BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B.TECH SEMESTER: VI BRANCH: EEE SESSION: SP/2024

SUBJECT: EE365 INTRODUCTION TO SUSTAINABLE ENERGY

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Discuss different renewable sources of energy with special reference to Indian context. List out the advantages and disadvantages of conventional & non-conventional energy source?								5]	CO 1	BL 2
Q.1(b)									5]	2	2
Q.2(a)	Discuss and draw the i-v characteristics along with power curve for three non-identical PV								5]	2	2
Q.2(b)	cells connected in parallel without protection measures. A Solar Panel consists of 5 x 6 identical cells (connected in series) and similar 4 sets are connected in parallel with protection scheme, each cell has the following parameters at standard test conditions of 1000 W/m^2 and 25^0 C :								5]	2	5
	Open c voltage		Short circuit current (I _{sc})	Fill Factor (FF)	Temp. Coeff. for V _{oc}	Temp. Coeff. for I _{sc}	Temp. Coeff. for max power				
	0.6 V		35 mA/cm ²	78%	-0.34%/k	+0.045 %/k	-0.47%/k				
	Determine the value of V_{oc} , I_{sc} and FF at 800 W/m ² and 30°C. In order to directly connect this PV panel with a lead acid deep discharge battery, analyze the battery parameters suc as nominal voltage, maximum charge current limit and C-rate.										
Q.3(a) Q.3(b)										3 4	2 5
Q.4(a)	Analyze the operation of a Boost converter-based dc-dc power interface used for MPPT control of a PV module with suitable sketch and waveforms with their limitations.								5]	4	2
Q.4(b)	Design a PV emulator with the help of switched mode dc-dc converter.								5]	5	6
Q.5(a)	Discuss the operation behind the grid connection in order to transfer power at unity power factor for a given PV module with complete schematic.								5]	4	4
Q.5(b)	Design a buck converter based current controlled scheme for battery charger.								5]	5	4

:::::29/04/2024 M:::::