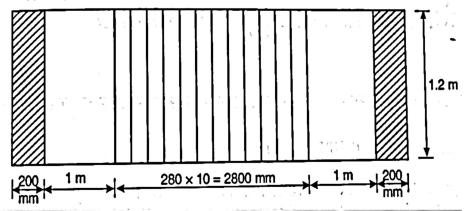
BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2024)

CLASS: B.TECH SEMESTER: VI BRANCH: CIVIL SESSION: SP/2024

SUBJECT: CE435 ADVANCED CONCRETE STRUCTURES DESIGN

TIME: 02 Hours FULL MARKS: 25

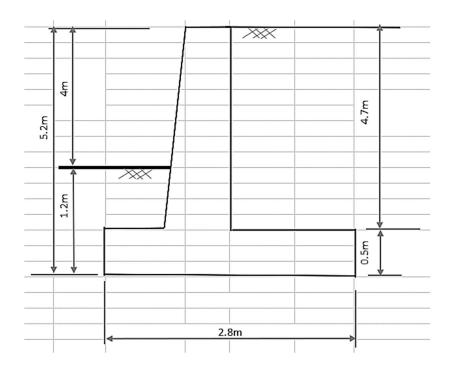

INSTRUCTIONS:

1. The question paper contains 5 questions each of 5 marks and total 25 marks.

- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates.
- 5. IS:456 is allowed in the examination hall.

Q.1 Design a dog-legged staircase flight shown in the figure below, subjected to a [5] 1 K3 superimposed load of 2.5 kN/m². Use M20 concrete and Fe 415 steel. Tread = 280 mm and Riser = 150 mm.

- Q.2 An interior panel of a flat slab 5 m \times 6 m in size is supported on 500 mm \times 500 mm columns [5] 2 K2 and carrying a superimposed load of 4.0 kN/m². Determine the bending moments in column strips and middle strip along longer direction. Assume slab thickness as 200 mm.
- Q.3 Determine the bending moments in column strip and middle strip of an exterior panel for [5] 2 K2 a live load of 5.0 kN/m2. The slab is provided with a floor finish of 1.0 kN/m². The panel is 6 m x 6 m and is supported on 600 mm x 600 mm columns. Floor to floor height is 4 m and thickness of slab is 250 mm.
- Q.4 Design the stem of the cantilever retaining wall shown in the following figure with the [5] 1 K3 following data:


Unit weight of soil = 18 kN/m³

Angle of internal friction of soil = 30 degree

Grade of concrete = M20

Grade of steel = Fe415

Clear cover = 40 mm

Q.5 Design a corbel for a 250 mm square column to support a vertical factored load of 300 kN [5] 2 K3 at a distance of 250 mm from the face of the column. Assume M20 grade of concrete and Fe 415 steel.

TABLE A SALIENT POINTS ON THE DESIGN STRESS-STRAIN CURVE FOR COLD-WORKED BARS

(Clarse 1.4)

STRESS LEVEL	fy - 415 N/mm ³		fy = 500 N/mm*	
(1)	Strain (2)	Stress (3) N/mm³	Strain (4)	Stress (5) N/mm²
0.80 fyd	0.001 44	288-7	0.001 74	347.8
0.85 fyd	0.001 63	306.7	0.001 95	369.6
0.90 fyd	0.001 95	324-8	0.002 26	391.3
0.95 fyd	0.002 41	342-8	0.002 77	413.0
0.975 fyd	0.002 76	351-8	0.003 12	423-9
1.0 fyd	0.003 80	360.9	0-004 17	434-8

Note -- Linear interpolation may be done for intermediate values.

:::::26/02/2024:::::M