BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH:	IMSC/MSC PHYSICS	SEMESTER : SESSION : S		VIII/II P/2023	
TIME:	SUBJECT: PH408 STATISTICAL PHYSICS 3 Hours	FULL MARKS: 50			
INSTRUC 1. The q 2. Attem 3. The m 4. Before 5. Table	TIONS: uestion paper contains 5 questions each of 10 marks and total 50 marks. upt all questions. nissing data, if any, may be assumed suitably. e attempting the question paper, be sure that you have got the correct question pa s/Data hand book/Graph paper etc. to be supplied to the candidates in the examina	per. tion hall			
Q.1	Define negative temperature, fluctuation-dissipation theorem, electron degenerac pressure, metastable states and critical exponents?	:y [10]	CO 1,2,3	BL 1	
Q.2(a)	Suppose the energy of an anharmonic oscillator is given by $H = \frac{P^2}{2m} + b x^{2n}$	[5]	2	3	
	where n is a positive integer and $n > 1$. Consider a thermodynamic system consisting of a large number of these identical noninteracting oscillators. Derive the single oscillator partition function	of or			
Q.2(b)	Show that the heat capacity is $C = N K_B/2 (1 + 1/n)$ for the above problem	[5]	2	3	
Q.3(a)	Find the critical temperature, pressure and volume at which the Van der Waals isother	m [5]	3	2	
Q.3(b)	Using Landau theory, discuss the phase transition of a system from a paramagnetic stat to a ferromagnetic state.	e [5]	3	2	
Q.4(a)	Compute the partition function of a one-dimensional Ising chain in absence of	a [5]	4	3	
Q.4(b)	Explain the formulation and outcomes of Curie-Weiss mean field theory.	[5]	4	4	
Q.5(a)	Write down the Langevin equation for a Brownian particle and discuss the properties of the fluctuating force.	of [5]	5	2	
Q.5(b)	Derive the fluctuation-dissipation theorem for a Brownian particle.	[5]	5	3	

:::::25/04/2023:::::E