs on two machines A and B. Number [10] 5,1,2,3,V of units of each job and its processing times on A and B are given below. Find the optimal sequence, the total minimum elapsed time and idle time for either machine.

Job No	Number of units of each job	Processing Time (in minutes)		
		Machine A	Machine B	
1	3	5	8	
2	4	16	7	
3	2	6	11	
4	5	3	5	
5	2	9	7.5	
6	3	6	14	

:::::29/04/2024:::::M