BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BTECH SEMESTER: IV/VI BRANCH: BT/CHEMICAL/EEE/ECE/MECH SESSION: SP/2023

SUBJECT: PH320 ATMOSPHERIC PHYSICS

TIME: 3 Hours FULL MARKS: 50

INSTRUCTIONS:

- 1. The question paper contains 5 questions each of 10 marks and total 50 marks.
- 2. Attempt all questions.
- 3. The missing data, if any, may be assumed suitably.
- 4. Before attempting the question paper, be sure that you have got the correct question paper.
- 5. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall.

Q.1(a)	Describe are the different forces which influences the speed and direction of the	[5]	CO 1	BL 1
Q.1(b)	horizontal wind. Describe the Ionosphere and its role in communication. How its structure changes with day and nighttime.	[5]	1	1
Q.2(a) Q.2(b)	Derive the continuity equation for atmosphere. Why we need to add the apparent forces in the second law of motion when we are dealing with atmospheric motion? What are these forces?	[5] [5]	2 2	1
Q.3(a) Q.3(b)	Describe the scattering of light in the atmosphere in detail. Calculate the equivalent blackbody temperature of the Earth, assuming a <i>planetary albedo</i> (i.e., the fraction of the incident solar radiation that is reflected back into space without absorption) of 0.30. Assume that the Earth is in <i>radiative equilibrium</i> ; i.e., that it experiences no net energy gain or loss due to radiative transfer.	[5] [5]	3 3	1
Q.4(a) Q.4(b)	Derive the expression for power received by the Radar. Describe the differential-absorption lidar	[5] [5]	4 4	1
Q.5(a) Q.5(b)	Define the Aerosol Effective Radius and Aerodynamic diameter of aerosols. Describe the direct and indirect effects of aerosols.	[5] [5]	5 5	1 5

:::::01/05/2023:::::M