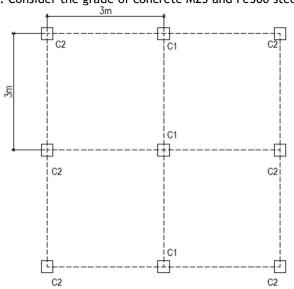
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: M.TECH SEMESTER: II SESSION: SP/2024

SUBJECT: CE549 STRUCTURAL DESIGN OF FOUNDATION


TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. IS 456:2000 is allowed in the examination hall.

			CO	BL
Q.1(a)	Interpret your conclusion on Case studies for foundation failure from the research article provided to you.	[5]	CO1	K3
Q.1(b)	An R.C.C column of size 400 mm x 400 mm is reinforced with 8-25 $\#$ bars of grade Fe 4150. The concrete is M 25. It is loaded with an axial, unfactored load of 1800kN. A pad footing of size 3.15 m x 3.15 m and a thickness of 700 mm is provided. The allowable gross bearing capacity is 200 kN/m². Discuss and check for transfer of load from the column to the square footing if the grade of footing concrete is M20.	[5]	CO4	K4
Q.2	A reinforced concrete column 400 mm by 400 mm support an axial service load of 1000 kN. The safe bearing capacity of soil at site is 200 kN.m ² . Adopting M20 grade concrete and Fe15 HYSD bars design a suitable footing for the column and sketch the details of reinforcements.	[10]	CO3 CO4	K3
Q.3	Design a raft footing for the foundation plan shown. Assume SBC 150kN/m ² . Columns marked C1(300x300) and C2(300x300) carry 800 kN and 600 kN loads respectively. Consider the grade of concrete M25 and Fe500 steel.	[10]	CO2	K3

Q.4(a)	Prove that in a combined footing for two columns carrying unequal loads, the maximum hogging bending moment occurs at less loaded column.	[5]	CO2	K2
Q.4(b)	What are the different types of combined footings and in what scenarios are each type used.	[5]	CO1	K1
Q.5(a) Q.5(b)	Distinguish between pile foundation and caisson foundation. Design a pile cap to support a column service load of 1000 kN. The size of the column is 400 mm x 400 mm. The cap is supported on two 300 mm diameter piles and materials are M25 grade concrete and HYSD bar Fe 415.	[3] [7]	CO4 CO2	K4 K3

:::::29/04/2024::::E