BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B.TECH. SEMESTER: VI BRANCH: ECE SESSION: SP/2024

SUBJECT: EC359 INFORMATION THEORY AND CODING

TIME: 3 HOURS FULL MARKS: 50

INSTRUCTIONS:

- 1. The total marks of the questions are 50.
- 2. Candidates attempt for all 50 marks.
- 3. Before attempting the question paper, be sure that you have got the correct question paper.
- 4. The missing data, if any, may be assumed suitably.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q1 Q1	(a) (b)	Show that the maximum entropy of 8-symbol source is 4 bits. Consider a 5-alphabet source giving symbols a, b,, c, d, e with probabilities 0.5, 0.3, 0.15, 0.05, 0.05 respectively. Compare the code lengths for arithmetic coding and Lempel Ziv coding when the input sequence is BAD.	[5] [5]	CO 1 1	BL 2 2
Q2	(a)	What do you mean by a binary symmetric channel? What is the average mutual information of binary symmetric channel when probability of one of the input symbols is 0.1 and error probability is 0.5.	[5]	2	2
Q2	(b)	What do you mean by channel capacity? Find the capacity of the channel given in 2(a) above? What is the value of channel capacity when channel bandwidth become very large?	[5]	2	3
Q3	(a)	Find the error sequence when the syndrome sequence is 010 for (6,3) block	[5]	3	3
Q3	(b)	code given by $c_i = a_i$, for $1 \le i \le 3$, $c_4 = a_{1+} a_3$, $c_5 = a_2 + a_3$, $c_6 = a_{1+} a_2 + a_3$. Write all the elements of $GF(2^3)$ modulo primitive polynomial $x^3 + x^2 + 1$. Show that primitive polynomial $x^3 + x^2 + 1$ is also the minimal polynomial of the element α^2 in this field where α is the primitive element of the field.	[5]	3	3
Q4	(a)	How do you select generator polynomial of (7,4) cyclic code? Show that BCH	[5]	4	3
Q4	(b)	code is also of cyclic property. Draw the block diagram of generating systematic cyclic code using polynomial $g(x) = x^3 + x + 1$,	[5]	4	3
Q5	(a)	Give a block diagram for generation of rate 1/3 nonsystematic convolutional code using 2-bit memory units.	[5]	5	2
Q5	(b)	Describe the recursive updating of path metric using Viterbi Decoding algorithm applied to binary trellis.	[5]	5	3

:::::26/04/2024:::::M