BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	MTECH SEME : SER SESS	SEMESTER : II SESSION : SP/2023				
TIME:	SUBJECT: SR521 COMPUTATIONAL COMBUSTION 3 Hours FUL			L MARKS: 50		
INSTRUC 1. The q 2. Atten 3. The n 4. Befor 5. Table	TIONS: Juestion paper contains 5 questions each of 10 marks and total 50 marks. Apt all questions. Anissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question pa s/Data hand book/Graph paper etc. to be supplied to the candidates in the examina	iper. ition ha				
Q.1(a)	Write the most general form of continuity equation and reduce it to a divergent	e [5]	CO 1	BL 3		
Q.1(b)	condition. Write the most general form of energy transport equation and reduce it to a for suitable for solving heat transfer through a sphere.	m [5]	1	3		
Q.2(a)	Identify boundary conditions for the expansion of a laminar jet into stagnant ambie	nt [5]	2	3		
Q.2(b)	Identify the initial conditions required to start the solution of a laminar jet of fu injected into an oxygen-rich environment at stagnant conditions.	el [5]	2	3		
Q.3(a) Q.3(b)	Obtain a Favre averaged form of continuity equation. Briefly describe the eddy breakup model for accounting turbulence-chemist interactions.	[5] ry [5]	4 4	2 2		
Q.4(a)	Explain the set of equations used for tracking the motion of droplets in cold ambie	nt [5]	1,4	4		
Q.4(b)	How could you include the effects of heat and mass exchange in the tracking metho for droplets?	od [5]	1,4	4		
Q.5(a) Q.5(b)	Explain the $M \rightarrow 0$ approximation. Write a form of energy transport equation suitable for compressible flows and expla each term in brief.	[5] in [5]	1,4 1,4	4 4		

:::::24/04/2023:::::E