BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSC SEMES : PHYSICS SESSIC	MESTER :VI SSION : SP/2023 JLL MARKS: 50		
TIME:	SUBJECT:PH318 INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS 3 Hours FULL /			
INSTRUC 1. The c 2. Atten 3. The n 4. Befor 5. Table	CTIONS: Juestion paper contains 5 questions each of 10 marks and total 50 marks. Apt all questions. Inissing data, if any, may be assumed suitably. The attempting the question paper, be sure that you have got the correct question papers/Data hand book/Graph paper etc. to be supplied to the candidates in the examinat	ber. tion h	all.	
Q.1(a)	What is binding energy of nucleus ? Draw a curve indicating variation of binding energy	[5]	CO I	BL I
Q.1(b)	Singly charged Lithium ion, liberated from a heated anode, are accelerated by a difference of 623 volts between anode and cathode. They then pass through a hole in the cathode into a uniform magnetic field perpendicular to their direction of motions. The magnetic flux density is 0.1 Wb/m^2 and the radii of the paths of the ions are 8.83 cm and 9.54 cm respectively. Estimate the mass number of the lithium isotope.	[5]	I	VI
Q.2(a) Q.2(b)	Define Q- value and threshold energy for nuclear reaction. Develop an expression for non-relativistic Q value.	[5] [5]	 	I VI
Q.3(a) Q.3(b)	Explain the working of Geiger Muller counter. How is quenching achieved in Geiger counter.	[5] [5]	 	
Q.4(a) Q.4(b)	Explain the construction and theory of cyclotron. Estimate the frequency of applied potential to the cyclotron dees in which deuterons are accelerated, given B= 3.0 weber/m^2 , e= 1.6×10^{19} and $1a.m.u=1.66 \times 10^{-27}$.	[5] [5]	IV IV	II V
Q.5(a) Q.5(b)	Write a short note on the classification of elementary particle. What are Baryons and Leptons?	[5] [5]	V V	IV I

:::::27/04/2023:::::M