BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI (MID SEMESTER EXAMINATION SP/2023)

CLASS: BRANCH		EMESTER : ESSION : SP		
TIME:	SUBJECT: PH208 ELEMENTS OF MODERN PHYSICS 02 Hours FI	FULL MARKS: 25		
INSTRUCTIONS: 1. The question paper contains 5 questions each of 5 marks and total 25 marks. 2. Attempt all questions. 3. The missing data, if any, may be assumed suitably. 4. Tables/Data handbook/Graph paper etc., if applicable, will be supplied to the candidates				
Q.1(a) Q.1(b)	How Einstein's hypothesis of light quanta differs from Planck's hypothesis? In Compton effect, show that the fractional change in energy of the photon is ec hv'(1-cos ϕ)/m _o c ² , where v' is the frequency of scattered photon and ϕ is the ar scattering.			BL I II
Q.2(a) Q.2(b)	Find the de Broglie wavelength of an electron moving with velocity, $v = 3c/5$. State and prove Heisenberg's uncertainty relation in estimating the positio momentum of a quantum mechanical particle.	[2 n and [3		I V
Q.3(a) Q.3(b)	Define the concept of probability current density. Using a classical wave equation, derive the time-independent and time dependent Schrodinger equation for a moving particle.	[2 endent [3	2	I V
Q.4(a) Q.4(b)	Define Normalization and orthogonalization of a wavefunction. The normalized state of a free particle is represented by the wave function, $\psi(x,0) = N \exp[(-x^2/2\alpha^2) + ikx]$ (i) Find the factor N. (ii) In what region of space, the particle is most likely to be found.	[2 [3		
Q.5(a) Q.5(b)	What do you mean by tunneling through a barrier? Find the energy and momentum eigen values of a particle confined in a one dimer infinitely rigid potential box of width L.	[2 nsional [3		

:::::21/02/2023:::::M