BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: BRANCH	IMSC S PHYSICS S		EMESTER : VI ESSION : SP2023				
TIME:	SUBJECT: PH315 ELECTROMAGNETIC THEORY 02 Hours FU			ILL MARKS: 25			
INSTRUC 1. The c 2. Atten 3. The n 4. Table	TIONS: Juestion paper contains 5 questions each of 5 marks and total 25 marks. Apt all questions. nissing data, if any, may be assumed suitably. As/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates	s	-				
Q.1(a)	Fill in the blank and write the mathematical expression of it: The net outward flow of flux of a vector field per unit volume over a closed increment surface The circulation of a vector field per unit surface area	ntal	[2]	CO 1	BL 2		
Q.1(b)	For any vector field \vec{A} , write the value of the divergence of the curl of the vector f Under some circumstances, if curl of a vector field \vec{A} is zero, what would be mathematical expression of vector field \vec{A} ? Suppose \vec{A} is magnetic vector potential, does the curl of magnetic vector potential corresponds to?	field. the what	[3]	1	2		
Q.2(a)	Derive Maxwell's divergence equations for electrostatic and electromagnetic time inva	riant	[2]	1	3		
Q.2(b)	Derive Maxwell's curl equations for electrostatic and electromagnetic time invariant control Derive Maxwell's third equation for electrodynamic case.	ases.	[3]	1	3		
Q.3(a)	The divergence of Maxwell's fourth equation for electromagnetic time invariant contradicted continuity equation. Derive Maxwell's fourth equation for electrodyn case	case Iamic	[2]	2	4		
Q.3(b)	Derive continuity equation. Explain relaxation time and derive mathematical expression it in terms of permittivity and conductivity of the medium.	on of	[3]	2	4		
Q.4(a)	Write the mathematical expressions for electric field vector and Lorenz condition	n for	[2]	2	4		
Q.4(b)	Derive Poisson's equations for electrodynamic cases for electric scalar potential (Φ) magnetic vector potential (\vec{A}).) and	[3]	2	4		
Q.5(a) Q.5(b)	Write the point form of Maxwell's equations assuming time factor $e^{-i\omega t}$ If $\vec{P} = 2sin(10t + x - \pi/4)\hat{y}$ and $\vec{Q}_s = e^{ix}(\hat{x} - \hat{z})sin(\pi y)$, determine the phasor form and the instantaneous form of \vec{Q}_s .	of \vec{P}	[2] [3]	3 3	5 5		

:::::20/02/2023:::::M