BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	M.SC./IMSC. SEMI PHYSICS SESS	SEMESTER : II/VIII SESSION : SP/2023			
TIME:	SUBJECT: PH409 ATOMIC AND MOLECULAR SPECTROSCOPY 3 Hours FULL		MARKS: 50		
INSTRUC 1. The c 2. Atten 3. The r 4. Befor 5. Table	CTIONS: question paper contains 5 questions each of 10 marks and total 50 marks. npt all questions. nissing data, if any, may be assumed suitably. re attempting the question paper, be sure that you have got the correct question p rs/Data hand book/Graph paper etc. to be supplied to the candidates in the examin	aper. ation h	all.		
Q.1(a) Q.1(b)	Describe the addition of angular momenta for many-electron atoms. Explain the vector model of atom.	[5] [5]	CO 1 1	BL 2 2	
Q.2(a)	Why is the intensity of Stokes lines generally greater than the anti-Stokes lines? Deriv the expression for the induced dipole moment in vibrational Raman spectroscopy using the classical theory.	/e [5] 1g	2	2	
Q.2(b)	Solve: For hydrogen molecule, the spacing between the S-branch lines in the Rams spectrum is 243 cm ⁻¹ . Calculate the bond length of hydrogen. Given the Planck constant $h = 6.626 \times 10^{-34}$ J.s, and the speed of light, $c = 2.998 \times 10^8$ m/s. Assume the mass hydrogen to be 1.673×10^{-27} kg.	ın [5] t, of	2	3	
Q.3(a)	Provide a table for the different spectroscopic techniques used for various regions	of [5]	3	1	
Q.3(b)	Provide a sketch of the basic elements of a spectrometer, labelling the parts. Why the sample usually kept close to the detector and not to the source?	is [5]	3	2	
Q.4(a) Q.4(b)	Describe the $180^{\circ} - \tau - 90^{\circ}$ process for deducing spin-lattice relaxation rate. Explain the working principle of chemical shift in NMR spectroscopy.	[5] [5]	4 4	2 2	
Q.5(a) Q.5(b)	What is the electrospray ionization method? Explain how the charge-to-mass ratio can be obtained from a Dempster's ma spectrometer.	[5] ss [5]	5 5	2 2	

:::::26/04/2023:::::E