BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (END SEMESTER EXAMINATION)

CLASS: BRANCH	IMSc I: PHYSICS	SEMESTER : VI SESSION : SP/2023			
TIME:	SUBJECT: PH316 STATISTICAL MECHANICS 3 Hours	FULL	MARKS	50	
 INSTRUCTIONS: The question paper contains 5 questions each of 10 marks and total 50 marks. Attempt all questions. The missing data, if any, may be assumed suitably. Before attempting the question paper, be sure that you have got the correct question paper. Tables/Data hand book/Graph paper etc. to be supplied to the candidates in the examination hall. 					
Q.1(a) Q.1(b)	A system is in contact with its surrounding environment at temperature T. Derive expression for the probability of the system being in a particular microstate ϵ_r . What is a partition function? Show that the mean energy of a system in canor	e an nical	[5] [2+3]	CO 1 1	BL 2 3
Q.2(a) Q.2(b)	Prove that the power of a black body radiation varies as the fourth power temperature. Given: the pressure exerted by the radiation is p=mnc ² /3. Briefly explain Wien's Displacement Law. If the temperature of outer space is 2.	r of 7 K,	[5] [2+3]	2 2	3 2
Q.3(a) Q.3(b)	If radiation is quantized in units of hv, derive an expression for the mean energy radiation mode. What is the classical value of mean energy per radiation mode? Show that	per the	[5] [2+3]	3 3	2 2
Q.4(a) Q.4(b)	Planck's expression converges to the classical value in the limit hv « k_BT . Discuss the number of states obtained when two particles are distributed into the states, when the particles are (a) classical, (b) fermionic, and (c) bosonic. Derive an expression for the mean ocupancy of a state for bosonic particles.	nree	[5] [5]	4 4	2 3
Q.5(a) Q.5(b)	Sketch a diagram of the Fermi distribution at different temperatures. Briefly exp how the Fermi energy level is related to the chemical potential of the Fermi gas The mean energy of a Fermi gas is given by the expression $T = \frac{3}{3} \exp \left[\frac{5\pi^2}{T} \left(\frac{T}{T} \right)^2 \right]$	lain	[3+2] [5]	5 5	2 3
	$E = \overline{5}^{N} \varepsilon_{F} \left[1 + \overline{12} \left(\overline{T_{F}} \right)^{-} + \cdots \right].$				

Find the expressions for the (a) C_{ν} and (b) pressure.

:::::25/04/2023:::::M