BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BCA SEMESTER: II
BRANCH: BCA SESSION: SP/2024

SUBJECT: CN123 BASICS OF DIGITAL COMPUTER AND LOGIC DESIGN

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a) Q.1(b)	Describe in detail about weighted and non-weighted binary codes with examples. Define parity and design a three-bit parity generator and four-bit parity checker using odd parity bit.	[5] [5]	CO 2 1,3	BL 1,2 1,3
Q.2(a)	Write the POS representation of the following SOP function:	[5]	3	3
Q.2(b)	$f(x, y, z) = \sum m(0, 1, 3, 5, 7)$ Simplify the Boolean expression using K-map and implement using NAND gates $F(A,B,C,D) = \sum m(0, 2, 3, 8, 10, 11, 12, 14)$	[5]	3	2,3
Q.3(a)	Implement the following Boolean function using 8:1 multiplexer F(A, B, C, D) = A'BD' + ACD + A'C' D +B'CD	[5]	3	4
Q.3(b)	Design 4 bit parallel Adder and explain the operation in detail?	[5]	1,2	3
Q.4(a) Q.4(b)	Draw and explain the operation of a Master-Slave JK flip flop. Design a 3 bit binary synchronous counters with T-flip flop?	[5] [5]	1,2 3	2 2,3
Q.5(a) Q.5(b)	Explain different types ROMs Describe about the following programmable logic devices: (i) PLA (ii) PAL	[5] [5]	2 2	1,2 1,2

:::::24/04/2024:::::E