BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP2023)

CLASS: I BRANCH:		IMSc PHYSICS			SEMESTER : IV SESSION : SP2023	
TIME:		SUBJECT: PH209 ANALOG SYSTEMS AND APPLICATIONS 02 Hours			FULL MARKS: 25	
 INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates 						
Q1	(a)	Draw energy level diagram of p	-type and n-type semiconductor and	[2]	C0 C01	BL Knowledge
Q1	(b)	Define mobility and drift veloci current density in p-n junction	ty. Derive the relation for total diode.	[3]	CO1	Comprehensive
Q2 Q2	(a) (b)	What is rectifier? What do you What is full wave rectifier? De for the case of full wave rectif	nean by efficiency of rectification? rive an expression for total ac output ier and find the efficiency.	[2] [3]	CO1 CO1	Knowledge Evaluation
Q3	(a)	Define ripple factor. What is th	e ripple factor for half wave and full	[2]	C01	Knowledge
Q3	(b)	Write down the principle of (i) and explain?	LED, (ii) Photodiode and (iii) Solar cell	[3]	CO1	Applications
Q4	(a)	Draw the symbol and construct	ion of n-p-n and p-n-p transistor and	[2]	C02	Knowledge
Q4	(b)	Define the terms α , β and γ use relationship between α and β .	d in the case of transistor. Derive the	[3]	CO2	Applications
Q5 Q5	(a) (b)	What is the load line and how i What is the importance of h-pa for CE amplifier using Hybrid M	t is important? rameter? What are the symbols used odel? Explain meaning of each symbol.	[2] [3]	CO2 CO2	Applications Knowledge

:::::22/02/2023:::::M