BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: MTECH/PRE-PHD SEMESTER: II/NA BRANCH: CS SESSION: SP2024

SUBJECT: CS633 NATURAL LANGUAGE PROCESSING

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

1. The question paper contains 5 questions each of 10 marks and total 50 marks.

Verify summation of probability times frequency gives us 1.

will

Mary

2. Attempt all questions.

Q.3(a) For given sentences

- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

- CO BL Describe different phases of NLP with example. Q.1(a) [5] 2 Find edit distance between "INTENTION" and "EXECUTION" using dynamic programming [5] 3 Q.1(b) approach. Q.2(a) Assume that the following is a small corpus; [5+2] 3 Training corpus: 1. Thank you so much for your help. 2. I really appreciate your help. 3. Excuse me, do you know what time it is? 4. I'm really sorry for not inviting you. 5. I really like your watch. Test data: "I really like your garden." Find the Bigram probabilities of the training data and find probability given test sentence using add-1 smoothing. Q.2(b) Suppose we have following type of possible item types X={Apple, banana, carrorts, 5 [3] dates, eggs, frogs, grapes}. And suppose we have N independent samples: W={apples apples apples banana banana dates dates eggs eggs frogs grapes grapes} Calculate the empirical probabilities. Calculate good tuning probability estimates based on W.
 - М N Will See Mary Jane can м will Mary Spot see Will Jane spot Mary? м

pat

Spot

[5]

4

Calculate transition and emission probability. And find probability of sentence 'Will can spot Mary'

Q.3(b)	Find suitable POS tags for sentence given in $Q3(a)$ with probabilities using Viterbi algorithm.	[5]	5
Q.4(a) Q.4(b)	Explain ways to convert word to vectors with example. Explain working of CBOW and its importance in NLP.	[5] [5]	3
Q.5(a)	Explain role of Probabilistic CFG in NLP. Convert given grammar to CNF form. $S \rightarrow NP \ VP$ $S \rightarrow Aux \ NP \ VP$	[5]	3
	$S \rightarrow VP$		
	$NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$ $Nominal \rightarrow Noun$ $Nominal \rightarrow Nominal Noun$ $Nominal \rightarrow Nominal PP$ $VP \rightarrow Verb$ $VP \rightarrow Verb NP$ $VP \rightarrow Verb NP PP$ $VP \rightarrow Verb PP$		
	VP → VP PP PP → Preposition NP		
Q.5(b)	Compare top down and bottom up approach with help of an example.	[5]	3

:::::23/04/2024:::::E