BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)

CLASS: BRANCH	IMSc SEMESTER EXAMINATION ST/2025) PHYSICS SE	SEMESTER : VI SESSION : SP/2023			
TIME:	SUBJECT: PH316 STATISTICAL MECHANICS 02 Hours FU	FULL MARKS: 25			
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 					
Q.1(a) Q.1(b)	Define microstates and macrostates. Derive the relation between the Boltzmann constant k_{B} and the universal gas consta R.	ınt	[2] [3]	CO 1 1	BL 1 3
Q.2(a)	Explain the difference between the microcanonical, canonical and grand canonic	cal	[2]	1	2
Q.2(b)	How does the quantum indistinguishability of particles leads to the resolution of t Gibbs paradox?	he	[3]	1	2
Q.3(a)	A cavity has its walls maintained at the temperature T. Explain whether the shape, si or material of the walls should affect the spectral energy density of the radiatio	ize ons	[2]	2	1
Q.3(b)	Sunlight falls on the earth with power per unit area given by 1370 W/m^2 . Estimate t radiation pressure.	he	[3]	2	3
Q.4(a) Q.4(b)	Briefly describe Wien's Displacement Law. In a 3D cavity, the number of modes of radiation in the frequency range ν to ν +d ν given by N(ν)d ν = (8 π V/c ³) ν ² d ν . Explain how this leads to the ultraviolet catastrophe.	is	[2] [3]	2 2	2 2
Q.5(a)	What were the properties of radiations proposed by Planck that led to the resolution the LIV catastrophe?	of	[2]	3	1
Q.5(b)	Derive the Stefan-Boltzmann Law using the Planck's Radiation Law.		[3]	3	2

:::::21/02/2023:::::M