BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: IMSc. SEMESTER: IV
BRANCH: QEDS SESSION: SP/2024

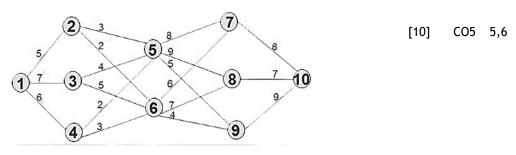
SUBJECT: ED213 OPTIMIZATION TECHNIQUES

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.
- 6. All the notations used in the question paper have usual meanings.

Marks CO BL


[10]

CO4 4,5

- Q.1 Solve the travelling salesman problem given by the following data: $c_{12}=20, c_{13}=4, c_{14}=10, c_{23}=5, c_{25}=10, c_{34}=6, c_{35}=6$ and $c_{45}=20$, where [10] CO2 2,3 $c_{ij}=c_{ji}$, and there is no route between the cities i and j, if a value of c_{ij} is not given.
- Q.2 By solving dual of the following linear programming problem $\min z = 4x_1 + 3x_2 + 6x_3 \qquad [8+2] \quad \text{CO1} \quad 1,2$ subject to $x_1 + x_3 \geq 2$; $x_2 + x_3 \geq 5$; $x_1, x_2 \geq 0$ compute the solutions of the primal and dual both. Hence, verify strong duality theorem.
- Q.3(a) Perform two iterations of steepest descent method to minimize the function $f(x_1, x_2) = 2(2x_1^2 2x_1x_2 + x_2^2)$ with initial starting point $x_0 = (1,1)$. [7] CO3 3,4
- Q.3(b) Find the number of experiments to be conducted in Fibonacci method to obtain a value of $\frac{L_n}{L_0} = 0.0005$. [3] CO3 3
- Q.4 Consider the following optimal simplex table (neglecting the integer constraints) for a maximization type integer linear programming problem. Find the integer solutions of both the variables $(x_1 \text{ and } x_2)$ using Gomory cutting plane algorithm.

	c_{j}		2	2	0	0	
c_B	В	b	x_1	x_2	S_1	s_3	
2	x_1	4	1	0	2	3	
	_	7			7	$-\frac{7}{7}$	
2	x_2	12	0	1	1	5	
		7			$-\frac{1}{7}$	7	
$z_j - c_j$			0	0	2	4	
	, ,				7	7	

Q.5 Apply dynamic programming technique to obtain the shortest path from node 1 to node 10 in the following network.

:::::23/04/2024:::::M