BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH S : SER(AERODYNAMICS) S	SEMESTER : II SESSION : SP/2023			
TIME:	SUBJECT: SR576 COMPRESSIBLE FLOWS 3 Hours F	FULL MARKS: 50			
 INSTRUCTIONS: The question paper contains 5 questions each of 10 marks and total 50 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
0.1(a)	Illustrate the physically realistic solution of existence of a minimum area	in a	[5]	CO 1	BL 3
Q.1(b)	convergent-divergent duct. Distinguish the features of under expanded and overexpanded conditions in a duct 1 Further describe the operations where such behaviors could be encountered.	flow.	[5]	1	2
Q.2(a)	Sketch and describe the condensation, rarefaction, compression and expan	nsion	[5]	2	3
Q.2(b)	Explain the concept of mass motion velocity and hence show that the value of such velocities could even reach a supersonic speed		[5]	2	4
Q.3(a)	Sketch and show how could an aerofoil get to have a shock boundary layer interaction	ction	[5]	3	3
Q.3(b)	How does Crocco's theorem differentiates a flow across curved and conical shocks		[5]	3	4
Q.4(a)	Supersonic wind tunnel starting depends strongly on the second throat of the difference with suitable explanation	user.	[5]	4	3
Q.4(b)	Describe the subcritical, critical and supercritical operations of Intake.		[5]	4	3
Q.5(a)	Show that the linearized pressure coefficient depends only on the x-componer perturbation velocity	nt of	[5]	5	4
Q.5(b)	Describe the Prandtl Glauert similarity rule for subsonic flows		[5]	5	3

:::::25/04/2023:::::E