BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2024)

CLASS: B. TECH SEMESTER : IV BRANCH: CSE/AIML SESSION : SP/2024

SUBJECT: CS241 DESIGN AND ANALYSIS OF ALGORITHM

TIME: 02 Hours FULL MARKS:

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates

Q.1(a)	Consider the following pseudo-code and analyze the worst case time complexity: Function PseudoCode(array) for index from 1 to length(array) key = array[index] j = index - 1 while j >= 0 and array[j] > key array[j + 1] = array[j]	[2]	CO 1	BI 4
	j = j - 1 array[j + 1] = key			
Q.1(b)	The Fibonacci numbers are define as f_0 =0, f_1 =1 and f_i = f_{i-1} + f_{i-2} for i >1. Determine the time complexity of recursive algorithm to compute f_i .	[3]	1	4
Q.2 (a)	Consider the following equations. $f(n) = n + \log n$, and $g(n) = \int (n)$.	[2]	1	5
Q.2(b)	Is $f(n) = O(g(n))$ or $g(n) = O(f(n))$, or both? Explain. Explain the procedure of solving recurrence relations using an appropriate example. Solve the following using Master's theorem. T(n) = 4T(n/3) + n, T(1)=1.	[3]	1	3
Q.3(a)	Solve the given recurrence relation using the substitution method for $T(n)=\{1 \text{ if } n=1 \\ 2T(n/2) + n \text{ , if } n>1\}$	[2]	2	2
Q.3(b)	Create an outline for a sorting algorithm that uses O (n log n) for a list of size n in the best, worst, and average cases. Explain the claimed time complexity.	[3]	2	4
Q.4(a)	Calculate the time complexity of a method that performs matrix multiplication more efficiently than $O(n^3)$.	[2]	2	4
Q.4(b)	When does the worst case occur in quick sort algorithm? Calculate the worst case time complexity using recursion tree method.	[3]	2	3
Q.5	Write a divide-and-conquer algorithm that finds the maximum difference between any two elements of a given array of n numbers (not necessarily distinct) in O (n) time. For example, on input A = $[4.5,10,-2,\pi,-7.115]$, your algorithm should return 17.115. Justify briefly that your algorithm is correct and runs within the required time bound."	[5]	2	4

:::::21/02/2024:::::M