BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: M.Tech SEMESTER: II SESSION: SP/2024

SUBJECT: EE547 BATTERY MANAGEMENT SYSTEM

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Analyze the charging phenomena of battery using CC/CV and CP/CV mode to identify the	[5]	CO CO1	BL 4
Q.1(b)	voltage, current, power and SoC characteristic. A Battery is constructed from ten 3.5V, 50Ah Cells. Determine the (i) nominal voltage, (ii) nominal capacity, (iii) nominal energy capacity, when connected in (a) Series, (b) Parallel.	[5]		4
Q.2(a)	Develop the BMS protection logic for protection against over-voltage, temperature and over-current	[5]	CO2	6
Q.2(b)	A 12 V lead acid battery with capacity of 300 Ah having an identical resistance of 0.2 Ohms. The battery is theoretically discharged up-to it's cut-off voltage in 20 hrs. Analyze the C-rate and efficiency of the battery for optimum usage.	[5]	CO4	4
Q.3(a) Q.3(b)	Examine using HPPC test the attained cell resistance at different SoC and temperature. Implement the least square technique for SoH estimation. Analyze the significance of SoH estimation.	[5] [5]	CO3	4 3&4
Q.4(a)	Evaluate the terminal cell/ pack voltage using the Thevenin's equivalent circuit models.	[5]	CO4	5
Q.4(b)	Also estimate it's advantage over the R _{int} Model for identifying it's effectiveness in BMS. Estimate the differences between electrochemical and Equivalent circuit model.	[5]	CO4	2
Q.5(a)	Judge the significance of active cell balancing with multiple switched capacitors over single switched capacitor for meeting the state-of-art technique of cell balancing in BMS.	[5]	CO3	5
Q.5(b)	Evaluate SoC using Kalman filtering technique required for adaptive SoC estimation. Identify the converter operation required for charge distribution from battery pack to load.	[5]	CO3 & CO5	5 & 2

:::::24/04/2024 E:::::