BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH SER SE	SEMESTER :II SESSION : SP/2023 FULL MARKS: 50			
TIME:	SUBJECT: SR552 ROCKET COMBUSTION PROCESS 3 Hours FI				
INSTRUC 1. The c 2. Atten 3. The r 4. Befor 5. Table	TIONS: juestion paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. nissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question s/Data hand book/Graph paper etc. to be supplied to the candidates in the exam	n pape ninati	er. on h	all.	
0 1(2)	Describe the various methods used for determining adjubatic flame temperature. W	bat	[5]	CO	BL
Q. 1(a)	are the parameters which affect the adiabatic flame temperature?	Παι	[]]	COT	LJ
Q.1(b)	A gas turbine engine operates at an equivalence ratio of 0.286 with an air flow rate 15.9Kg/s. The equivalent composition of the fuel (natural gas) is $C_{1.16}H_{4.32}$. Determ the fuel mass flow rate and the operating air-fuel ratio for the engine MW _{air} =28.85gms.	e of line ne.	[5]	C01	L3
Q.2(a)	Illustrate the various methods of determining the flame front. Also comment on whethod is most suitable for determining the non-stationary flame front and why.	nich	[5]	CO2	L5
Q.2(b)	Explain the various parts of a Hugoniot curve using a suitable diagram. Prove that point j the detonation velocity is the sum of particle velocity and velocity of sound	t at d?	[5]	CO2	L4
Q.3(a)	Distinguish between the combustion wave structure in a composite solid propell and a double base propellant. Explain how the various regions differ and associa reactants/ products of combustion and the reactions involved.	ant ted	[5]	CO3	L4
Q.3(b)	Demonstrate according to the two temperature postulate how does the binder eff the thermal layer in AP based composite solid propellant	ect	[5]	CO3	L5
Q.4(a)	What is the role of injectors in the liquid rocket engine? Discuss the various types injectors used in the liquid rocket engine.	s of	[5]	CO4	L2
Q.4(b)	Explain clearly the different zones which occur in the combustion process of a liq rocket engine with the help of a schematic diagram. Which zone has a pronounce ffect on the combustion process?	luid ced	[5]	CO4	L4
Q.5(a)	Differentiate between the combustion process of a liquid droplet and the entrain bed combustion of a liquefying hybrid fuel. (Use schematic diagrams)	ned	[5]	CO5	L4
Q.5(b)	Describe the turbulent boundary layer theory for hybrid rocket combustion explain how the oxidizer mass flux influences the regression rate. (Use schematic diagram	ning s)	[5]	CO5	L3

:::::28/04/2023:::::E