BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2024)

CLASS: B.TECH SEMESTER: IV
BRANCH: CHEMICAL ENGG SESSION: SP/2024

SUBJECT: CL223 CHEMICAL REACTION ENGINEERING-I

TIME: 02 Hours FULL MARKS: 25

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 5 marks and total 25 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates: Graph paper

- Q.1(a) Define the rate of reaction in different units. CO
- Q.1(b) In an isothermal reaction, the rate of reaction triples on doubling the [3] CO1 3 concentration of reactant. Calculate the order of the reaction.

BL

1

3

Q.2(a) The gas-phase decomposition A→B+2C is carried out in a constant-volume batch [5] CO2 3 reactor. Runs 1 through 5 were carried out at 100°C while run 6 was carried out at 110°C. (a) From the data in Table, determine the reaction order and specific reaction rate, (b) What is the activation energy for this reaction?

Run	1	2	3	4	5	6
Initial conc. (mol/l)	0.025	0.0133	0.01	0.05	0.075	0.025
Half-life (min)	4.1	7.7	9.8	1.96	1.3	2

- Q.2(b) For reaction A \rightarrow 4R, with 60 mole% inert and 40 mole% of A, calculate the value [2] CO2 3 of ϵ_A .
- Q.2(C) Show that half-life $(t_{1/2})$ of a zero-order irreversible reaction is $C_{AO}/2k$, where [3] CO2 3 C_{AO} and k are the initial concentration of reactant A and rate constant, respectively.
- Q.3(a) Show that the performance equation for first order kinetics and ϵ_A = 0 for [5] CO3 3 reversible reaction (A \leftrightarrow R with k_1 and k_2 are forward and backward rate constants, respectively) with zero initial product concentration in a Plug Flow Reactor (PFR) is

$$\frac{k_1 \tau}{X_{Ae}} = ln \left(\frac{X_{Ae}}{X_{Ae} - X_A} \right)$$

Q.3(b) The laboratory measurements of rate versus conversion for reactant A are given [5] CO3 below. Calculate the volume of a CSTR required to achieve 60% conversion. The feed molar flow rate of A entering to reactor is 10 kmol/s.

X _A	0	0.20	0.40	0.60	0.80
-r _A , (mol/(l.s))	0.182	0.143	0.10	0.0667	0.0357

:::::22/02/2024:::::M