BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: B. TECH SEMESTER: IVth BRANCH: BIOTECH SESSION: SP/2024

SUBJECT: BE216 ENZYME TECHNOLOGY

TIME: 3 HOURS **FULL MARKS: 50**

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.

5. 	Table	es/Data hand book/G	iraph paper etc. to l	be supplied to the candid	ates in the examinat	ion ha 	ll. 	
Q1 Q1	(a) (b)	With suitable example, describe any one mechanism of enzyme action. Suppose you are determining enzyme specific activity. The sample contains 50 µg of total protein estimated by Bradford method. After incubating with substrate for 30 min you obtained the product with OD500 value of 0.87. The equation of standard plot prepared separately (OD vs. concentration) with product is Y = 0.29X. Concentration is measured in mg/mL. Calculate the specific activity of the enzyme (mg/mL. min).					CO CO1 CO1	BL BL2 BL4
Q2		Calculate graphicall	ly the value of Km an	nd Vmax from the following V (nmole/L/min)	g data	[10]	CO2	BL5
			7×10 ⁻⁶	20				
			8×10 ⁻⁵	45				
			1×10 ⁻⁵	60				
			1×10 ⁻³	75				
			1×10 ⁻²	80				
Q3 Q3	(a) (b)		primary screening te	chniques and Vmax value of 25 mo	le/L/min.	[5] [5]	CO3	BL2 BL5

Q3	(5)	An enzyme has	a Km value	e of 4.7×10	⁻⁵ M, and Vm	nax value of 25 mo	ole/L/min.	
		344						_

a. What will be the velocity in the presence of substrate concentration of 2.5×10 ⁴ M and competitive inhibitor concentration of 3.5×10^{-4} M ($K_i = 3 \times 10^{-4}$ M)

Q4 (a) Explain any one enzyme immobilization method. What are the advantages and [5]

b. Calculate the degree of inhibition in this case.

		disadvantages of that method?			
Q4	(b)	Derive immobilized enzyme kinetic equation indicating Dam Kohler Number, when enzyme is on the surface of a matrix.	[5]	CO4	BL3

CO4

BL3

Q5 (a) With example, briefly describe isoenzymes. CO5 BL2 [5]

Q5 (b) With reaction, explain any two enzymes that can be used for industrial purpose. [5] CO5 BL3

:::::26/04/2024:::::M