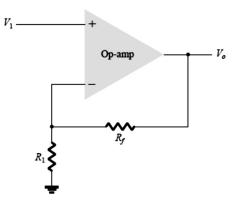
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BTECH /IMSc(IPH) SEMESTER: II
BRANCH: ME/CIVIL/CHEMICAL/PIE/BIOTECH/IFT/IPH SESSION: SP/2024

SUBJECT: EC101 BASICS OF ELECTRONICS AND COMMUNICATION ENGINEERING


TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Explain a PN Junction and describe how depletion region is formed with suitable diagrams. A Silicon PN junction diode operates at 300 K. If the applied forward bias is increased, then the diode current I_D is doubled. Calculate the increase in the bias voltage. Assume Diode current, $I_D >>$ Reverse Saturation Current, I_S .	[5] [5]	CO 1 1	BL 2 2
Q.2(a)	Elaborate the hybrid model for the common emitter amplifier with a diagram. Determine the four hybrid parameters from input and output characteristics of CE amplifier.	[5]	2	3
Q.2(b)	Draw the symbols of n-channel JFET, n-channel depletion type MOSFET and p-channel enhancement type MOSFET. Also, sketch the transfer characteristics for an n-channel depletion type MOSFET with I_{DSS} = 10 mA and V_P = -4 V.	[5]	2	2
Q.3(a)	Explain the circuit connection of a Hartley Oscillator and find the expression for frequency of oscillation.	[5]	3	2
Q.3(b)	Define slew rate. Also, determine the gain of the following amplifier if R_1 = 100 Ω and R_f =1 $K\Omega$.	[5]	3	2

Q.4(a)	Minimize the following function and implement using only NAND gate. $f=\Sigma m(1,2,4,5,6,7)$.	[5]	4	3
Q.4(b)	Derive the expression for sum and carry of the full adder and implement the circuit.	[5]	4	3
Q.5(a)	Explain the different elements of an electronics communication system with a neat block diagram. Determine the required minimum antenna height for transmitting a voice signal of 1 KHz.	[5]	5	2
Q.5(b)	Calculate the minimum and maximum amplitude of an amplitude modulated wave represented by the expression, $s(t)=7.5(1+\ 0.6\ cos6280t)\ cos(10^6\pi t)$. Also, determine the frequence components present in the AM wave.	[5]	5	3

:::::26/04/2024:::::E